1
|
Fekete R, Simats A, Bíró E, Pósfai B, Cserép C, Schwarcz AD, Szabadits E, Környei Z, Tóth K, Fichó E, Szalma J, Vida S, Kellermayer A, Dávid C, Acsády L, Kontra L, Silvestre-Roig C, Moldvay J, Fillinger J, Csikász-Nagy A, Hortobágyi T, Liesz A, Benkő S, Dénes Á. Microglia dysfunction, neurovascular inflammation and focal neuropathologies are linked to IL-1- and IL-6-related systemic inflammation in COVID-19. Nat Neurosci 2025; 28:558-576. [PMID: 40050441 PMCID: PMC11893456 DOI: 10.1038/s41593-025-01871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/17/2024] [Indexed: 03/12/2025]
Abstract
COVID-19 is associated with diverse neurological abnormalities, but the underlying mechanisms are unclear. We hypothesized that microglia, the resident immune cells of the brain, are centrally involved in this process. To study this, we developed an autopsy platform allowing the integration of molecular anatomy, protein and mRNA datasets in postmortem mirror blocks of brain and peripheral organ samples from cases of COVID-19. We observed focal loss of microglial P2Y12R, CX3CR1-CX3CL1 axis deficits and metabolic failure at sites of virus-associated vascular inflammation in severely affected medullary autonomic nuclei and other brain areas. Microglial dysfunction is linked to mitochondrial injury at sites of excessive synapse and myelin phagocytosis and loss of glutamatergic terminals, in line with proteomic changes of synapse assembly, metabolism and neuronal injury. Furthermore, regionally heterogeneous microglial changes are associated with viral load and central and systemic inflammation related to interleukin (IL)-1 or IL-6 via virus-sensing pattern recognition receptors and inflammasomes. Thus, SARS-CoV-2-induced inflammation might lead to a primarily gliovascular failure in the brain, which could be a common contributor to diverse COVID-19-related neuropathologies.
Collapse
Affiliation(s)
- Rebeka Fekete
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Alba Simats
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eduárd Bíró
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Anett D Schwarcz
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina Tóth
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | | | - János Szalma
- Cytocast Hungary Kft, Budapest, Hungary
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Sára Vida
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Anna Kellermayer
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Csaba Dávid
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - László Acsády
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Levente Kontra
- Bioinformatics Unit, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Carlos Silvestre-Roig
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation, WWU Muenster, Muenster, Germany
| | - Judit Moldvay
- I. Department of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
- Pulmonology Clinic, Szeged University, Albert Szent-Gyorgyi Medical School, Szeged, Hungary
| | - János Fillinger
- Department of Pathology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Attila Csikász-Nagy
- Cytocast Hungary Kft, Budapest, Hungary
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Tibor Hortobágyi
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Institute of Neuropathology, Universitätsspital Zürich, Zurich, Switzerland
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Szilvia Benkő
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
- Mercator Fellow, Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
2
|
Huang M, Wang J, Liu W, Zhou H. Advances in the role of the GADD45 family in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Front Neurosci 2024; 18:1349409. [PMID: 38332860 PMCID: PMC10850240 DOI: 10.3389/fnins.2024.1349409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The growth arrest and DNA damage inducible protein 45 (GADD45) family comprises stress-induced nuclear proteins that interact with DNA demethylases to facilitate DNA demethylation, thereby regulating diverse cellular processes including oxidative stress, DNA damage repair, apoptosis, proliferation, differentiation, inflammation, and neuroplasticity by modulating the expression patterns of specific genes. Widely expressed in the central nervous system, the GADD45 family plays a pivotal role in various neurological disorders, rendering it a potential therapeutic target for central nervous system diseases. This review presented a comprehensive overview of the expression patterns and potential mechanisms of action associated with each member of GADD45 family (GADD45α, GADD45β, and GADD45γ) in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders, while also explored strategies to harness these mechanisms for intervention and treatment. Future research should prioritize the development of effective modulators targeting the GADD45 family for clinical trials aimed at treating central nervous system diseases.
Collapse
Affiliation(s)
| | | | | | - Hongyan Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
3
|
Liu S, Zhang W. NAD + metabolism and eye diseases: current status and future directions. Mol Biol Rep 2023; 50:8653-8663. [PMID: 37540459 DOI: 10.1007/s11033-023-08692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
Currently, there are no truly effective treatments for a variety of eye diseases, such as glaucoma, age-related macular degeneration (AMD), and inherited retinal degenerations (IRDs). These conditions have a significant impact on patients' quality of life and can be a burden on society. However, these diseases share a common pathological process of NAD+ metabolism disorders. They are either associated with genetically induced primary NAD+ synthase deficiency, decreased NAD+ levels due to aging, or enhanced NAD+ consuming enzyme activity during disease pathology. In this discussion, we explore the role of NAD+ metabolic disorders in the development of associated ocular diseases and the potential advantages and disadvantages of various methods to increase NAD+ levels. It is essential to carefully evaluate the possible adverse effects of these methods and conduct a more comprehensive and objective assessment of their function before considering their use.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Ophthalmology, Second Clinical Medical College, Lanzhou University, 730030, Lanzhou, VA, China
| | - Wenfang Zhang
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 730030, Lanzhou, VA, China.
| |
Collapse
|
4
|
Liang SP, Wang XZ, Piao MH, Chen X, Wang ZC, Li C, Wang YB, Lu S, He C, Wang YL, Chi GF, Ge PF. Activated SIRT1 contributes to DPT-induced glioma cell parthanatos by upregulation of NOX2 and NAT10. Acta Pharmacol Sin 2023; 44:2125-2138. [PMID: 37277492 PMCID: PMC10545831 DOI: 10.1038/s41401-023-01109-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Parthanatos is a type of programmed cell death dependent on hyper-activation of poly (ADP-ribose) polymerase 1 (PARP-1). SIRT1 is a highly conserved nuclear deacetylase and often acts as an inhibitor of parthanatos by deacetylation of PARP1. Our previous study showed that deoxypodophyllotoxin (DPT), a natural compound isolated from the traditional herb Anthriscus sylvestris, triggered glioma cell death via parthanatos. In this study, we investigated the role of SIRT1 in DPT-induced human glioma cell parthanatos. We showed that DPT (450 nmol/L) activated both PARP1 and SIRT1, and induced parthanatos in U87 and U251 glioma cells. Activation of SIRT1 with SRT2183 (10 μmol/L) enhanced, while inhibition of SIRT1 with EX527 (200 μmol/L) or knockdown of SIRT1 attenuated DPT-induced PARP1 activation and glioma cell death. We demonstrated that DPT (450 nmol/L) significantly decreased intracellular NAD+ levels in U87 and U251 cells. Further decrease of NAD+ levels with FK866 (100 μmol/L) aggravated, but supplement of NAD+ (0.5, 2 mmol/L) attenuated DPT-induced PARP1 activation. We found that NAD+ depletion enhanced PARP1 activation via two ways: one was aggravating ROS-dependent DNA DSBs by upregulation of NADPH oxidase 2 (NOX2); the other was reinforcing PARP1 acetylation via increase of N-acetyltransferase 10 (NAT10) expression. We found that SIRT1 activity was improved when being phosphorylated by JNK at Ser27, the activated SIRT1 in reverse aggravated JNK activation via upregulating ROS-related ASK1 signaling, thus forming a positive feedback between JNK and SIRT1. Taken together, SIRT1 activated by JNK contributed to DPT-induced human glioma cell parthanatos via initiation of NAD+ depletion-dependent upregulation of NOX2 and NAT10.
Collapse
Affiliation(s)
- Shi-Peng Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuan-Zhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Mei-Hua Piao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Chuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Yu-Bo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Yan-Li Wang
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun, 130021, China
| | - Guang-Fan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Peng-Fei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China.
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
Yamaguchi S, Kojima D, Iqbal T, Kosugi S, Franczyk MP, Qi N, Sasaki Y, Yaku K, Kaneko K, Kinouchi K, Itoh H, Hayashi K, Nakagawa T, Yoshino J. Adipocyte NMNAT1 expression is essential for nuclear NAD + biosynthesis but dispensable for regulating thermogenesis and whole-body energy metabolism. Biochem Biophys Res Commun 2023; 674:162-169. [PMID: 37421924 DOI: 10.1016/j.bbrc.2023.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) functions as an essential cofactor regulating a variety of biological processes. The purpose of the present study was to determine the role of nuclear NAD+ biosynthesis, mediated by nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), in thermogenesis and whole-body energy metabolism. We first evaluated the relationship between NMNAT1 expression and thermogenic activity in brown adipose tissue (BAT), a key organ for non-shivering thermogenesis. We found that reduced BAT NMNAT1expression was associated with inactivation of thermogenic gene program induced by obesity and thermoneutrality. Next, we generated and characterized adiponectin-Cre-driven adipocyte-specific Nmnat1 knockout (ANMT1KO) mice. Loss of NMNAT1 markedly reduced nuclear NAD+ concentration by approximately 70% in BAT. Nonetheless, adipocyte-specific Nmnat1 deletion had no impact on thermogenic (rectal temperature, BAT temperature and whole-body oxygen consumption) responses to β-adrenergic ligand norepinephrine administration and acute cold exposure, adrenergic-mediated lipolytic activity, and metabolic responses to obesogenic high-fat diet feeding. In addition, loss of NMNAT1 did not affect nuclear lysine acetylation or thermogenic gene program in BAT. These results demonstrate that adipocyte NMNAT1 expression is required for maintaining nuclear NAD+ concentration, but not for regulating BAT thermogenesis or whole-body energy homeostasis.
Collapse
Affiliation(s)
- Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daiki Kojima
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tooba Iqbal
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Toyama, 930-0194, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Michael P Franczyk
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Toyama, 930-0194, Japan
| | - Kenji Kaneko
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kenichiro Kinouchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kaori Hayashi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Toyama, 930-0194, Japan
| | - Jun Yoshino
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Miller AL, James RE, Harvey AR, Trifunović D, Carvalho LS. The role of epigenetic changes in the pathology and treatment of inherited retinal diseases. Front Cell Dev Biol 2023; 11:1224078. [PMID: 37601102 PMCID: PMC10436478 DOI: 10.3389/fcell.2023.1224078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Elucidation of the cellular changes that occur in degenerating photoreceptors of people with inherited retinal diseases (IRDs) has been a focus for many research teams, leading to numerous theories on how these changes affect the cell death process. What is clearly emerging from these studies is that there are common denominators across multiple models of IRD, regardless of the underlying genetic mutation. These common markers could open avenues for broad neuroprotective therapeutics to prevent photoreceptor loss and preserve functional vision. In recent years, the role of epigenetic modifications contributing to the pathology of IRDs has been a particular point of interest, due to many studies noting changes in these epigenetic modifications, which coincide with photoreceptor cell death. This review will discuss the two broad categories of epigenetic changes, DNA methylation and histone modifications, that have received particular attention in IRD models. We will review the altered epigenetic regulatory events that are believed to contribute to cell death in IRDs and discuss the therapeutic potential of targeting these alterations.
Collapse
Affiliation(s)
- Annie L. Miller
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
| | - Rebekah E. James
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
| | - Alan R. Harvey
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Dragana Trifunović
- Institute for Ophthalmic Research, Tubingen University, Tübingen, Germany
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Brown EE, Scandura MJ, Pierce EA. Expression of NMNAT1 in the photoreceptors is sufficient to prevent NMNAT1-associated retinal degeneration. Mol Ther Methods Clin Dev 2023; 29:319-328. [PMID: 37214313 PMCID: PMC10193288 DOI: 10.1016/j.omtm.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023]
Abstract
Nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) is a ubiquitously expressed enzyme involved in nuclear NAD+ production throughout the body. However, mutations in the NMNAT1 gene lead to retina-specific disease with few reports of systemic effects. We have previously demonstrated that AAV-mediated gene therapy using self-complementary AAV (scAAV) to ubiquitously express NMNAT1 throughout the retina prevents retinal degeneration in a mouse model of NMNAT1-associated disease. We aimed to develop a better understanding of the cell types in the retina that contribute to disease pathogenesis in NMNAT1-associated disease, and to identify the cell types that require NMNAT1 expression for therapeutic benefit. To achieve this goal, we treated Nmnat1V9M/V9M mice with scAAV using cell type-specific promoters to restrict NMNAT1 expression to distinct retinal cell types. We hypothesized that photoreceptors are uniquely vulnerable to NAD+ depletion due to mutations in NMNAT1. Consistent with this hypothesis, we identified that treatments that drove NMNAT1 expression in the photoreceptors led to preservation of retinal morphology. These findings suggest that gene therapies for NMNAT1-associated disease should aim to express NMNAT1 in the photoreceptor cells.
Collapse
Affiliation(s)
- Emily E. Brown
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Harvard Medical School, Boston, MA 02114, USA
| | - Michael J. Scandura
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Harvard Medical School, Boston, MA 02114, USA
| | - Eric A. Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
8
|
Zeidler JD, Chini CC, Kanamori KS, Kashyap S, Espindola-Netto JM, Thompson K, Warner G, Cabral FS, Peclat TR, Gomez LS, Lopez SA, Wandersee MK, Schoon RA, Reid K, Menzies K, Beckedorff F, Reid JM, Brachs S, Meyer RG, Meyer-Ficca ML, Chini EN. Endogenous metabolism in endothelial and immune cells generates most of the tissue vitamin B3 (nicotinamide). iScience 2022; 25:105431. [PMID: 36388973 PMCID: PMC9646960 DOI: 10.1016/j.isci.2022.105431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
In mammals, nicotinamide (NAM) is the primary NAD precursor available in circulation, a signaling molecule, and a precursor for methyl-nicotinamide (M-NAM) synthesis. However, our knowledge about how the body regulates tissue NAM levels is still limited. Here we demonstrate that dietary vitamin B3 partially regulates plasma NAM and NAM-derived metabolites, but not their tissue levels. We found that NAD de novo synthesis from tryptophan contributes to plasma and tissue NAM, likely by providing substrates for NAD-degrading enzymes. We also demonstrate that tissue NAM is mainly generated by endogenous metabolism and that the NADase CD38 is the main enzyme that produces tissue NAM. Tissue-specific CD38-floxed mice revealed that CD38 activity on endothelial and immune cells is the major contributor to tissue steady-state levels of NAM in tissues like spleen and heart. Our findings uncover the presence of different pools of NAM in the body and a central role for CD38 in regulating tissue NAM levels.
Collapse
Affiliation(s)
- Julianna D. Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Claudia C.S. Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Karina S. Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sonu Kashyap
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jair M. Espindola-Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Katie Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Gina Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Fernanda S. Cabral
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Thais R. Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lilian Sales Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sierra A. Lopez
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Miles K. Wandersee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Renee A. Schoon
- Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kimberly Reid
- Interdisciplinary School of Health of Sciences, University Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Keir Menzies
- Interdisciplinary School of Health of Sciences, University Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joel M. Reid
- Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sebastian Brachs
- Charité – Universitätsmedizin Berlin, Department of Endocrinology and Metabolism, 10115 Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ralph G. Meyer
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Mirella L. Meyer-Ficca
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, School of Veterinary Medicine, Utah State University, Logan, UT 84332, USA
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA,Department of Anesthesiology and Perioperative Medicine Mayo Clinic, Jacksonville, FL 32224, USA,Corresponding author
| |
Collapse
|