1
|
Morgan DF, Elangovan SM, Meyers AB. Pediatric Foot: Development, Variants, and Related Pathology. Semin Musculoskelet Radiol 2024; 28:490-504. [PMID: 39074731 DOI: 10.1055/s-0044-1779246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Pediatric foot development throughout childhood and adolescence can present a diagnostic dilemma for radiologists because imaging appearances may be confused with pathology. Understanding pediatric foot development and anatomical variants, such as accessory ossification centers, is essential to interpret musculoskeletal imaging in children correctly, particularly because many of these variants are incidental but others can be symptomatic. We first briefly review foot embryology. After describing common accessory ossification centers of the foot, we explain the different patterns of foot maturation with attention to irregular ossification and bone marrow development. Common pediatric foot variants and pathology are described, such as tarsal coalitions and fifth metatarsal base fractures. We also discuss pediatric foot alignment and various childhood foot alignment deformities.
Collapse
Affiliation(s)
- Daniel F Morgan
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stacey M Elangovan
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Arthur B Meyers
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
2
|
Meyer KJ, Fingert JH, Anderson MG. Lack of evidence for GWAS signals of exfoliation glaucoma working via monogenic loss-of-function mutation in the nearest gene. Hum Mol Genet 2024:ddae088. [PMID: 38770563 DOI: 10.1093/hmg/ddae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
PURPOSE Exfoliation syndrome (XFS) is a systemic disease of elastin-rich tissues involving a deposition of fibrillar exfoliative material (XFM) in the anterior chamber of the eye, which can promote glaucoma. The purpose of this study was to create mice with CRISPR/Cas9-induced variations in candidate genes identified from human genome-wide association studies (GWAS) and screen them for indices of XFS. METHODS Variants predicted to be deleterious were sought in the Agpat1, Cacna1a, Loxl1, Pomp, Rbms3, Sema6a, and Tlcd5 genes of C57BL/6J mice using CRISPR/Cas9-based gene editing. Strains were phenotyped by slit-lamp, SD-OCT imaging, and fundus exams at 1-5 mos of age. Smaller cohorts of 12-mos-old mice were also studied. RESULTS Deleterious variants were identified in six targets; Pomp was recalcitrant to targeting. Multiple alleles of some targets were isolated, yielding 12 strains. Across all genotypes and ages, 277 mice were assessed by 902 slit-lamp exams, 928 SD-OCT exams, and 358 fundus exams. Homozygosity for Agpat1 or Cacna1a mutations led to early lethality; homozygosity for Loxl1 mutations led to pelvic organ prolapse, preventing aging. Loxl1 homozygotes exhibited a conjunctival phenotype of potential relevance to XFS. Multiple other genotype-specific phenotypes were variously identified. XFM was not observed in any mice. CONCLUSIONS This study did not detect XFM in any of the strains. This may have been due to species-specific differences, background dependence, or insufficient aging. Alternatively, it is possible that the current candidates, selected based on proximity to GWAS signals, are not effectors acting via monogenic loss-of-function mechanisms.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd, Iowa City, IA 52242, United States
- Institute for Vision Research, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, United States
| | - John H Fingert
- Institute for Vision Research, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, United States
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd, Iowa City, IA 52242, United States
- Institute for Vision Research, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, 601 Hwy 6 W, Iowa City, IA 52246, United States
| |
Collapse
|
3
|
Chen W, Li Z, Zhong R, Sun W, Chu M. Expression profiles of oviductal mRNAs and lncRNAs in the follicular phase and luteal phase of sheep (Ovis aries) with 2 fecundity gene (FecB) genotypes. G3 (BETHESDA, MD.) 2023; 14:jkad270. [PMID: 38051961 PMCID: PMC10755197 DOI: 10.1093/g3journal/jkad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
FecB (also known as BMPR1B) is a crucial gene in sheep reproduction, which has a mutation (A746G) that was found to increase the ovulation rate and litter size. The FecB mutation is associated with reproductive endocrinology, such mutation can control external estrous characteristics and affect follicle-stimulating hormone during the estrous cycle. Previous researches showed that the FecB mutation can regulate the transcriptomic profiles in the reproductive-related tissues including hypothalamus, pituitary, and ovary during the estrous cycle of small-tailed Han (STH) sheep. However, little research has been reported on the correlation between FecB mutation and the estrous cycle in STH sheep oviduct. To investigate the coding and noncoding transcriptomic profiles involved in the estrous cycle and FecB in the sheep oviduct, RNA sequencing was performed to analyze the transcriptomic profiles of mRNAs and long noncoding RNAs (lncRNAs) in the oviduct during the estrous cycle of STH sheep with mutant (FecBBB) and wild-type (FecB++) genotypes. In total, 21,863 lncRNAs and 43,674 mRNAs were screened, the results showed that mRNAs had significantly higher expression levels than the lncRNAs, and the expression levels of these screened transcripts were lower in the follicular phase than they were in the luteal phase. Among them, the oviductal glycoprotein gene (OVGP1) had the highest expression level. In the comparison between the follicular and luteal phases, 57 differentially expressed (DE) lncRNAs and 637 DE mRNAs were detected, including FSTL5 mRNA and LNC_016628 lncRNA. In the comparison between the FecBBB and FecB++ genotypes, 26 DE lncRNAs and 421 DE mRNAs were detected, including EEF1D mRNA and LNC_006270 lncRNA. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis indicated that the DE mRNAs were enriched mainly in terms related to reproduction such as the tight junction, SAGA complex, ATP-binding cassette, nestin, and Hippo signaling pathway. The interaction network between DE lncRNAs and DE mRNAs indicated that LNC_018420 may be the key regulator in sheep oviduct. Together, our results can provide novel insights into the oviductal transcriptomic function against a FecB mutation background in sheep reproduction.
Collapse
Affiliation(s)
- Weihao Chen
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhifeng Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Panza R, Albano F, Casto A, Del Vecchio C, Laforgia N, Dibello D. Incidence and prevalence of congenital clubfoot in Apulia: a regional model for future prospective national studies. Ital J Pediatr 2023; 49:151. [PMID: 37964341 PMCID: PMC10648723 DOI: 10.1186/s13052-023-01559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Congenital clubfoot is a fairly common and severe congenital malformation, most often of idiopathic origin. A smaller percentage of cases is related to chromosomal abnormalities and genetic syndromes. It is estimated that 0.5/1000 newborns are affected worldwide, with a male to female ratio of 2:1 and greater distribution in developing countries (80%). The "European Surveillance of Congenital Anomalies (EUROCAT)" reported clubfoot prevalence in European newborns, but data regarding Italy are missing or poor. We aim to provide detailed data on clubfoot incidence according to the Apulian Regional Registry on Congenital Malformations and to report current knowledge on clubfoot genetic factors. METHODS We extrapolated data from the Regional Registry of Congenital Malformations to evaluate incidence and prevalence of congenital clubfoot in Apulia, Italy over a period of four years (2015-2018). We also performed a narrative review focusing on genetic mutations leading to congenital clubfoot. RESULTS Over the period from 2015 to 2018 in Apulia, Italy, 124,017 births were recorded and 209 cases of clubfoot were found, accounting for an incidence rate of 1.7/1,000 and a prevalence rate of 1.6/1,000. Six families of genes have been reported to have an etiopathogenetic role on congenital clubfoot. CONCLUSIONS Incidence and prevalence of congenital clubfoot in Apulia, Italy, are comparable with those reported in the other Italian regions but higher than those reported in previous studies from Europe. Genetic studies to better classify congenital clubfoot in either syndromic or isolated forms are desirable.
Collapse
Affiliation(s)
- Raffaella Panza
- Neonatology and Neonatal Intensive Care Unit (NICU), University of Bari Aldo Moro, Bari, Italy
| | - Federica Albano
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Alberto Casto
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Cosimo Del Vecchio
- Orthopaedics Unit, Department of Basic Medical Science, Neuroscience and Sensory Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit (NICU), University of Bari Aldo Moro, Bari, Italy.
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy.
| | - Daniela Dibello
- Unit of Pediatric Orthopaedics and Traumatology, Giovanni XXIII Children's Hospital, Via Giovanni Amendola, Bari, 70126, Italy
| |
Collapse
|
5
|
Hordyjewska-Kowalczyk E, Nowosad K, Jamsheer A, Tylzanowski P. Genotype-phenotype correlation in clubfoot (talipes equinovarus). J Med Genet 2021; 59:209-219. [PMID: 34782442 DOI: 10.1136/jmedgenet-2021-108040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
Clubfoot (talipes equinovarus) is a congenital malformation affecting muscles, bones, connective tissue and vascular or neurological structures in limbs. It has a complex aetiology, both genetic and environmental. To date, the most important findings in clubfoot genetics involve PITX1 variants, which were linked to clubfoot phenotype in mice and humans. Additionally, copy number variations encompassing TBX4 or single nucleotide variants in HOXC11, the molecular targets of the PITX1 transcription factor, were linked to the clubfoot phenotype. In general, genes of cytoskeleton and muscle contractile apparatus, as well as components of the extracellular matrix and connective tissue, are frequently linked with clubfoot aetiology. Last but not least, an equally important element, that brings us closer to a better understanding of the clubfoot genotype/phenotype correlation, are studies on the two known animal models of clubfoot-the pma or EphA4 mice. This review will summarise the current state of knowledge of the molecular basis of this congenital malformation.
Collapse
Affiliation(s)
- Ewa Hordyjewska-Kowalczyk
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Karol Nowosad
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland.,The Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Wielkopolskie, Poland
| | - Przemko Tylzanowski
- Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Lublin, Lubelskie, Poland .,Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
6
|
Follistatin-Like Proteins: Structure, Functions and Biomedical Importance. Biomedicines 2021; 9:biomedicines9080999. [PMID: 34440203 PMCID: PMC8391210 DOI: 10.3390/biomedicines9080999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Main forms of cellular signal transmission are known to be autocrine and paracrine signaling. Several cells secrete messengers called autocrine or paracrine agents that can bind the corresponding receptors on the surface of the cells themselves or their microenvironment. Follistatin and follistatin-like proteins can be called one of the most important bifunctional messengers capable of displaying both autocrine and paracrine activity. Whilst they are not as diverse as protein hormones or protein kinases, there are only five types of proteins. However, unlike protein kinases, there are no minor proteins among them; each follistatin-like protein performs an important physiological function. These proteins are involved in a variety of signaling pathways and biological processes, having the ability to bind to receptors such as DIP2A, TLR4, BMP and some others. The activation or experimentally induced knockout of the protein-coding genes often leads to fatal consequences for individual cells and the whole body as follistatin-like proteins indirectly regulate the cell cycle, tissue differentiation, metabolic pathways, and participate in the transmission chains of the pro-inflammatory intracellular signal. Abnormal course of these processes can cause the development of oncology or apoptosis, programmed cell death. There is still no comprehensive understanding of the spectrum of mechanisms of action of follistatin-like proteins, so the systematization and study of their cellular functions and regulation is an important direction of modern molecular and cell biology. Therefore, this review focuses on follistatin-related proteins that affect multiple targets and have direct or indirect effects on cellular signaling pathways, as well as to characterize the directions of their practical application in the field of biomedicine.
Collapse
|