1
|
Chang S, Liu JJ, Zhao Y, Pang T, Zheng X, Song Z, Zhang A, Gao X, Luo L, Guo Y, Liu J, Yang L, Lu L. Whole-genome sequencing identifies novel genes for autism in Chinese trios. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2368-2381. [PMID: 39126614 DOI: 10.1007/s11427-023-2564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/16/2024] [Indexed: 08/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high genetic heritability but heterogeneity. Fully understanding its genetics requires whole-genome sequencing (WGS), but the ASD studies utilizing WGS data in Chinese population are limited. In this study, we present a WGS study for 334 individuals, including 112 ASD patients and their non-ASD parents. We identified 146 de novo variants in coding regions in 85 cases and 60 inherited variants in coding regions. By integrating these variants with an association model, we identified 33 potential risk genes (P<0.001) enriched in neuron and regulation related biological process. Besides the well-known ASD genes (SCN2A, NF1, SHANK3, CHD8 etc.), several high confidence genes were highlighted by a series of functional analyses, including CTNND1, DGKZ, LRP1, DDN, ZNF483, NR4A2, SMAD6, INTS1, and MRPL12, with more supported evidence from GO enrichment, expression and network analysis. We also integrated RNA-seq data to analyze the effect of the variants on the gene expression and found 12 genes in the individuals with the related variants had relatively biased expression. We further presented the clinical phenotypes of the proband carrying the risk genes in both our samples and Caucasian samples to show the effect of the risk genes on phenotype. Regarding variants in non-coding regions, a total of 74 de novo variants and 30 inherited variants were predicted as pathogenic with high confidence, which were mapped to specific genes or regulatory features. The number of de novo variants found in patient was significantly associated with the parents' ages at the birth of the child, and gender with trend. We also identified small de novo structural variants in ASD trios. The results in this study provided important evidence for understanding the genetic mechanism of ASD.
Collapse
Affiliation(s)
- Suhua Chang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
- Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, 100191, China
| | - Jia Jia Liu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
- School of Nursing, Peking University, Beijing, 100191, China
| | - Yilu Zhao
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Tao Pang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Xiangyu Zheng
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | | | - Anyi Zhang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Xuping Gao
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Lingxue Luo
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China
| | - Yanqing Guo
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
| | - Jing Liu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
| | - Li Yang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
| | - Lin Lu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Beijing, 100191, China.
- Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, 100191, China.
- National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Itai T, Yan F, Liu A, Dai Y, Iwaya C, Curtis SW, Leslie EJ, Simon LM, Jia P, Chen X, Iwata J, Zhao Z. Investigating gene functions and single-cell expression profiles of de novo variants in orofacial clefts. HGG ADVANCES 2024; 5:100313. [PMID: 38807368 PMCID: PMC11318074 DOI: 10.1016/j.xhgg.2024.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
Orofacial clefts (OFCs) are common congenital birth defects with various etiologies, including genetic variants. Online Mendelian Inheritance in Man (OMIM) annotated several hundred genes involving OFCs. Furthermore, several hundreds of de novo variants (DNVs) have been identified from individuals with OFCs. Some DNVs are related to known OFC genes or pathways, but there are still many DNVs whose relevance to OFC development is unknown. To explore novel gene functions and their cellular expression profiles, we focused on DNVs in genes that were not listed in OMIM. We collected 960 DNVs in 853 genes from published studies and curated these genes, based on the DNVs' deleteriousness, into 230 and 23 genes related to cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO), respectively. For comparison, we curated 178 CL/P and 277 CPO genes from OMIM. In CL/P, the pathways enriched in DNV and OMIM genes were significantly overlapped (p = 0.002). Single-cell RNA sequencing (scRNA-seq) analysis of mouse lip development revealed that both gene sets had abundant expression in the ectoderm (DNV genes: adjusted p = 0.032, OMIM genes: adjusted p < 0.0002), while only DNV genes were enriched in the endothelium (adjusted p = 0.032). Although we did not achieve significant findings using CPO gene sets, which was mainly due to the limited number of DNV genes, scRNA-seq analysis implicated various expression patterns among DNV and OMIM genes. Our results suggest that combinatory pathway and scRNA-seq data analyses are helpful for contextualizing genes in OFC development.
Collapse
Affiliation(s)
- Toshiyuki Itai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fangfang Yan
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiangning Chen
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Pediatric Research Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Pottmeier P, Nikolantonaki D, Lanner F, Peuckert C, Jazin E. Sex-biased gene expression during neural differentiation of human embryonic stem cells. Front Cell Dev Biol 2024; 12:1341373. [PMID: 38764741 PMCID: PMC11101176 DOI: 10.3389/fcell.2024.1341373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
Sex differences in the developing human brain are primarily attributed to hormonal influence. Recently however, genetic differences and their impact on the developing nervous system have attracted increased attention. To understand genetically driven sexual dimorphisms in neurodevelopment, we investigated genome-wide gene expression in an in vitro differentiation model of male and female human embryonic stem cell lines (hESC), independent of the effects of human sex hormones. Four male and four female-derived hESC lines were differentiated into a population of mixed neurons over 37 days. Differential gene expression and gene set enrichment analyses were conducted on bulk RNA sequencing data. While similar differentiation tendencies in all cell lines demonstrated the robustness and reproducibility of our differentiation protocol, we found sex-biased gene expression already in undifferentiated ESCs at day 0, but most profoundly after 37 days of differentiation. Male and female cell lines exhibited sex-biased expression of genes involved in neurodevelopment, suggesting that sex influences the differentiation trajectory. Interestingly, the highest contribution to sex differences was found to arise from the male transcriptome, involving both Y chromosome and autosomal genes. We propose 13 sex-biased candidate genes (10 upregulated in male cell lines and 3 in female lines) that are likely to affect neuronal development. Additionally, we confirmed gene dosage compensation of X/Y homologs escaping X chromosome inactivation through their Y homologs and identified a significant overexpression of the Y-linked demethylase UTY and KDM5D in male hESC during neuron development, confirming previous results in neural stem cells. Our results suggest that genetic sex differences affect neuronal differentiation trajectories, which could ultimately contribute to sex biases during human brain development.
Collapse
Affiliation(s)
- Philipp Pottmeier
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Danai Nikolantonaki
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Fredrik Lanner
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Christiane Peuckert
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elena Jazin
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
5
|
Marom R, Zhang B, Washington ME, Song IW, Burrage LC, Rossi VC, Berrier AS, Lindsey A, Lesinski J, Nonet ML, Chen J, Baldridge D, Silverman GA, Sutton VR, Rosenfeld JA, Tran AA, Hicks MJ, Murdock DR, Dai H, Weis M, Jhangiani SN, Muzny DM, Gibbs RA, Caswell R, Pottinger C, Cilliers D, Stals K, Undiagnosed Diseases Network, Eyre D, Krakow D, Schedl T, Pak SC, Lee BH. Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling. PLoS Genet 2023; 19:e1011005. [PMID: 37934770 PMCID: PMC10656020 DOI: 10.1371/journal.pgen.1011005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/17/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Bo Zhang
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Megan E. Washington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Vittoria C. Rossi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Ava S. Berrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anika Lindsey
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jacob Lesinski
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael L. Nonet
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jian Chen
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Gary A. Silverman
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alyssa A. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - M. John Hicks
- Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David R. Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Carrie Pottinger
- All Wales Medical Genomics Service, Wrexham Maelor Hospital, Wrexham, UK
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | | | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Deborah Krakow
- Human Genetics, Obstetrics & Gynecology, Orthopedic Surgery, University of California, Los Angeles, California, United States of America
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Stephen C. Pak
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Brendan H. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| |
Collapse
|
6
|
Niwa S, Chiba K. Generation of recombinant and chickenized scFv versions of an anti-kinesin monoclonal antibody H2. Cytoskeleton (Hoboken) 2023; 80:356-366. [PMID: 37036074 DOI: 10.1002/cm.21756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Kinesin-1, a motor protein composed of the kinesin heavy chain (KHC) and the kinesin light chain (KLC), is essential for proper cellular morphogenesis and function. A monoclonal antibody (mAb) called H2 recognizes the KHC in a broad range of species and is one of the most widely used mAbs in cytoskeletal motor research. Here, we present vectors that express recombinant H2 in mammalian cells. We show the recombinant H2 performs as well as the hybridoma-derived H2 in both western blotting and immunofluorescence assays. Additionally, the recombinant H2 can detect all three human KHC isotypes (KIF5A, KIF5B, and KIF5C) and amyotrophic lateral sclerosis-associated KIF5A aggregates in cells. In addition, we developed a chickenized version of the H2 mAb's single chain variable fragment, which can be used in immunofluorescence microscopy and expands the potential applications of H2. Overall, our results demonstrate that recombinant H2 is a useful tool for studying the functions of KHCs.
Collapse
Affiliation(s)
- Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aramaki-Aoba 6-3, Aoba-Ku, Sendai, Miyagi, 980-0845, Japan
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aramaki-Aoba 6-3, Aoba-Ku, Sendai, Miyagi, 980-0845, Japan
| |
Collapse
|
7
|
Biallelic Inactivating TUB Variants Cause Retinal Ciliopathy Impairing Biogenesis and the Structure of the Primary Cilium. Int J Mol Sci 2022; 23:ijms232314656. [PMID: 36498982 PMCID: PMC9740599 DOI: 10.3390/ijms232314656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Inherited retinal degeneration (IRD) represents a clinically variable and genetically heterogeneous group of disorders characterized by photoreceptor dysfunction. These diseases typically present with progressive severe vision loss and variable onset, ranging from birth to adulthood. Genomic sequencing has allowed to identify novel IRD-related genes, most of which encode proteins contributing to photoreceptor-cilia biogenesis and/or function. Despite these insights, knowledge gaps hamper a molecular diagnosis in one-third of IRD cases. By exome sequencing in a cohort of molecularly unsolved individuals with IRD, we identified a homozygous splice site variant affecting the transcript processing of TUB, encoding the first member of the Tubby family of bipartite transcription factors, in a sporadic case with retinal dystrophy. A truncating homozygous variant in this gene had previously been reported in a single family with three subjects sharing retinal dystrophy and obesity. The clinical assessment of the present patient documented a slightly increased body mass index and no changes in metabolic markers of obesity, but confirmed the occurrence of retinal detachment. In vitro studies using patient-derived fibroblasts showed the accelerated degradation of the encoded protein and aberrant cilium morphology and biogenesis. These findings definitely link impaired TUB function to retinal dystrophy and provide new data on the clinical characterization of this ultra-rare retinal ciliopathy.
Collapse
|