1
|
Chen Y, Fan G, Yang B, Fan X, Chen H, Ma Z, Lou J, Xu J, Wang Y, Zhang S. The single-cell transcriptional landscape of lung cells from PCV2d-infected mice. Front Microbiol 2025; 16:1554961. [PMID: 40196036 PMCID: PMC11973356 DOI: 10.3389/fmicb.2025.1554961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/18/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Porcine Circovirus (PCV2) infection is prevalent in pig farming and causes significant economic losses. In recent years, the PCV2d subtype has become the most prevalent genotype worldwide, exhibiting higher virulence, leading to more severe viremia and organ damage. Therefore, studying the biological characteristics of the PCV2d subtype is of great significance. Methods We established a PCV2d infection model using BALB/c mice and employed single-cell RNA sequencing (scRNA-seq) to systematically analyze the transcriptome of 10 cell types in the lung tissues of infected mice. We developed a comprehensive marker gene catalog for these cell types. Results Compared to uninfected mice, PCV2d infection induced extensive viral replication and immunosuppressive responses in most cell types. Monocyte macrophages with high levels of viral replication, pro-inflammatory cytokines, and various cell population interactions occurring through CD40-CD40L and CXCL14-CXCR4 were identified. These cells predominantly mediate antigen presentation and processing pathways in vivo, contributing to PCV2d-driven inflammatory lung injury. Discussion Our data uncovered a complex unique immune response scenario in the lung tissue of mice after PCV2d infection, deciphering the potential mechanisms underlying PCV2d-driven inflammatory responses in mice. Furthermore, this study provides a rich database for the molecular basis of different cell types' responses to PCV2d infection.
Collapse
Affiliation(s)
- Yunlong Chen
- College of Veterinary Medicine/Shaanxi Stem Cell Engineering Research Center, Northwest A&F University, Yangling, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, China
| | - Gang Fan
- College of Veterinary Medicine/Shaanxi Stem Cell Engineering Research Center, Northwest A&F University, Yangling, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, China
| | - Bin Yang
- College of Veterinary Medicine/Shaanxi Stem Cell Engineering Research Center, Northwest A&F University, Yangling, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, China
| | - Xinyi Fan
- College of Veterinary Medicine/Shaanxi Stem Cell Engineering Research Center, Northwest A&F University, Yangling, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, China
| | - Haiyan Chen
- College of Veterinary Medicine/Shaanxi Stem Cell Engineering Research Center, Northwest A&F University, Yangling, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, China
| | - Zhuoyuan Ma
- College of Veterinary Medicine/Shaanxi Stem Cell Engineering Research Center, Northwest A&F University, Yangling, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, China
| | - Jiao Lou
- College of Veterinary Medicine/Shaanxi Stem Cell Engineering Research Center, Northwest A&F University, Yangling, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, China
| | - Jingmei Xu
- College of Veterinary Medicine/Shaanxi Stem Cell Engineering Research Center, Northwest A&F University, Yangling, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, China
| | - Yan Wang
- College of Veterinary Medicine/Shaanxi Stem Cell Engineering Research Center, Northwest A&F University, Yangling, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, China
| | - Shiqiang Zhang
- College of Veterinary Medicine/Shaanxi Stem Cell Engineering Research Center, Northwest A&F University, Yangling, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Wang T, Zhao D, Zhang Y, Yu D, Liu G, Zhang K. Annexin A2: A Double-Edged Sword in Pathogen Infection. Pathogens 2024; 13:564. [PMID: 39057791 PMCID: PMC11279864 DOI: 10.3390/pathogens13070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Annexin A2 (ANXA2) is a multifunctional calcium- and phospholipid-binding protein that plays an important role in various cells. During pathogen infections, ANXA2 modulates the nuclear factor kappa-B (NF-κB) and cell apoptosis signaling pathways and guides the chemotaxis of inflammatory cells toward inflammation sites, thereby protecting the host organism through the modulation of the inflammatory response. In addition, ANXA2 can regulate immune responses, and in certain pathogen infections, it can interact with pathogen proteins to facilitate their invasion and proliferation. This review provides an overview of the research progress on how ANXA2 regulates pathogen infections.
Collapse
Affiliation(s)
- Tianyu Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Dengshuai Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yuanhang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Dixi Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Guoping Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Keshan Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
3
|
Chen J, Hou J, Na R, Zhou B, Hou J, Jiang DK. Higher BST2 Expression Promotes the Anti-HBV Effect of IFN-α and BST2 Genetic Variant Predicts PegIFNα Treatment Response of HBeAg-Positive Chronic Hepatitis B Patients. Clin Pharmacol Ther 2024; 115:361-370. [PMID: 38018367 DOI: 10.1002/cpt.3120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
We previously reported that an interferon (IFN)-inducible protein, BST2, was regulated by the JAK-STAT pathway activated by CD40, and subsequently suppressing hepatitis B virus (HBV) repliaction and transcription. The current research attempted to assess the impact of BST2 on the IFN-treated anti-HBV effect, and explore BST2 variants for predicting pegylated IFN alpha (PegIFNα) therapy response of patients with hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB). Using an HBV-transfected cell model, the function of BST2 on HBV DNA replication and transcription driven by IFN was studied. The potentially functional BST2 variants were selected through a strategy of gene-wide screening. The associations of BST2 variants and polygenic score (PGS) model, which was used to quantify the combined influence of several genetic variants, with treatment response were examined in 2 separate PegIFNα-treated cohorts of 238 and 707 patients with CHB, respectively. We found that overexpression of BST2 improved the anti-HBV activity triggered by IFN-α. Among PegIFNα-treated patients with CHB, BST2_rs9576 was screened out to be significantly correlated with combined response (CR; i.e., HBeAg seroconversion along with HBV DNA level <3.3log10 IU/mL, P = 7.12 × 10-5 ). Additionally, there was a strong correlation between the PGS incorporating BST2_rs9576 and other 5 genetic variations (previously described predictors of therapy response to PegIFNα) and CR (P = 1.81 × 10-13 ), hepatitis B surface antigen (HBsAg) level (P = 0.004), as well as HBsAg decline (P = 0.017). In conclusion, higher BST2 expression responded better to IFN-α treatment. BST2_rs9576 is an effective indicator to forecast therapy response of PegIFNα-treated patients with CHB. The PGS possesses the potential to boost the ability of PegIFNα therapy response.
Collapse
Affiliation(s)
- Jiaxuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jia Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Na
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
4
|
Wagner AH, Klersy A, Sultan CS, Hecker M. Potential role of soluble CD40 receptor in chronic inflammatory diseases. Biochem Pharmacol 2023; 217:115858. [PMID: 37863325 DOI: 10.1016/j.bcp.2023.115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
The CD40 receptor and its ligand CD154 are widely expressed in various immune-competent cells. Interaction of CD154 with CD40 is essential for B-cell growth, differentiation, and immunoglobulin class switching. Many other immune-competent cells involved in innate and adaptive immunity communicate through this co-stimulatory ligand-receptor dyad. CD40-CD154 interaction is involved in the pathogenesis of numerous inflammatory and autoimmune diseases. While CD40 and CD154 are membrane-bound proteins, their soluble counterparts are generated by proteolytic cleavage or alternative splicing. This review summarises current knowledge about the impact of single nucleotide polymorphisms in the human CD40 gene and compensatory changes in the plasma level of the soluble CD40 receptor (sCD40) isoform in related pro-inflammatory diseases. It discusses regulation patterns of the disintegrin metalloprotease ADAM17 function leading to ectodomain shedding of transmembrane proteins, such as pro-inflammatory adhesion molecules or CD40. The role of sCD40 as a potential biomarker for chronic inflammatory diseases will also be discussed.
Collapse
Affiliation(s)
- A H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
| | - A Klersy
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - C S Sultan
- Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - M Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Liu N, Liu M, Yang J, Dong S, Yue M, Huang P, Xia X, Zhang AM. Association of genetic polymorphisms in the C19orf66 gene and biochemical indices of HBV infected individuals in Yunnan. Front Cell Infect Microbiol 2023; 13:1180366. [PMID: 37293200 PMCID: PMC10245551 DOI: 10.3389/fcimb.2023.1180366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION Hepatitis B virus (HBV) infection causes serious liver diseases and is a healthy problem worldwide. Although vaccines are administered to infants after birth, there is no effective medicine for HBV infection. The interferon-stimulated genes (ISGs) are important factors in the host that can aid in restraining the virus, and the C19orf66 gene has a wide-antiviral spectrum. METHODS In this study, three SNPs in the C19orf66 gene were sequenced and genotyped, and their potential function were predicted and further verified by dual-luciferase reporter assay. RESULTS Although no significant difference of genotype and allele frequency was observed between HBV patients and the controls, the genotype and allele frequency showed significant difference between HBV patients with HBsAg-positive and HBV patients with HBsAg-negative or controls. Genotype AA (P= 0.009) and AT (P= 0.019) of rs77076061 showed higher and lower frequency in HBV patients with HBsAg-positive than in patients with HBsAg-negative, respectively. Genotype AG of rs1979262 played a risk role in HBV patients with HBsAg-positive (13.22%) than in patients with HBsAg-negative (7.53%, P= 0.036) or controls (8.48%, P= 0.033). The frequency of allele A of rs1979262 was higher in patients with HBsAg-positive (6.61%) than in patients with HBsAg-negative (3.77%, P= 0.042), while it was the opposite for the allele G. Moreover, the associations between genotypes of SNPs in the C19orf66 gene and the ALT, AST, and DBIL level were also identified. The functional assay suggested that the SNPs might influence the C19orf66 expression by changing the connection of transcriptional factors. CONCLUSION In summary, the association between genetic polymorphisms in the C19orf66 gene and HBV infection/biochemical indices of patients was firstly identified in Yunnan Province.
Collapse
Affiliation(s)
- Ni Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Min Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Infectious Disease and Hepatic Disease, First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jun Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Clinical Laboratory, The People’s Hospital of Maguan County, Wenshan, Yunnan, China
| | - Shuwei Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ming Yue
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Huang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|