1
|
Tkemaladze T, Bregvadze K, Abashishvili L, Chikvinidze G, Delgado Vega AM, Akbar F, Khan S, Kirmani S. Clinical and Genetic Landscape of IGHMBP2-Related Disorders: From Novel Variants to Phenotypic Insights. Am J Med Genet A 2025:e64116. [PMID: 40353295 DOI: 10.1002/ajmg.a.64116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/20/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Pathogenic variants in IGHMBP2 have been associated with spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Autosomal Recessive Charcot-Marie-Tooth disease type 2S (AR-CMT2S), as well as a relatively wide spectrum of rare, atypical phenotypes. We describe clinical and molecular features of five patients who have diverse clinical findings associated with known and novel IGHMBP2 pathogenic variants. Genotype-phenotype correlations are evident, highlighting the association of specific variants with SMARD1 or AR-CMT2S. This study expands the spectrum of the IGHMBP2-related disease and highlights the necessity to study diverse populations to enhance diagnostic accuracy and refine genotype-phenotype correlations.
Collapse
Affiliation(s)
- Tinatin Tkemaladze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
- Givi Zhvania Pediatric University Clinic, Tbilisi State Medical University, Tbilisi, Georgia
| | - Kakha Bregvadze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Luka Abashishvili
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Gocha Chikvinidze
- Department of Neurology, I.Tsitsishvili Children's New Clinic, Tbilisi, Georgia
| | - Angelica Maria Delgado Vega
- Department of Molecular Medicine and Surgery, Rare Diseases, Karolinska Institutet, Stockholm, Stockholm County, Sweden
| | - Fizza Akbar
- Division of Women & Child Health, Aga Khan University, Karachi, Pakistan
| | - Sara Khan
- Section of Neurology, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Salman Kirmani
- Division of Women & Child Health, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
2
|
Yavas C, Dogan M, Ozgor B, Akbulut E, Eroz R. Novel biallelic nonsense mutation in IGHMBP2 gene linked to neuropathy (CMT2S): A comprehensive clinical, genetic and bioinformatic analysis of a Turkish patient with literature review. Brain Dev 2025; 47:104313. [PMID: 39705914 DOI: 10.1016/j.braindev.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth type 2S (CMT2S) typically present before age 10. Genetic factors account for up to 50 % of neuropathies, which often display varied symptoms. Mutations in the IGHMBP2 gene are associated with both CMT2S and SMARD1, resulting in a rare clinical condition marked by axonal neuropathy, spinal muscular atrophy, respiratory distress, and muscle weakness. METHOD Detailed family histories and medical data were collected. Segregation analysis was performed using Sanger sequencing and whole exome sequencing. Additionally, a review of molecularly confirmed patients was conducted. Protein tertiary structures expressed in the IGHMBP2 gene were tested for topological and conformational changes using modeling programs and in-silico tools. RESULTS We identified a novel homozygous nonsense mutation (c.2568_2569del p.Gly857Alafs*27) in a family with a member showing neuropathy. This report details the clinical and genetic findings of the affected individuals, including a Turkish patient with neuropathy, and compares them with literature cases. CONCLUSION Understanding the clinical impact of the (c.2568_2569del p.Gly857Alafs*27) mutation will enhance our knowledge of IGHMBP2 gene defects role in neuropathy. This study aims to highlight this severe recessive disease caused by pathogenic IGHMBP2 gene mutations and to examine the mutation spectrum and phenotype differences.
Collapse
Affiliation(s)
- Cüneyd Yavas
- Department of Molecular Biology and Genetics Biruni University, Istanbul, Turkiye.
| | - Mustafa Dogan
- Basaksehir Cam and Sakura City Hospital, Genetic Diseases Assessment Center, Istanbul, Turkiye
| | - Bilge Ozgor
- Department of Pediatric Neurology, Inonu University Faculty of Medicine, Turkiye
| | - Ekrem Akbulut
- Department of Bioengineering, Malatya Turgut Ozal University, Malatya, Turkiye
| | - Recep Eroz
- Department of Medical Genetics Medical Faculty, Aksaray University, Aksaray, Turkiye
| |
Collapse
|
3
|
Ricardez Hernandez SM, Ahmed B, Al Rawi Y, Torres FJL, Garro Kacher MO, Smith CL, Al Rawi Z, Garcia J, Nichols NL, Lorson CL, Lorson MA. Ighmbp2 mutations and disease pathology: Defining differences that differentiate SMARD1 and CMT2S. Exp Neurol 2024; 383:115025. [PMID: 39461706 DOI: 10.1016/j.expneurol.2024.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Mutations in the Immunoglobulin mu DNA binding protein 2 (IGHMBP2) gene result in two distinct diseases, SMA with Respiratory Distress Type I (SMARD1) and Charcot Marie Tooth Type 2S (CMT2S). To understand the phenotypic and molecular differences between SMARD1 and CMT2S, and the role of IGHMBP2 in disease development, we generated mouse models based on six IGHMBP2 patient mutations. Previously, we reported the development and characterization of Ighmbp2D564N/D564N mice and in this manuscript, we examine two mutations: D565N (D564N in mice) and H924Y (H922Y in mice) in the Ighmbp2H922Y/H922Y and Ighmbp2D564N/H922Y contexts. We found significant differences between these mouse models, providing critical insight into the role of IGHMBP2 in the pathogenesis of SMARD1 and CMT2S. Importantly, these studies also demonstrate how disease pathogenesis is significantly altered in the context of Ighmbp2 D564N and H922Y homozygous recessive and compound heterozygous mutations. Notably, there were short-lived and long-lived lifespan cohorts within Ighmbp2D564N/H922Y mice with early (P12/P16) respiratory pathology serving as a key predictor of lifespan. Despite differences in lifespan, motor function deficits initiated early and progressively worsened in all Ighmbp2D564N/H922Y mice. There was decreased limb skeletal muscle fiber area and increased neuromuscular junction (NMJ) denervation in Ighmbp2D564N/H922Y mice. Consistent with CMT2S, Ighmbp2H922Y/H922Y mice did not have altered lifespans nor respiratory pathology. Interestingly, Ighmbp2H922Y/H922Y limb muscle fibers demonstrated an increase in muscle fiber area followed by a reduction while changes in NMJ innervation were minimal even at P180. This is the first study that demonstrates differences associated with IGHMBP2 function within respiration with those within limb motor function. Significant to our understanding of IGHMBP2 function, we demonstrate that there is a direct correlation between disease pathogenesis associated with these IGHMBP2 patient mutations and IGHMBP2 biochemical activity. Importantly, these studies reveal the dynamic differences that are presented when either a single mutant protein is present (IGHMBP2-D564N or IGHMBP2-H922Y) or two mutant proteins are present (IGHMBP2-D564N and IGHMBP2-H922Y) within cells.
Collapse
Affiliation(s)
- Sara M Ricardez Hernandez
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Bassil Ahmed
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Yaser Al Rawi
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - F Javier Llorente Torres
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Mona O Garro Kacher
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Catherine L Smith
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Zayd Al Rawi
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jessica Garcia
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Nicole L Nichols
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | - Monique A Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Holbrook SE, Hicks AN, Martin PB, Hines TJ, Castro HP, Cox GA. Clinically relevant mouse models of severe spinal muscular atrophy with respiratory distress type 1. Hum Mol Genet 2024; 33:1800-1814. [PMID: 39128026 PMCID: PMC11457999 DOI: 10.1093/hmg/ddae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/03/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024] Open
Abstract
Spinal Muscular Atrophy with Respiratory Distress (SMARD1) is a lethal infantile disease, characterized by the loss of motor neurons leading to muscular atrophy, diaphragmatic paralysis, and weakness in the trunk and limbs. Mutations in IGHMBP2, a ubiquitously expressed DNA/RNA helicase, have been shown to cause a wide spectrum of motor neuron disease. Though mutations in IGHMBP2 are mostly associated with SMARD1, milder alleles cause the axonal neuropathy, Charcot-Marie-Tooth disease type 2S (CMT2S), and some null alleles are potentially a risk factor for sudden infant death syndrome (SIDS). Variant heterogeneity studied using an allelic series can be informative in order to create a broad spectrum of models that better exhibit the human variation. We previously identified the nmd2J mouse model of SMARD1, as well as two milder CMT2S mouse models. Here, we used CRISPR-Cas9 genome editing to create three new, more severe Ighmbp2 mouse models of SMARD1, including a null allele, a deletion of C495 (C495del) and a deletion of L362 (L362del). Phenotypic characterization of the IGHMBP2L362del homozygous mutants and IGHMBP2C495del homozygous mutants respectively show a more severe disease presentation than the previous nmd2J model. The IGHMBP2L362del mutants lack a clear denervation in the diaphragm while the IGHMBP2C495del mutants display a neurogenic diaphragmatic phenotype as observed in SMARD1 patients. Characterization of the Ighmbp2-null model indicated neo-natal lethality (median lifespan = 0.5 days). These novel strains expand the spectrum of SMARD1 models to better reflect the clinical continuum observed in the human patients with various IGHMBP2 recessive mutations.
Collapse
Affiliation(s)
- Sarah E Holbrook
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
- The University of Maine, 75 Long Rd., Orono, ME 04469 United States
| | - Amy N Hicks
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Paige B Martin
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Timothy J Hines
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Harold P Castro
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
| | - Gregory A Cox
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609 United States
- The University of Maine, 75 Long Rd., Orono, ME 04469 United States
| |
Collapse
|
5
|
Rzepnikowska W, Kaminska J, Kochański A. The molecular mechanisms that underlie IGHMBP2-related diseases. Neuropathol Appl Neurobiol 2024; 50:e13005. [PMID: 39119929 DOI: 10.1111/nan.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
Immunoglobulin Mu-binding protein 2 (IGHMBP2) pathogenic variants result in the fatal, neurodegenerative disease spinal muscular atrophy with respiratory distress type 1 (SMARD1) and the milder, Charcot-Marie-Tooth (CMT) type 2S (CMT2S) neuropathy. More than 20 years after the link between IGHMBP2 and SMARD1 was revealed, and 10 years after the discovery of the association between IGHMBP2 and CMT2S, the pathogenic mechanism of these diseases is still not well defined. The discovery that IGHMBP2 functions as an RNA/DNA helicase was an important step, but it did not reveal the pathogenic mechanism. Helicases are enzymes that use ATP hydrolysis to catalyse the separation of nucleic acid strands. They are involved in numerous cellular processes, including DNA repair and transcription; RNA splicing, transport, editing and degradation; ribosome biogenesis; translation; telomere maintenance; and homologous recombination. IGHMBP2 appears to be a multifunctional factor involved in several cellular processes that regulate gene expression. It is difficult to determine which processes, when dysregulated, lead to pathology. Here, we summarise our current knowledge of the clinical presentation of IGHMBP2-related diseases. We also overview the available models, including yeast, mice and cells, which are used to study the function of IGHMBP2 and the pathogenesis of the related diseases. Further, we discuss the structure of the IGHMBP2 protein and its postulated roles in cellular functioning. Finally, we present potential anomalies that may result in the neurodegeneration observed in IGHMBP2-related disease and highlight the most prominent ones.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, 02-106, Poland
| |
Collapse
|
6
|
Jablonka S, Yildirim E. Disease Mechanisms and Therapeutic Approaches in SMARD1-Insights from Animal Models and Cell Models. Biomedicines 2024; 12:845. [PMID: 38672198 PMCID: PMC11048220 DOI: 10.3390/biomedicines12040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal childhood motoneuron disease caused by mutations in the IGHMBP2 gene. It is characterized by muscle weakness, initially affecting the distal extremities due to the degeneration of spinal α-motoneurons, and respiratory distress, due to the paralysis of the diaphragm. Infantile forms with a severe course of the disease can be distinguished from juvenile forms with a milder course. Mutations in the IGHMBP2 gene have also been found in patients with peripheral neuropathy Charcot-Marie-Tooth type 2S (CMT2S). IGHMBP2 is an ATP-dependent 5'→3' RNA helicase thought to be involved in translational mechanisms. In recent years, several animal models representing both SMARD1 forms and CMT2S have been generated to initially study disease mechanisms. Later, the models showed very well that both stem cell therapies and the delivery of the human IGHMBP2 cDNA by AAV9 approaches (AAV9-IGHMBP2) can lead to significant improvements in disease symptoms. Therefore, the SMARD1 animal models, in addition to the cellular models, provide an inexhaustible source for obtaining knowledge of disease mechanisms, disease progression at the cellular level, and deeper insights into the development of therapies against SMARD1.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany;
| | | |
Collapse
|
7
|
Tian Y, Xing J, Shi Y, Yuan E. Exploring the relationship between IGHMBP2 gene mutations and spinal muscular atrophy with respiratory distress type 1 and Charcot-Marie-Tooth disease type 2S: a systematic review. Front Neurosci 2023; 17:1252075. [PMID: 38046662 PMCID: PMC10690808 DOI: 10.3389/fnins.2023.1252075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Background IGHMBP2 is a crucial gene for the development and maintenance of the nervous system, especially in the survival of motor neurons. Mutations in this gene have been associated with spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth disease type 2S (CMT2S). Methods We conducted a systematic literature search using the PubMed database to identify studies published up to April 1st, 2023, that investigated the association between IGHMBP2 mutations and SMARD1 or CMT2S. We compared the non-truncating mutations and truncating mutations of the IGHMBP2 gene and selected high-frequency mutations of the IGHMBP2 gene. Results We identified 52 articles that investigated the association between IGHMBP2 mutations and SMARD1/CMT2S. We found 6 hotspot mutations of the IGHMBP2 gene. The truncating mutations in trans were all associated with SMARD1. Conclusion This study provides evidence that the complete LOF mechanism of the IGHMBP2 gene defect may be an important cause of SMARD1.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfang Xing
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Shi
- Screening Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|