1
|
Reynolds G, Gazzin A, Carli D, Massuras S, Cardaropoli S, Luca M, Defilippi B, Tartaglia M, Ferrero GB, Mussa A. Update on the Clinical and Molecular Characterization of Noonan Syndrome and Other RASopathies: A Retrospective Study and Systematic Review. Int J Mol Sci 2025; 26:3515. [PMID: 40332000 PMCID: PMC12027154 DOI: 10.3390/ijms26083515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
RASopathies are a diverse group of genetic conditions caused by hyperactivation of the RAS-MAPK signaling pathway, mainly inherited in an autosomal dominant manner. They present with variable features such as short stature, congenital heart defects, facial dysmorphisms, and neurodevelopmental delays. This study retrospectively analyzed 143 cases from 2003 to 2022, aiming to improve genotype-phenotype correlation knowledge for personalized care. Patients with genetically confirmed Noonan syndrome (NS) and related disorders were included, with molecular analysis performed via Sanger or parallel sequencing. Data from 906 previously reported cases were also reviewed. Among the 143 patients, most had NS (n = 116). PTPN11 mutations were most frequent (61%), followed by SOS1 (10.3%) and RAF1 (8.6%). Cardiac anomalies were observed in 71%, with pulmonary stenosis (PS) prevalent in NS (48.3%) and hypertrophic cardiomyopathy (HCM) in NSML (40%). PTPN11 variants were linked to PS and atrial septal defects, SOS1 to multiple cardiopathies, and RAF1 to HCM. Additional features included facial dysmorphisms (74.1%), short stature (62.0%), skeletal anomalies (43.1%), cryptorchidism (59.7%), and brain abnormalities (17.2%). JMML and other malignancies were seen in eight patients. This study emphasizes the importance of genotype-guided care, improved diagnosis of mild cases, and the underrecognized prevalence of neurological anomalies.
Collapse
Affiliation(s)
- Giuseppe Reynolds
- Department of Public Health and Pediatrics, Postgraduate School of Pediatrics, University of Torino, 10126 Turin, Italy;
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy; (A.G.); (S.M.); (S.C.); (B.D.)
| | - Andrea Gazzin
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy; (A.G.); (S.M.); (S.C.); (B.D.)
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (D.C.); (M.L.)
| | - Stefania Massuras
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy; (A.G.); (S.M.); (S.C.); (B.D.)
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy; (A.G.); (S.M.); (S.C.); (B.D.)
| | - Maria Luca
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (D.C.); (M.L.)
| | - Beatrice Defilippi
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy; (A.G.); (S.M.); (S.C.); (B.D.)
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | | | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy; (A.G.); (S.M.); (S.C.); (B.D.)
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| |
Collapse
|
2
|
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K, Ahmadian MR. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023; 12:1780. [PMID: 37443814 PMCID: PMC10341218 DOI: 10.3390/cells12131780] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.
Collapse
Affiliation(s)
- Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Julia Nau
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jeffry J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Leibniz Institute for Analytical Sciences, 97078 Würzburg, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| |
Collapse
|
3
|
Integrin receptor trafficking in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:271-302. [PMID: 36813362 DOI: 10.1016/bs.pmbts.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Integrins are a family of 24 different heterodimers that are indispensable for multicellular life. Cell polarity, adhesion and migration are controlled by integrins delivered to the cell surface which in turn is regulated by the exo- and endocytic trafficking of integrins. The deep integration between trafficking and cell signaling determines the spatial and temporal output from any biochemical cue. Integrin trafficking plays a key role in development and many pathological conditions, especially cancer. Several novel regulators of integrin traffic have been discovered in recent times, including a novel class of integrin carrying vesicles, the intracellular nanovesicles (INVs). The tight regulation of trafficking pathways by cell signaling, where kinases phosphorylate key small GTPases in the trafficking pathway enable coordination of cell response to the extracellular milieu. Integrin heterodimer expression and trafficking differ in different tissues and contexts. In this Chapter, we discuss recent studies on integrin trafficking and its contribution to normal physiological and pathophysiological states.
Collapse
|