1
|
Werren EA, Kalsner L, Ewald J, Peracchio M, King C, Vats P, Audano PA, Robinson PN, Adams MD, Kelly MA, Matson AP. Phenotypic Expansion of Knobloch Syndrome Type 2 in an Individual With a De Novo PAK2 Variant. Am J Med Genet A 2025; 197:e64006. [PMID: 39876536 PMCID: PMC12052494 DOI: 10.1002/ajmg.a.64006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
P21-activated kinase 2 (PAK2) is a serine/threonine kinase essential for a variety of cellular processes including signal transduction, cellular survival, proliferation, and migration. A recent report proposed monoallelic PAK2 variants cause Knobloch syndrome type 2 (KNO2)-a developmental disorder primarily characterized by ocular anomalies. Here, we identified a novel de novo heterozygous missense variant in PAK2, NM_002577.4:c.1273G>A, p.(D425N), by genome sequencing in an individual with features consistent with KNO2. Notable clinical phenotypes observed in this individual were global developmental delay, congenital retinal detachment, mild cerebral ventriculomegaly, hypotonia, failure to thrive, pyloric stenosis, feeding intolerance, patent ductus arteriosus, and mild facial dysmorphism. The p.(D425N) variant lies within the protein kinase domain and is predicted to be functionally damaging by in silico analysis. Previous clinical genetic testing did not report this variant due to unknown relevance of PAK2 variants at the time of testing, highlighting the importance of reanalysis. Our findings substantiate the candidacy of PAK2 variants in KNO2 and expand the KNO2 clinical phenotypic spectrum.
Collapse
Affiliation(s)
- Elizabeth A. Werren
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Louisa Kalsner
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Division of Genetics, Connecticut Children’s Medical Center, Hartford, CT 06106, USA
- Division of Neurology, Connecticut Children’s Medical Center, Hartford, CT 06106, USA
| | - Jessica Ewald
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Michael Peracchio
- Division of Genetics, Connecticut Children’s Medical Center, Hartford, CT 06106, USA
| | - Cameron King
- Department of Research, Connecticut Children’s Medical Center, Hartford, CT 06106, USA
| | - Purva Vats
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Peter A. Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Peter N. Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Mark D. Adams
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Melissa A. Kelly
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Adam P. Matson
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Division of Neonatology, Connecticut Children’s Medical Center, Hartford, CT 06106, USA
- Department of Immunology, UConn Health, Farmington, Connecticut, 06030, USA
| |
Collapse
|
2
|
Lodha A, Kamaluddeen M, Dotchin S, Lauzon J, Mitchell P. Retinal detachment in a neonate with congenital chylothorax and purpura fulminans associated with the PAK2 genetic variant: A case report. Int J Surg Case Rep 2025; 130:111341. [PMID: 40262506 PMCID: PMC12047482 DOI: 10.1016/j.ijscr.2025.111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025] Open
Abstract
INTRODUCTION AND IMPORTANCE A potential relationship between bilateral retinal detachment, chylothorax, and purpura fulminans in a female neonate with a PAK2 gene variant is not commonly reported. This emphasizes the significance of early ophthalmologic assessment in neonates with congenital chylothorax. CASE PRESENTATION A full-term female infant weighing 2.775 kg was delivered by cesarean section due to breech presentation. Prenatal imaging revealed fetal bilateral pleural effusion, suggestive of chylothorax. The neonate developed respiratory distress and purpura fulminans after birth. The absence of the red reflex in the right eye prompted a detailed ophthalmologic examination using a portable slit lamp and an indirect ophthalmoscope. The right eye revealed an ectatic pupil with posterior synechia extending from approximately 6 o'clock to 9 o'clock. Fundus examination of both eyes revealed funnel retinal detachment with multiple chronic features. A small amount of retina was draped between 4 and 7 o'clock, which may have been attached. Further ophthalmologic investigation under anesthesia, using B-scan ultrasonography and intravenous fluorescein angiography, confirmed bilateral retinal detachment. Genetic investigations revealed a PAK2 c.1115A>T, p.(Asp372Val) variant. CLINICAL DISCUSSION In addition to presenting our case report, we reviewed other recent case reports similar to ours. Retinal detachment and bilateral pleural effusions in neonates with Knobloch syndrome have been recently reported, but without purpura fulminans. Retinal detachment in neonates can result from both congenital and acquired conditions, and requires a thoughtful approach to establish the diagnosis and provide future counseling. CONCLUSION Bilateral retinal detachment, chylothorax, and purpura fulminans in a neonate with a PAK2 genetic variant is uncommon. This case underscores the importance of early ophthalmologic assessment and genetic testing for both neonates and their family members.
Collapse
Affiliation(s)
- Arijit Lodha
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Majeeda Kamaluddeen
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Stephanie Dotchin
- Department of Ophthalmology & Visual Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Julie Lauzon
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Patrick Mitchell
- Department of Ophthalmology & Visual Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Ghoraba HH, Sears J, Traboulsi EI. Hereditary Vitreoretinopathies: Molecular Diagnosis, Clinical Presentation and Management. Clin Exp Ophthalmol 2025; 53:281-291. [PMID: 39837650 PMCID: PMC11962705 DOI: 10.1111/ceo.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Hereditary vitreoretinopathies (HVRs), also known as hereditary vitreoretinal degenerations comprise a heterogeneous group of inherited disorders of the retina and vitreous, collectively and variably characterised by vitreal abnormalities, such as fibrillary condensations, liquefaction or membranes, as well as peripheral retinal abnormalities, vascular changes in some, an increased risk of retinal detachment and early-onset cataract formation. The pathology often involves the vitreoretinal interface in some, while the major underlying abnormality is vascular in others. Recent advances in molecular diagnosis and identification of the responsible genes and have improved our understanding of the pathogenesis, risks and management of the HVRs. Clinically, HVRs can be classified according to the presence or absence of skeletal or other systemic abnormalities, retinal dysfunction or retinal vascular abnormalities [2]. There are some discrepancies in the literature regarding which diseases are included under the overarching term 'hereditary vitreoretinopathies'. Conditions such as Stickler syndrome, Wagner syndrome and familial exudative vitreoretinopathy are generally included, while others such as autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) and autosomal dominant vitreoretinochoroidapathy (ADVIRC) may not. In this review, we will discuss some historical aspects, the molecular pathogenesis, clinical features and management of diseases and syndromes commonly considered as HVRs.
Collapse
|
4
|
Shen L, Ye X, Wang X, Song C, Yang B. Chinese Family With Knobloch Syndrome Associated With a Novel PAK2 Variant Leading to Reduced Phosphorylation Levels. Mol Genet Genomic Med 2025; 13:e70099. [PMID: 40247748 PMCID: PMC12006727 DOI: 10.1002/mgg3.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Biallelic variants of COL18A1 cause Knobloch syndrome (KNO), a rare genetic disorder, characterized by oculopathy and structural defects. Recently, several studies have suggested that novel de novo missense variants in PAK2 may be associated with KNO; however, there are few case reports. This study aimed to investigate a patient with KNO who initially presented with seizures and expand the PAK2 genotype and phenotype spectrum. METHODS This study included a Chinese family with a proband who primarily presented with epilepsy and developmental delay. Whole-exome sequencing and Sanger sequencing were performed to analyze potential variants. Structural modeling was performed to assess the impact of the variant on the protein structure. In vitro, a mutant plasmid was constructed and transfected into 293T cells to conduct phosphorylation assays, and phosphorylation levels at Ser141 of PAK2 were assessed. The PAK kinase inhibitor FRAX597 was used to confirm the specificity of the western blot results. RESULTS A de novo variant of PAK2 gene, NM_002577.4: c.1049G>A (p.Arg350Lys) was found in the patient but not in his parents or sister. This variant was found to be located in the kinase domain and may alter the hydrogen-bond network, potentially affecting kinase activity. In vitro functional experiments demonstrated that the variant may lead to reduced protein levels. Moreover, Western blot analysis showed a significant decrease in the phosphorylation level at Ser141 compared to the wild-type plasmid, indicating that the variant may lead to decreased PAK2 phosphorylation levels. CONCLUSION The clinical manifestations in this patient may be associated with a novel PAK2 variant, and the atypical presentation of KNO suggests that PAK2-related KNO may have a broader phenotypic spectrum.
Collapse
Affiliation(s)
- Liwei Shen
- Department of NeurologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiChina
| | - Xiaofei Ye
- Department of NeurologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiChina
| | - Xiaocui Wang
- Department of NeurologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiChina
| | - Conglei Song
- Department of NeurologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiChina
| | - Bin Yang
- Department of NeurologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiChina
| |
Collapse
|
5
|
Domenach L, Rooryck C, Legendre M, Bouchghoul H, Beneteau C, Margot H. Antenatal phenotype associated with PAK2 pathogenic variants: bilateral pleural effusion as a warning sign. BMC Med Genomics 2025; 18:35. [PMID: 39994693 PMCID: PMC11853806 DOI: 10.1186/s12920-025-02096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Fetal pleural effusions can arise in various contexts with different prognosis. They have been reported in fetuses presenting with hereditary or acquired conditions. One particularly rare genetic disorder, known as Knobloch syndrome, seems to emerge as a potential new cause of fetal pleural effusions, associated with severe outcomes. Knobloch syndrome 1 can be caused by biallelic variants in COL18A1. It is primarily characterized by its ophthalmic features, including severe vitreoretinal degeneration with retinal detachment and macular abnormalities. Neurological defects such as encephalocele and developmental delay, along with skeletal and renal malformations, are also associated with the syndrome. The Knobloch syndrome 2 is caused by monoallelic variants in the kinase domain of PAK2. It is less described and seems to also be associated with cardiac and respiratory damage in addition to the Knobloch syndrome 1 phenotype. PAK2 is a ubiquitous protein with a major implication in regulation and remodeling of the cytoskeleton and numerous other cellular pathways. Knobloch-associated variants seem to cause a loss of the kinase function of the protein. Even if the ophthalmic defects are almost constant, PAK2-associated Knobloch syndrome has slightly different features from Knobloch syndrome 1 in which pulmonary and lymphatic damages are still unseen. In a prenatal trio exome sequencing, we identified a novel de novo PAK2 missense variant, NM_002577.4:c.836 A > C, p.(Gln279Pro), classified as likely pathogenic in a 24 weeks of gestation fetus whose only sign was severe bilateral pleural effusion. From a literature review of patients, we recognize this sign as an important antenatal indicator of Knobloch syndrome 2, as it was the first sign identifiable in 2 out of 5 patients. This adds new evidence for the implication of this gene in fetal pleural effusions, with potentially severe outcomes.
Collapse
Affiliation(s)
- Louis Domenach
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, F-33000, France.
| | - Caroline Rooryck
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, F-33000, France
- Univ. Bordeaux, Génétique et Métabolisme (MRGM), INSERM U1211, Bordeaux, F-33000, France
| | - Marine Legendre
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Hanane Bouchghoul
- Service de Gynécologie Obstétrique, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Claire Beneteau
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Henri Margot
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, F-33000, France.
| |
Collapse
|
6
|
Schnur RE, Dvořáček L, Kalsner L, Shapiro FL, Grebeňová D, Yanni D, Wasserman BN, Dyer LM, Antonarakis SE, Kuželová K. New kinase-deficient PAK2 variants associated with Knobloch syndrome type 2. Clin Genet 2024; 106:518-524. [PMID: 38894571 DOI: 10.1111/cge.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024]
Abstract
The p21-activated kinase (PAK) family of proteins regulates various processes requiring dynamic cytoskeleton organization such as cell adhesion, migration, proliferation, and apoptosis. Among the six members of the protein family, PAK2 is specifically involved in apoptosis, angiogenesis, or the development of endothelial cells. We report a novel de novo heterozygous missense PAK2 variant, p.(Thr406Met), found in a newborn with clinical manifestations of Knobloch syndrome. In vitro experiments indicated that this and another reported variant, p.(Asp425Asn), result in substantially impaired protein kinase activity. Similar findings were described previously for the PAK2 p.(Glu435Lys) variant found in two siblings with proposed Knobloch syndrome type 2 (KNO2). These new variants support the association of PAK2 kinase deficiency with a second, autosomal dominant form of Knobloch syndrome: KNO2.
Collapse
Affiliation(s)
- Rhonda E Schnur
- Cooper Medical School of Rowan University, Camden, New Jersey, USA
- Division of Genetics, Cooper University Healthcare, Camden, New Jersey, USA
| | - Lukáš Dvořáček
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Louisa Kalsner
- Departments of Neurology and Pediatrics, Genetics Division, University of Connecticut School of Medicine, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Faye L Shapiro
- Division of Genetics, Cooper University Healthcare, Camden, New Jersey, USA
| | - Dana Grebeňová
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Diana Yanni
- Division of Neonatology, Cooper University Healthcare, Camden, New Jersey, USA
| | - Barry N Wasserman
- Division of Neonatology, Cooper University Healthcare, Camden, New Jersey, USA
- Wills Eye Hospital, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | - Kateřina Kuželová
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
7
|
Massier M, Doco-Fenzy M, Egloff M, Le Guillou X, Le Guyader G, Redon S, Benech C, Le Millier K, Uguen K, Ropars J, Sacaze E, Audebert-Bellanger S, Apetrei A, Molin A, Gruchy N, Vincent-Devulder A, Spodenkiewicz M, Jacquin C, Loron G, Thibaud M, Delplancq G, Brisset S, Lesieur-Sebellin M, Malan V, Romana S, Rio M, Marlin S, Amiel J, Marquet V, Dauriat B, Moradkhani K, Mercier S, Isidor B, Arpin S, Pujalte M, Jedraszak G, Pebrel-Richard C, Salaun G, Laffargue F, Boudjarane J, Missirian C, Chelloug N, Toutain A, Chiesa J, Keren B, Mignot C, Gouy E, Jaillard S, Landais E, Poirsier C. 3q29 duplications: A cohort of 46 patients and a literature review. Am J Med Genet A 2024; 194:e63531. [PMID: 38421086 DOI: 10.1002/ajmg.a.63531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024]
Abstract
Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.
Collapse
Affiliation(s)
- Marie Massier
- Department of Genetics, Reims University Hospital, Reims, France
| | - Martine Doco-Fenzy
- Department of Genetics, Reims University Hospital, Reims, France
- Department of Genetics, Nantes University Hospital, Nantes, France
| | - Matthieu Egloff
- Department of Genetics, Poitiers University Hospital, Poitiers, France
- University of Poitiers, INSERM, LNEC, Department of Genetics, Poitiers University Hospital, Poitiers, France
| | - Xavier Le Guillou
- Department of Genetics, Poitiers University Hospital, Poitiers, France
- University of Poitiers, CNRS, LMA, Department of Genetics, Poitiers University Hospital, Poitiers, France
| | | | - Sylvia Redon
- Department of Genetics, Brest University Hospital, Brest, France
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
- University of Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Caroline Benech
- University of Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | | | - Kevin Uguen
- Department of Genetics, Brest University Hospital, Brest, France
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
- University of Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Juliette Ropars
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
| | - Elise Sacaze
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
| | - Séverine Audebert-Bellanger
- Department of Genetics, Brest University Hospital, Brest, France
- Intellectual Disability Reference Center, Department of Pediatrics, Brest University Hospital, Brest, France
| | - Andreea Apetrei
- University of Normandy, UNICAEN, RU7450 BioTARGen, Caen University Hospital, Department of Genetics, Reference Center for Developmental Disorders and Malformative Syndromes, Anddi-Rares Network, Caen, France
| | - Arnaud Molin
- University of Normandy, UNICAEN, RU7450 BioTARGen, Caen University Hospital, Department of Genetics, Reference Center for Developmental Disorders and Malformative Syndromes, Anddi-Rares Network, Caen, France
| | - Nicolas Gruchy
- University of Normandy, UNICAEN, RU7450 BioTARGen, Caen University Hospital, Department of Genetics, Reference Center for Developmental Disorders and Malformative Syndromes, Anddi-Rares Network, Caen, France
| | - Aline Vincent-Devulder
- University of Normandy, UNICAEN, RU7450 BioTARGen, Caen University Hospital, Department of Genetics, Reference Center for Developmental Disorders and Malformative Syndromes, Anddi-Rares Network, Caen, France
| | | | - Clémence Jacquin
- Department of Genetics, Reims University Hospital, Reims, France
| | - Gauthier Loron
- Department of Neonatal Medicine and Pediatric Intensive Care, University of Reims Champagne-Ardenne, CReSTIC, Reims University Hospital, Reims, France
| | - Marie Thibaud
- Department of Pediatrics, American Memorial Hospital, Reims, France
| | | | - Sophie Brisset
- Constitutional Genetics Unit, Versailles Hospital, Le Chesnay, France
| | - Marion Lesieur-Sebellin
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Valérie Malan
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Serge Romana
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Marlène Rio
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Sandrine Marlin
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Jeanne Amiel
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Valentine Marquet
- Department of Cytogenetics, Clinical Genetics and Reproductive Biology, Limoges University Hospital, Limoges, France
| | - Benjamin Dauriat
- Department of Cytogenetics, Clinical Genetics and Reproductive Biology, Limoges University Hospital, Limoges, France
| | | | - Sandra Mercier
- Department of Genetics, Nantes University Hospital, Nantes, France
| | - Bertrand Isidor
- Department of Genetics, Nantes University Hospital, Nantes, France
| | - Stéphanie Arpin
- Department of Genetics, Tours University Hospital, UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | | | - Guillaume Jedraszak
- Constitutional Genetic Laboratory, University Hospital of Amiens & UR4666 HEMATIM, University of Picardie Jules Verne, Amiens, France
| | - Céline Pebrel-Richard
- Cytogenetic Medical Department; UIC Cytogenetics of Rare Diseases and Reproduction (GRUIC ADERGEN), Rare Diseases Reference Center (CRMR): Developmental Anomalies and Malformative Syndromes in the Auvergne Region, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Gaëlle Salaun
- Cytogenetic Medical Department; UIC Cytogenetics of Rare Diseases and Reproduction (GRUIC ADERGEN), Rare Diseases Reference Center (CRMR): Developmental Anomalies and Malformative Syndromes in the Auvergne Region, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Fanny Laffargue
- Department of Medical Genetics, UIC ADDIR (GRIUC ADERGEN), Constitutive Reference Center CLAD South-East: Developmental anomalies and malformative syndromes, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - John Boudjarane
- Medical Genetics Department, Timone Enfants University Hospital, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Chantal Missirian
- Medical Genetics Department, Timone Enfants University Hospital, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Nora Chelloug
- Department of Medical Genetics, Toulouse University Hospital, Toulouse, France
| | - Annick Toutain
- Department of Genetics, Tours University Hospital, UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Jean Chiesa
- Department of Genetics, Nimes, University Hospital, Nimes University Hospital, Nimes, France
| | - Boris Keren
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Cyril Mignot
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Evan Gouy
- Department of Genetics, Hospices Civils de Lyon, Lyon, France
| | - Sylvie Jaillard
- Department of Cytogenetics and Cell Biology, Rennes university hospital, Rennes, France
| | - Emilie Landais
- Department of Genetics, Reims University Hospital, Reims, France
| | - Céline Poirsier
- Department of Genetics, Reims University Hospital, Reims, France
| |
Collapse
|
8
|
Werren EA, Kalsner L, Ewald J, Peracchio M, King C, Vats P, Audano PA, Robinson PN, Adams MD, Kelly MA, Matson AP. A de novo variant in PAK2 detected in an individual with Knobloch type 2 syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590108. [PMID: 38712026 PMCID: PMC11071314 DOI: 10.1101/2024.04.18.590108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
P21-activated kinase 2 (PAK2) is a serine/threonine kinase essential for a variety of cellular processes including signal transduction, cellular survival, proliferation, and migration. A recent report proposed monoallelic PAK2 variants cause Knobloch syndrome type 2 (KNO2)-a developmental disorder primarily characterized by ocular anomalies. Here, we identified a novel de novo heterozygous missense variant in PAK2, NM_002577.4:c.1273G>A, p.(D425N), by whole genome sequencing in an individual with features consistent with KNO2. Notable clinical phenotypes include global developmental delay, congenital retinal detachment, mild cerebral ventriculomegaly, hypotonia, FTT, pyloric stenosis, feeding intolerance, patent ductus arteriosus, and mild facial dysmorphism. The p.(D425N) variant lies within the protein kinase domain and is predicted to be functionally damaging by in silico analysis. Previous clinical genetic testing did not report this variant due to unknown relevance of PAK2 variants at the time of testing, highlighting the importance of reanalysis. Our findings also substantiate the candidacy of PAK2 variants in KNO2 and expand the KNO2 clinical spectrum.
Collapse
Affiliation(s)
- Elizabeth A Werren
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Louisa Kalsner
- Connecticut Children's Medical Center, Hartford, CT 06106, USA
| | - Jessica Ewald
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | | | - Cameron King
- Connecticut Children's Medical Center, Hartford, CT 06106, USA
| | - Purva Vats
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Peter A Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Mark D Adams
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Melissa A Kelly
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA
| | - Adam P Matson
- Connecticut Children's Medical Center, Hartford, CT 06106, USA
| |
Collapse
|
9
|
Yahia A, Li D, Lejerkrans S, Rajagopalan S, Kalnak N, Tammimies K. Whole exome sequencing and polygenic assessment of a Swedish cohort with severe developmental language disorder. Hum Genet 2024; 143:169-183. [PMID: 38300321 PMCID: PMC10881898 DOI: 10.1007/s00439-023-02636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Developmental language disorder (DLD) overlaps clinically, genetically, and pathologically with other neurodevelopmental disorders (NDD), corroborating the concept of the NDD continuum. There is a lack of studies to understand the whole genetic spectrum in individuals with DLD. Previously, we recruited 61 probands with severe DLD from 59 families and examined 59 of them and their families using microarray genotyping with a 6.8% diagnostic yield. Herein, we investigated 53 of those probands using whole exome sequencing (WES). Additionally, we used polygenic risk scores (PRS) to understand the within family enrichment of neurodevelopmental difficulties and examine the associations between the results of language-related tests in the probands and language-related PRS. We identified clinically significant variants in four probands, resulting in a 7.5% (4/53) molecular diagnostic yield. Those variants were in PAK2, MED13, PLCB4, and TNRC6B. We also prioritized additional variants for future studies for their role in DLD, including high-impact variants in PARD3 and DIP2C. PRS did not explain the aggregation of neurodevelopmental difficulties in these families. We did not detect significant associations between the language-related tests and language-related PRS. Our results support using WES as the first-tier genetic test for DLD as it can identify monogenic DLD forms. Large-scale sequencing studies for DLD are needed to identify new genes and investigate the polygenic contribution to the condition.
Collapse
Affiliation(s)
- Ashraf Yahia
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Sanna Lejerkrans
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Shyam Rajagopalan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Nelli Kalnak
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Department of Speech-Language Pathology, Helsingborg Hospital, Helsingborg, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
10
|
Maitra P, Shah PK, S P, Das A, V N. Knobloch syndrome - a rare collagenopathy, revealing peripheral avascular retina. Ophthalmic Genet 2023; 44:618-622. [PMID: 36994995 DOI: 10.1080/13816810.2023.2188226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Pediatric rhegmatogenous retinal detachments, especially those presenting at birth or soon afterward, have a high likelihood of syndromic associations that can be confirmed by genetic testing. MATERIALS AND METHODS A 5-month-old child was found to have high myopia in the right eye (RE) with highly tessellated fundus, opalescent vitreous, and peripheral thinning. Left eye had a shallow retinal detachment for which he underwent belt buckling. The baby had an occipital skin tag. A provisional diagnosis of Stickler syndrome was made. RESULTS On 1-month follow-up, left eye retina was attached and 360° laser barrage was done. Fluorescein angiography was done which revealed peripheral avascular retina in both eyes. MRI and genetic testing were suggestive of syndromic association. Genetic testing revealed pathogenic mutation in COL 18A1 suggestive of Knobloch syndrome in the baby, and both parents were found to be carriers of the same mutation. However, brain MRI showed features not pathognomonic of Knobloch syndrome. CONCLUSION Although Knobloch syndrome is associated with vitreoretinal degeneration and high risk of retinal detachment, there seems to be no recommendation for prophylaxis in the other eye and therefore we preferred to observe the RE closely. A unique feature noted in our case was the peripheral avascular zone (PAZ). The PAZ could be contributed by multiple factors such as high myopia, or due to endostatin deficiency (which is a derivative of collagen XVIII) or an underlying WNT signalling abnormality.
Collapse
Affiliation(s)
- Puja Maitra
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| | - Parag K Shah
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| | - Prema S
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| | - Abhishek Das
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| | - Narendran V
- Department of Pediatric Retina and Ocular Oncology, Aravind Eye Hospital, Coimbatore, India
| |
Collapse
|
11
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|