1
|
Wilson P, Vishwakarma V, Norcross R, Khaire K, Pham VN, Weinstein BM, Jung HM, Galperin E. Signaling scaffold Shoc2 regulates lymphangiogenesis by suppressing mTORC1-mediated IFN responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645567. [PMID: 40196569 PMCID: PMC11974843 DOI: 10.1101/2025.03.26.645567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
An interplay of growth factors and signaling pathways governs the development and maintenance of the lymphatic vasculature, ensuring proper fluid homeostasis and immune function. Disruption of these regulatory mechanisms can lead to congenital lymphatic disorders and contribute to various pathological conditions. However, the mechanisms underlying the molecular regulation of these processes remain elusive. Here we reveal a critical and previously unappreciated role for the signaling scaffold protein Shoc2 in lymphangiogenesis. We demonstrate that loss of Shoc2 leads to nearly a complete loss of lymphatic vasculature in vivo and senescence of lymphatic endothelial cells in vitro. Mechanistically, Shoc2 is required for balancing signaling through the ERK1/2 pathway, and its loss results in increased mTORC1 signaling. This dysregulation impairs mitochondrial respiration and triggers an IRF/IFN-II response, ultimately leading to cellular senescence. Strikingly, expression of the Noonan Syndrome with Loose anagen Hair (NSLH)-causing Shoc2 variant S2G phenocopies the effects of Shoc2 loss. Together, these studies establish the critical role of Shoc2 in lymphangiogenesis and uncover a novel mechanistic link between Shoc2 signaling, mitochondrial function, innate immune response, and lymphatic development, with significant implications for Ras-pathway-related congenital disorders.
Collapse
|
2
|
Ilinca A, Kafantari E, Wallenius J, Kristoffersson U, Englund E, Puschmann A, Lindgren AG. Diagnosing Monogenic Stroke at Younger Age. Stroke 2024; 55:2846-2855. [PMID: 39498567 DOI: 10.1161/strokeaha.124.048044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND An increasing number of monogenic conditions underlying stroke are being identified. We explored the possibilities of increasing the diagnostic yield of monogenic stroke in a population under 56 years of age. METHODS Fifty probands ≤55 years at their first stroke episode were characterized clinically and investigated by whole genome sequencing. Probands had one or more of: (1) one or more first to second degree relatives with stroke under 60 years or same stroke-causing condition/disease; (2) no hypertension, hypercholesterolemia, diabetes, heart disease, or smoking; or (3) either multiple stroke episodes or multiple arterial dissections. Variants with minor allele frequency under 0.01, identified by using our stroke gene panels, were assessed. The stroke subtypes, including large artery atherosclerotic, large artery nonatherosclerotic (tortuosity, dolichoectasia, aneurysm, nonatherosclerotic dissection, or occlusion), cerebral small vessel disease, cardioembolic (arrhythmia, heart defect, or cardiomyopathy), coagulation dysfunctions (venous thrombosis, arterial thrombosis, or bleeding tendency), intracerebral hemorrhage, vascular malformations (cavernoma or arteriovenous malformations), metabolic disorders, or cryptogenic embolic, were used for genotype-phenotype correlation. In a final step, we combined genetic and clinical information to determine if the genetic variant likely was the cause of stroke in the patients. RESULTS Whole genome sequencing of younger patients with stroke identified 17 clinically matching genetic variants in 15 of 50 (30%) patients, while a stronger clinical correlation with stroke was established in only 6 (12%) of them. Stroke-related genetic variants were identified in 4 of 5 (80%) patients with cardioembolic stroke subtype, 3 of 4 (75%) with intracerebral hemorrhage, 7 of 18 (39%) with cryptogenic embolic stroke, 1 of 6 (17%) with small vessel disease, and 3 of 15 (20%) of patients with nonatherosclerotic large artery stroke, including 1 of 11 (9%) with cervical dissection stroke. CONCLUSIONS Careful clinical interpretation of whole genome data using stroke gene panels can detect monogenic causes of early stroke, allowing individualized follow-up and opening new possibilities for potential treatment.
Collapse
Affiliation(s)
- Andreea Ilinca
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Sweden (A.I., E.K., J.W., A.P., A.G.L.)
| | - Efthymia Kafantari
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Sweden (A.I., E.K., J.W., A.P., A.G.L.)
| | - Joel Wallenius
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Sweden (A.I., E.K., J.W., A.P., A.G.L.)
| | - Ulf Kristoffersson
- Department of Laboratory Medicine, Clinical Genetics, Lund University; Regional Laboratories, Region Skåne, Sweden (U.K.)
| | - Elisabet Englund
- Department of Clinical Sciences Lund, Pathology, Lund University; Regional Laboratories, Region Skåne, Sweden (E.E.)
| | - Andreas Puschmann
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Sweden (A.I., E.K., J.W., A.P., A.G.L.)
- SciLifeLab National Research Infrastructure, Lund University, Sweden (A.P.)
| | - Arne G Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University; Department of Neurology, Skåne University Hospital, Lund, Sweden (A.I., E.K., J.W., A.P., A.G.L.)
| |
Collapse
|
3
|
Wilson PG, Abdelmoti L, Gao T, Galperin E. The expression of congenital Shoc2 variants induces AKT-dependent crosstalk activation of the ERK1/2 pathway. Hum Mol Genet 2024; 33:1592-1604. [PMID: 38881369 PMCID: PMC11373329 DOI: 10.1093/hmg/ddae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024] Open
Abstract
The Shoc2 scaffold protein is crucial in transmitting signals within the Epidermal Growth Factor Receptor (EGFR)-mediated Extracellular signal-Regulated Kinase (ERK1/2) pathway. While the significance of Shoc2 in this pathway is well-established, the precise mechanisms through which Shoc2 governs signal transmission remain to be fully elucidated. Hereditary variants in Shoc2 are responsible for Noonan Syndrome with Loose anagen Hair (NSLH). However, due to the absence of known enzymatic activity in Shoc2, directly assessing how these variants affect its function is challenging. ERK1/2 phosphorylation is used as a primary parameter of Shoc2 function, but the impact of Shoc2 mutants on the pathway activation is unclear. This study investigates how the NSLH-associated Shoc2 variants influence EGFR signals in the context of the ERK1/2 and AKT downstream signaling pathways. We show that when the ERK1/2 pathway is a primary signaling pathway activated downstream of EGFR, Shoc2 variants cannot upregulate ERK1/2 phosphorylation to the level of the WT Shoc2. Yet, when the AKT and ERK1/2 pathways were activated, in cells expressing Shoc2 variants, ERK1/2 phosphorylation was higher than in cells expressing WT Shoc2. In cells expressing the Shoc2 NSLH mutants, we found that the AKT signaling pathway triggers the PAK activation, followed by phosphorylation of Raf-1/MEK1/2 and activation of the ERK1/2 signaling axis. Hence, our studies reveal a previously unrecognized feedback regulation downstream of the EGFR and provide additional evidence for the role of Shoc2 as a "gatekeeper" in controlling the selection of downstream effectors within the EGFR signaling network.
Collapse
Affiliation(s)
- Patricia G Wilson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone St, Lexington, KY 40536, United States
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone St, Lexington, KY 40536, United States
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone St, Lexington, KY 40536, United States
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone St, Lexington, KY 40536, United States
| |
Collapse
|
4
|
Bonsor DA, Simanshu DK. RAS and SHOC2 Roles in RAF Activation and Therapeutic Considerations. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:97-113. [PMID: 38882927 PMCID: PMC11178279 DOI: 10.1146/annurev-cancerbio-062822-030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mutations in RAS proteins play a pivotal role in the development of human cancers, driving persistent RAF activation and deregulating the Mitogen-Activated Protein Kinase (MAPK) signaling pathway. While progress has been made in targeting specific oncogenic RAS proteins, effective drug-based therapies for the majority of RAS mutations remain limited. Recent investigations on RAS-RAF complexes and the SHOC2-MRAS-PP1C holoenzyme complex have provided crucial insights into the structural and functional aspects of RAF activation within the MAPK signaling pathway. Moreover, these studies have also unveiled new blueprints for developing inhibitors allowing us to think beyond the current RAS and MEK inhibitors. In this review, we explore the roles of RAS and SHOC2 in activating RAF and discuss potential therapeutic strategies to target these proteins. A comprehensive understanding of the molecular interactions involved in RAF activation and their therapeutic implications holds the potential to drive innovative approaches in combating RAS/RAF-driven cancers.
Collapse
Affiliation(s)
- Daniel A. Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
5
|
Wilson P, Abdelmoti L, Gao T, Galperin E. The expression of congenital Shoc2 variants induces AKT-dependent feedback activation of the ERK1/2 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573219. [PMID: 38187642 PMCID: PMC10769455 DOI: 10.1101/2023.12.23.573219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The Shoc2 scaffold protein is crucial in transmitting signals within the Epidermal Growth Factor Receptor (EGFR)-mediated Extracellular signal-regulated Kinase (ERK1/2) pathway. While the significance of Shoc2 in this pathway is well-established, the precise mechanisms through which Shoc2 governs signal transmission remain to be fully elucidated. Hereditary mutations in Shoc2 are responsible for Noonan Syndrome with Loose anagen Hair (NSLH). However, due to the absence of known enzymatic activity in Shoc2, directly assessing how these mutations affect its function is challenging. ERK1/2 phosphorylation is used as a primary parameter of Shoc2 function, but the impact of Shoc2 mutants on the pathway activation is unclear. This study investigates how the NSLH-associated Shoc2 variants influence EGFR signals in the context of the ERK1/2 and AKT downstream signaling pathways. We show that when the ERK1/2 pathway is a primary signaling pathway activated downstream of EGFR, Shoc2 variants cannot upregulate ERK1/2 phosphorylation to the level of the WT Shoc2. Yet, when the AKT and ERK1/2 pathways were activated, in cells expressing Shoc2 variants, ERK1/2 phosphorylation was higher than in cells expressing WT Shoc2. We found that, in cells expressing the Shoc2 NSLH mutants, the AKT signaling pathway triggers the PAK activation, followed by phosphorylation and Raf-1/MEK1/2 /ERK1/2 signaling axis activation. Hence, our studies reveal a previously unrecognized feedback regulation downstream of the EGFR and provide evidence for the Shoc2 role as a "gatekeeper" in controlling the selection of downstream effectors within the EGFR signaling network.
Collapse
|
6
|
Liu L, Hu C, Chen Z, Zhu S, Zhu L. Co-Occurring Thrombotic Thrombocytopenic Purpura and Autoimmune Hemolytic Anemia in a Child Carrying the Pathogenic SHOC2 c.4A>G (p.Ser2Gly) Variant. AMERICAN JOURNAL OF CASE REPORTS 2023; 24:e942377. [PMID: 38019730 PMCID: PMC10697549 DOI: 10.12659/ajcr.942377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND RASopathies involve mutations in genes that encode proteins participating in the RAS-mitogen-activated protein kinase pathway and are a collection of multisystem disorders that clinically overlap. Variants in the SHOC2 gene have been reported in Noonan-like syndrome, which include distinct facial features, short stature, congenital cardiac defects, developmental delays, bleeding disorders, and loose anagen hair. This report is of a 7-year-old girl with the c.4A>G (p.Ser2Gly) variant of the SHOC2 gene, consistent with Noonan-like syndrome, with loose anagen hair, presenting with thrombotic thrombocytopenic purpura and autoimmune hemolytic anemia. CASE REPORT The child had a medical history of 7 hospitalizations at our institution. At the age of 2 months, she underwent surgical correction for ventricular and atrial septal defects. At the age of 2 years, tonsil and adenoid removal surgery was performed, followed by surgery for otitis media at age 5 years. At 7 years, she was hospitalized for the simultaneous occurrence of thrombotic thrombocytopenic purpura and autoimmune hemolytic anemia. The patient displayed short stature and mild intellectual disability. Notable facial features included sparse hair, mild frontal bossing, and low-set ears. Antinuclear antibody levels demonstrated a significant gradual shift. Through trio whole-exome sequencing, a c.4A>G (p.Ser2Gly) variation in the SHOC2 gene was identified. CONCLUSIONS Given the clinical information and genetic testing results, the patient's condition appeared to closely be a type of RASopathy. This report has highlighted the importance of physical, developmental, and genetic testing in children presenting with dysmorphism, developmental delay, and hematological abnormalities.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Chanchan Hu
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Zhenjie Chen
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Shuzhen Zhu
- Department of Emergency, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| | - Lvchang Zhu
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| |
Collapse
|
7
|
Rigante D, Leoni C, Onesimo R, Giorgio V, Trevisan V, Zampino G. Aberrant N-myristoylation as a prelude to autoimmune manifestations in patients with SHOC2 mutations. Autoimmun Rev 2023; 22:103462. [PMID: 37793491 DOI: 10.1016/j.autrev.2023.103462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy.
| | - Chiara Leoni
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberta Onesimo
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giorgio
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy
| | - Valentina Trevisan
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
8
|
Bonsor DA, Simanshu DK. Structural insights into the role of SHOC2-MRAS-PP1C complex in RAF activation. FEBS J 2023; 290:4852-4863. [PMID: 37074066 PMCID: PMC10584989 DOI: 10.1111/febs.16800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023]
Abstract
RAF activation is a key step for signalling through the mitogen-activated protein kinase (MAPK) pathway. The SHOC2 protein, along with MRAS and PP1C, forms a high affinity, heterotrimeric holoenzyme that activates RAF kinases by dephosphorylating a specific phosphoserine. Recently, our research, along with that of three other teams, has uncovered valuable structural and functional insights into the SHOC2-MRAS-PP1C (SMP) holoenzyme complex. In this structural snapshot, we review SMP complex assembly, the dependency on the bound-nucleotide state of MRAS, the substitution of MRAS by the canonical RAS proteins and the roles of SHOC2 and MRAS on PP1C activity and specificity. Furthermore, we discuss the effect of several RASopathy mutations identified within the SMP complex and explore potential therapeutic approaches for targeting the SMP complex in RAS/RAF-driven cancers and RASopathies.
Collapse
Affiliation(s)
- Daniel A. Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
9
|
Priolo M, Mancini C, Radio FC, Chiriatti L, Ciolfi A, Cappelletti C, Cordeddu V, Pintomalli L, Brusco A, Mammi C, Tartaglia M. Natural history of MRAS-related Noonan syndrome: Evidence of mild adult-onset left ventricular hypertrophy and neuropsychiatric features. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023. [PMID: 36734411 DOI: 10.1002/ajmg.c.32034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Gain of function pathogenic variants in MRAS have been found in a small subset of pediatric subjects presenting with Noonan syndrome (NS) associated with hypertrophic cardiomyopathy (HCM) and moderate to severe intellectual disability. These variants are considered to confer a high-risk for the development of severe HCM with poor prognosis and fatal outcome. We report on the natural history of the first adult subject with NS carrying the recurrent pathogenic p.Thr68Ile amino acid substitution. Different from what had previously been observed, he presented with a mild, late-onset left ventricular hypertrophy, and a constellation of additional symptoms rarely seen in NS. The present case provides evidence that HCM does not represent an obligatory, early-onset and severe complication in subjects with MRAS variants. It also adds new data about late-onset features suggesting that other unexpected complications might be observed in adult subjects providing anticipatory guidance for individuals of all age.
Collapse
Affiliation(s)
- Manuela Priolo
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Luigi Chiriatti
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Viviana Cordeddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Letizia Pintomalli
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Corrado Mammi
- USD Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Wang Q, Cheng S, Fu Y, Yuan H. Case report: A de novo RASopathy-causing SHOC2 variant in a Chinese girl with noonan syndrome-like with loose anagen hair. Front Genet 2022; 13:1040124. [PMID: 36579329 PMCID: PMC9792188 DOI: 10.3389/fgene.2022.1040124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Pathogenic variants in the RASopathy-causing SHOC2 gene have been suggested to cause Noonan syndrome-like with loose anagen hair (NS/LAH). This condition is characterized by facial features resembling Noonan syndrome (NS), short stature, growth hormone deficiency (GHD), cognitive deficits, cardiac defects, and ectodermal abnormalities, including easily pluckable, sparse, thin, slow-growing hair, hyperpigmented skin and hypernasal voice. The mutation spectrum of SHOC2 is narrow, and only 8 pathogenic variants have been identified. Here, we report a 5-year-3-month-old Chinese female who displays characteristics typical of NS and has normal neurodevelopment. Trio-based whole-exome sequencing (WES) revealed a de novo variant (c.1231A>G, p.Thr411Ala) in SHOC2. This variant has been recently reported in one subject in the literature who displayed facial features typical of NS and also presented with significant speech delays, moderate intellectual disabilities, epilepsy, bilateral sensorineural deafness and renal dysplasia. The differential phenotypes between these subjects deserve to be further investigated. Next, we reviewed the clinical pictures of NS/LAH and noticed that a recurrent SHOC2 Ser2Gly variant was more likely to result in delayed neurodevelopment and short stature, compared to other SHOC2 variants. And growth hormone (GH) therapy could improve height prognosis. It was noticed that the slight sleep problems and friendly and relatively mature personality observed in our patient may be a novel phenotype of NS/LAH. Our study reconfirms the pathogenic nature of the SHOC2 Thr411Ala variant. It also provides insights into the genotype-phenotype relationship in NS/LAH and a foundation for its genetic counseling, diagnosis and treatment.
Collapse
Affiliation(s)
- Qingming Wang
- Dongguan Maternal and Child Healthcare Hospital, Dongguan, China,Dongguan Institute of Reproductive and Genetic Research, Dongguan, China
| | - Shuangxi Cheng
- Dongguan Maternal and Child Healthcare Hospital, Dongguan, China
| | - Youqing Fu
- Dongguan Maternal and Child Healthcare Hospital, Dongguan, China
| | - Haiming Yuan
- Dongguan Maternal and Child Healthcare Hospital, Dongguan, China,Dongguan Institute of Reproductive and Genetic Research, Dongguan, China,*Correspondence: Haiming Yuan,
| |
Collapse
|
11
|
Zenker M. Clinical overview on RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:414-424. [PMID: 36428239 DOI: 10.1002/ajmg.c.32015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
RASopathies comprise a group of clinically overlapping developmental disorders caused by genetic variations affecting components or modulators of the RAS-MAPK signaling cascade, which lead to dysregulation of signal flow through this pathway. Noonan syndrome and the less frequent, clinically related disorders, Costello syndrome, cardiofaciocutaneous syndrome, Noonan syndrome with multiple lentigines, and Noonan syndrome-like disorder with loose anagen hair are part of the RASopathy spectrum and share a recognizable pattern of multisystem involvement. This review describes the "Noonan syndrome-like" phenotype as a common phenotypic signature of generalized developmental RAS pathway dysregulation. Distinctive features of the different entities are revisited against the background of the understanding of underlying genetic alterations and genotype correlations, which has evolved rapidly during the past 20 years, thereby leading to suggestions regarding the nosology of RASopathies.
Collapse
Affiliation(s)
- Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
12
|
Tartaglia M, Aoki Y, Gelb BD. The molecular genetics of RASopathies: An update on novel disease genes and new disorders. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:425-439. [PMID: 36394128 PMCID: PMC10100036 DOI: 10.1002/ajmg.c.32012] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Enhanced signaling through RAS and the mitogen-associated protein kinase (MAPK) cascade underlies the RASopathies, a family of clinically related disorders affecting development and growth. In RASopathies, increased RAS-MAPK signaling can result from the upregulated activity of various RAS GTPases, enhanced function of proteins positively controlling RAS function or favoring the efficient transmission of RAS signaling to downstream transducers, functional upregulation of RAS effectors belonging to the MAPK cascade, or inefficient signaling switch-off operated by feedback mechanisms acting at different levels. The massive effort in RASopathy gene discovery performed in the last 20 years has identified more than 20 genes implicated in these disorders. It has also facilitated the characterization of several molecular activating mechanisms that had remained unappreciated due to their minor impact in oncogenesis. Here, we provide an overview on the discoveries collected during the last 5 years that have delivered unexpected insights (e.g., Noonan syndrome as a recessive disease) and allowed to profile new RASopathies, novel disease genes and new molecular circuits contributing to the control of RAS-MAPK signaling.
Collapse
Affiliation(s)
- Marco Tartaglia
- Genetics and Rare Diseases Research DivisionOspedale Pediatrico Bambino Gesù, IRCCSRomeItaly
| | - Yoko Aoki
- Department of Medical GeneticsTohoku University School of MedicineSendaiJapan
| | - Bruce D. Gelb
- Mindich Child Health and Development InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pediatrics and GeneticsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|