1
|
Hassan M, Flanagan TW, Eshaq AM, Altamimi OK, Altalag H, Alsharif M, Alshammari N, Alkhalidi T, Boulifa A, El Jamal SM, Haikel Y, Megahed M. Reduction of Prostate Cancer Risk: Role of Frequent Ejaculation-Associated Mechanisms. Cancers (Basel) 2025; 17:843. [PMID: 40075690 PMCID: PMC11898507 DOI: 10.3390/cancers17050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Prostate cancer (PCa) accounts for roughly 15% of diagnosed cancers among men, with disease incidence increasing worldwide. Age, family history and ethnicity, diet, physical activity, and chemoprevention all play a role in reducing PCa risk. The prostate is an exocrine gland that is characterized by its multi-functionality, being involved in reproductive aspects such as male ejaculation and orgasmic ecstasy, as well as playing key roles in the regulation of local and systemic concentrations of 5α-dihydrotestosterone. The increase in androgen receptors at the ventral prostate is the first elevated response induced by copulation. The regulation of prostate growth and function is mediated by an androgen-dependent mechanism. Binding 5-DHT to androgen receptors (AR) results in the formation of a 5α-DHT:AR complex. The interaction of the 5α-DHT:AR complex with the specific DNA enhancer element of androgen-regulated genes leads to the regulation of androgen-specific target genes to maintain prostate homeostasis. Consequently, ejaculation may play a significant role in the reduction of PCa risk. Thus, frequent ejaculation in the absence of risky sexual behavior is a possible approach for the prevention of PCa. In this review, we provide an insight into possible mechanisms regulating the impact of frequent ejaculation on reducing PCa risk.
Collapse
Affiliation(s)
- Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulaziz M. Eshaq
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Osama K. Altamimi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Hassan Altalag
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Mohamed Alsharif
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Nouf Alshammari
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Tamadhir Alkhalidi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (O.K.A.); (H.A.); (M.A.); (N.A.); (T.A.)
| | - Abdelhadi Boulifa
- Berlin Institute of Health, Charité University Hospital, 10117 Berlin, Germany;
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Charité-University Hospital, 10117 Berlin, Germany
| | - Siraj M. El Jamal
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| |
Collapse
|
2
|
Ji XT, Yu WL, Jin MJ, Lu LJ, Yin HP, Wang HH. Possible Role of Cellular Polyamine Metabolism in Neuronal Apoptosis. Curr Med Sci 2024; 44:281-290. [PMID: 38453792 DOI: 10.1007/s11596-024-2843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
Recent studies have shown that cellular levels of polyamines (PAs) are significantly altered in neurodegenerative diseases. Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of various PAs may play important roles in the central nervous system through the regulation of oxidative stress, mitochondrial metabolism, cellular immunity, and ion channel functions. Dysfunction of PA metabolism related enzymes also contributes to neuronal injury and cognitive impairment in many neurodegenerative diseases. Therefore, in the current work, evidence was collected to determine the possible associations between cellular levels of PAs, and related enzymes and the development of several neurodegenerative diseases, which could provide a new idea for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Xin-Tong Ji
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Wen-Lei Yu
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital, Huzhou, 313008, China
| | - Meng-Jia Jin
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- School of Pharmacy, Zhejiang University, Hangzhou, 310030, China
| | - Lin-Jie Lu
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Department of Stomatology, Haining Hospital of Traditional Chinese Medicine, Jiaxing, 314400, China
| | - Hong-Ping Yin
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huan-Huan Wang
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
3
|
Keller T, Koepsell H, Groll J. Evaluation of the Influence of Biosurface Design on the Interaction between the Regulatory Peptide RS1-reg and ODC1 Reveals a Membrane-Dependent Affinity Increase. Adv Biol (Weinh) 2022; 6:e2101108. [PMID: 35735188 DOI: 10.1002/adbi.202101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 05/07/2022] [Indexed: 01/28/2023]
Abstract
The regulatory solute carrier protein, family 1, member 1 (RS1) modulates via its N-terminal domain RS1-reg the activity of Na+ -d-glucose cotransporter 1 (SGLT1) and thereby the glucose uptake in the small intestine by blocking the release of SGLT1-containing vesicles at the trans-Golgi network (TGN). The antidiabetic activity of RS1 is mediated by ornithindecarboxylase 1 (ODC1), catalyzing the conversion of ornithine to putrescine. Putrescine can bind to a buddying protein complex for SGLT1-containing vesicles at the membrane of the TGN, triggering vesicle release. In this report, a first in-depth analysis of the important binding process between ODC1 and RS1-reg for regulating glucose uptake in the human organism is described by comparing results from the surface-based methods, "surface plasmon resonance" (SPR) and "surface acoustic wave" (SAW) with findings by isothermal titration calorimetry (ITC). In cases of SAW and SPR, three different assay surface setups are compared, resulting in small but significant differences in KD values for different surfaces. Noteworthy, an affinity increase by the factor of about 100 for the interaction is detected and herewith described for the first time in the presence of biological membranes that may be relevant in vivo for the biological function of RS1 and future bespoken antidiabetic drug development.
Collapse
Affiliation(s)
- Thorsten Keller
- Department for Functional Materials in Medicine and Dentistry Pleicherwall 2, University of Würzburg, 97070, Würzburg, Germany
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070, Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry Pleicherwall 2, University of Würzburg, 97070, Würzburg, Germany
| |
Collapse
|
4
|
Szabó Z, Péter M, Héja L, Kardos J. Dual Role for Astroglial Copper-Assisted Polyamine Metabolism during Intense Network Activity. Biomolecules 2021; 11:604. [PMID: 33921742 PMCID: PMC8073386 DOI: 10.3390/biom11040604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
Astrocytes serve essential roles in human brain function and diseases. Growing evidence indicates that astrocytes are central players of the feedback modulation of excitatory Glu signalling during epileptiform activity via Glu-GABA exchange. The underlying mechanism results in the increase of tonic inhibition by reverse operation of the astroglial GABA transporter, induced by Glu-Na+ symport. GABA, released from astrocytes, is synthesized from the polyamine (PA) putrescine and this process involves copper amino oxidase. Through this pathway, putrescine can be considered as an important source of inhibitory signaling that counterbalances epileptic discharges. Putrescine, however, is also a precursor for spermine that is known to enhance gap junction channel communication and, consequently, supports long-range Ca2+ signaling and contributes to spreading of excitatory activity through the astrocytic syncytium. Recently, we presented the possibility of neuron-glia redox coupling through copper (Cu+/Cu2+) signaling and oxidative putrescine catabolism. In the current work, we explore whether the Cu+/Cu2+ homeostasis is involved in astrocytic control on neuronal excitability by regulating PA catabolism. We provide supporting experimental data underlying this hypothesis. We show that the blockade of copper transporter (CTR1) by AgNO3 (3.6 µM) prevents GABA transporter-mediated tonic inhibitory currents, indicating causal relationship between copper (Cu+/Cu2+) uptake and the catabolism of putrescine to GABA in astrocytes. In addition, we show that MnCl2 (20 μM), an inhibitor of the divalent metal transporter DMT1, also prevents the astrocytic Glu-GABA exchange. Furthermore, we observed that facilitation of copper uptake by added CuCl2 (2 µM) boosts tonic inhibitory currents. These findings corroborate the hypothesis that modulation of neuron-glia coupling by copper uptake drives putrescine → GABA transformation, which leads to subsequent Glu-GABA exchange and tonic inhibition. Findings may in turn highlight the potential role of copper signaling in fine-tuning the activity of the tripartite synapse.
Collapse
Affiliation(s)
- Zsolt Szabó
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| | - Márton Péter
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
- Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| | - Julianna Kardos
- Functional Pharmacology Research Group, Research Centre for Natural Sciences, Institute of Organic Chemistry, H-1117 Budapest, Hungary; (Z.S.); (M.P.); (J.K.)
| |
Collapse
|