1
|
Stöhr H, Weber BHF. Genetics and diagnostics of inherited retinal diseases in the era of whole genome sequencing. MED GENET-BERLIN 2025; 37:3-10. [PMID: 39963373 PMCID: PMC11831235 DOI: 10.1515/medgen-2024-2049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Inherited retinal diseases are clinically and genetically highly heterogeneous conditions with many phenotypic overlaps, syndromic presentations and atypical manifestations. This article is a narrative review that offers an overview of the technical advancements improving the accuracy and efficiency of molecular genetic diagnostics for hereditary disorders in clinical practice. It focuses particularly on the integration of whole genome sequencing (WGS) into routine diagnostics, critically evaluating its potential by discussing recent data from cohort studies conducted worldwide.
Collapse
Affiliation(s)
- Heidi Stöhr
- Institute of Human GeneticsInstitute of Human GeneticsFranz-Josef-Strauß-Allee 1193053RegensburgGermany
| | | |
Collapse
|
2
|
Ardehaie RM, Eslahi A, Alerasool M, Rad EK, Shoeibi N, Sedaghat MR, Avan A, Pasdar A, Mojarrad M. Deciphering the Genetic and Epidemiological Landscape of Inherited Retinal Diseases (IRDs) in a Cohort of Eastern Iranian Patients. Clin Genet 2025; 107:300-310. [PMID: 39761966 DOI: 10.1111/cge.14662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 02/05/2025]
Abstract
Inherited retinal diseases (IRDs) may have significant diagnostic challenges due to their genetic complexity and diverse inheritance patterns. Advanced genotyping tools like exome sequencing (ES) offer promising opportunities for identifying causative variants and improving disease management. This retrospective study was aimed to present prevalent pathogenic and novel variants in patients diagnosed with IRDs using ES. We investigated 154 patients diagnosed clinically with IRDs, of which non-syndromic IRDs were more prevalent than syndromic form (~56% vs. ~44%). Out of 154 unrelated patients, 133 (~86%) were genetically resolved, where retinitis pigmentosa was the most common subtype (26% of all resolved patients). Fifty-three previously known and also 56 novel variants across known IRD genes were identified. Autosomal recessive inheritance predominated in both resolved forms (112/133, 84.21%), with 46 novel variants. This could be due to high rate of consanguinity in the studied families (114/133 patients, 85.71%). The two previously reported ancestral founder pathogenic variants in TMEM67 (c.725A > G) and BBS2 (c.471G > A) genes, as well as the most common variant in AIPL1 gene (c.834G > A), were also prevalent in our patients. Interestingly, identical novel compound heterozygote of the CEP290 gene (c.3167C > A and c.7024C > T) were identified in two unrelated cases. This retrospective study was the first attempt in terms of sample size and diversity to add more to our current knowledge of the genetic makeup of IRDs in a population from the East of Iran. Our findings can facilitate genetic counselling and subtype classification of IRDs, especially in challenging cases.
Collapse
Affiliation(s)
- Reza Mousavi Ardehaie
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoome Alerasool
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Foundation of Khorasan Razavi, Mashhad, Iran
| | | | - Nasser Shoeibi
- Eye Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Avan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Lin S, Schiff E, Arno G, Mahroo OA, Webster AR. Unveiling hidden genetic complexity: Coexistence of HGSNAT and EYS variants in a patient with retinal dystrophy. Am J Med Genet A 2024; 194:e63805. [PMID: 38988050 DOI: 10.1002/ajmg.a.63805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Affiliation(s)
- Siying Lin
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Elena Schiff
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Gavin Arno
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Division of Research, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Omar A Mahroo
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, St Thomas' Hospital, London, UK
| | - Andrew R Webster
- National Institute of Health Research Biomedical Research Centre, Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
4
|
Fabian‐Morales G, Ordoñez‐Labastida V, Garcia‐Martínez F, Montes‐Almanza L, Zenteno J. Identification of Pathogenic Copy Number Variants in Mexican Patients With Inherited Retinal Dystrophies Applying an Exome Sequencing Data-Based Read-Depth Approach. Mol Genet Genomic Med 2024; 12:e70019. [PMID: 39400524 PMCID: PMC11472028 DOI: 10.1002/mgg3.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/27/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Retinal dystrophies (RDs) are the most common cause of inherited blindness worldwide and are caused by genetic defects in about 300 different genes. While targeted next-generation sequencing (NGS) has been demonstrated to be a reliable and efficient method to identify RD disease-causing variants, it doesn't routinely identify pathogenic structural variant as copy number variations (CNVs). Targeted NGS-based CNV detection has become a crucial step for RDs molecular diagnosis, particularly in cases without identified causative single nucleotide or Indels variants. Herein, we report the exome sequencing (ES) data-based read-depth bioinformatic analysis in a group of 30 unrelated Mexican RD patients with a negative or inconclusive genetic result after ES. METHODS CNV detection was performed using ExomeDepth software, an R package designed to detect CNVs using exome data. Bioinformatic validation of identified CNVs was conducted through a commercially available CNV caller. All identified candidate pathogenic CNVs were orthogonally verified through quantitative PCR assays. RESULTS Pathogenic or likely pathogenic CNVs were identified in 6 out of 30 cases (20%), and of them, a definitive molecular diagnosis was reached in 5 cases, for a final diagnostic rate of ~17%. CNV-carrying genes included CLN3 (2 cases), ABCA4 (novel deletion), EYS, and RPGRIP1. CONCLUSIONS Our results indicate that bioinformatic analysis of ES data is a reliable method for pathogenic CNV detection and that it should be incorporated in cases with a negative or inconclusive molecular result after ES.
Collapse
Affiliation(s)
| | - Vianey Ordoñez‐Labastida
- Department of GeneticsInstitute of Ophthalmology "Conde de Valenciana"Mexico CityMexico
- Rare Diseases Diagnostic Unit, Faculty of MedicineUNAMMexico CityMexico
- Faculty of MedicineAutonomous University of the State of Morelos (UAEM)MorelosMexico
| | | | - Luis Montes‐Almanza
- Department of GeneticsInstitute of Ophthalmology "Conde de Valenciana"Mexico CityMexico
| | - Juan C. Zenteno
- Department of GeneticsInstitute of Ophthalmology "Conde de Valenciana"Mexico CityMexico
- Rare Diseases Diagnostic Unit, Faculty of MedicineUNAMMexico CityMexico
- Faculty of Medicine, Department of BiochemistryNational Autonomous University of Mexico (UNAM)Mexico CityMexico
| |
Collapse
|
5
|
Nakamichi K, Huey J, Sangermano R, Place EM, Bujakowska KM, Marra M, Everett LA, Yang P, Chao JR, Van Gelder RN, Mustafi D. Targeted long-read sequencing enriches disease-relevant genomic regions of interest to provide complete Mendelian disease diagnostics. JCI Insight 2024; 9:e183902. [PMID: 39264853 PMCID: PMC11530123 DOI: 10.1172/jci.insight.183902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
Despite advances in sequencing technologies, a molecular diagnosis remains elusive in many patients with Mendelian disease. Current short-read clinical sequencing approaches cannot provide chromosomal phase information or epigenetic information without further sample processing, which is not routinely done and can result in an incomplete molecular diagnosis in patients. The ability to provide phased genetic and epigenetic information from a single sequencing run would improve the diagnostic rate of Mendelian conditions. Here, we describe targeted long-read sequencing of Mendelian disease genes (TaLon-SeqMD) using a real-time adaptive sequencing approach. Optimization of bioinformatic targeting enabled selective enrichment of multiple disease-causing regions of the human genome. Haplotype-resolved variant calling and simultaneous resolution of epigenetic base modification could be achieved in a single sequencing run. The TaLon-SeqMD approach was validated in a cohort of 18 individuals with previous genetic testing targeting 373 inherited retinal disease (IRD) genes, yielding the complete molecular diagnosis in each case. This approach was then applied in 2 IRD cases with inconclusive testing, which uncovered noncoding and structural variants that were difficult to characterize by standard short-read sequencing. Overall, these results demonstrate TaLon-SeqMD as an approach to provide rapid phased-variant calling to provide the molecular basis of Mendelian diseases.
Collapse
Affiliation(s)
- Kenji Nakamichi
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
- Roger and Karalis Johnson Retina Center, Seattle, Washington, USA
| | - Jennifer Huey
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
- Roger and Karalis Johnson Retina Center, Seattle, Washington, USA
| | - Riccardo Sangermano
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily M. Place
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Kinga M. Bujakowska
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Molly Marra
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Lesley A. Everett
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
- Roger and Karalis Johnson Retina Center, Seattle, Washington, USA
| | - Russell N. Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
- Roger and Karalis Johnson Retina Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology and Biological Structure, University of Washington, Seattle, Washington, USA
| | - Debarshi Mustafi
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
- Roger and Karalis Johnson Retina Center, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Division of Ophthalmology, Seattle Children’s Hospital, Seattle, Washington, USA
| |
Collapse
|
6
|
Audo I, Nassisi M, Zeitz C, Sahel JA. The Extraordinary Phenotypic and Genetic Variability of Retinal and Macular Degenerations: The Relevance to Therapeutic Developments. Cold Spring Harb Perspect Med 2024; 14:a041652. [PMID: 37604589 PMCID: PMC11146306 DOI: 10.1101/cshperspect.a041652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous group of rare conditions leading to various degrees of visual handicap and to progressive blindness in more severe cases. Besides visual rehabilitation, educational, and socio-professional support, there are currently limited therapeutic options, but the approval of the first gene therapy product for RPE65-related IRDs raised hope for therapeutic innovations. Such developments are facing obstacles intrinsic to the disease and the affected tissue including the extreme phenotypic and genetic variability of IRDs and the fine tuning of visual processing through the complex architecture of the postmitotic neural retina. A precise phenotypic characterization is required prior to genetic testing, which now relies on high-throughput sequencing. Their challenges will be discussed within this article as well as their implications in clinical trial design.
Collapse
Affiliation(s)
- Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, Paris F-75012, France
| | - Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
- Department of Clinical Sciences and Community Health, University of Milan, Milan 20122, Italy
- Ophthalmology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan 20122, Italy
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET and INSERM-DGOS CIC 1423, Paris F-75012, France
- Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
7
|
Brock DC, Wang M, Hussain HMJ, Rauch DE, Marra M, Pennesi ME, Yang P, Everett L, Ajlan RS, Colbert J, Porto FBO, Matynia A, Gorin MB, Koenekoop RK, Lopez I, Sui R, Zou G, Li Y, Chen R. Comparative analysis of in-silico tools in identifying pathogenic variants in dominant inherited retinal diseases. Hum Mol Genet 2024; 33:945-957. [PMID: 38453143 PMCID: PMC11102593 DOI: 10.1093/hmg/ddae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a group of rare genetic eye conditions that cause blindness. Despite progress in identifying genes associated with IRDs, improvements are necessary for classifying rare autosomal dominant (AD) disorders. AD diseases are highly heterogenous, with causal variants being restricted to specific amino acid changes within certain protein domains, making AD conditions difficult to classify. Here, we aim to determine the top-performing in-silico tools for predicting the pathogenicity of AD IRD variants. We annotated variants from ClinVar and benchmarked 39 variant classifier tools on IRD genes, split by inheritance pattern. Using area-under-the-curve (AUC) analysis, we determined the top-performing tools and defined thresholds for variant pathogenicity. Top-performing tools were assessed using genome sequencing on a cohort of participants with IRDs of unknown etiology. MutScore achieved the highest accuracy within AD genes, yielding an AUC of 0.969. When filtering for AD gain-of-function and dominant negative variants, BayesDel had the highest accuracy with an AUC of 0.997. Five participants with variants in NR2E3, RHO, GUCA1A, and GUCY2D were confirmed to have dominantly inherited disease based on pedigree, phenotype, and segregation analysis. We identified two uncharacterized variants in GUCA1A (c.428T>A, p.Ile143Thr) and RHO (c.631C>G, p.His211Asp) in three participants. Our findings support using a multi-classifier approach comprised of new missense classifier tools to identify pathogenic variants in participants with AD IRDs. Our results provide a foundation for improved genetic diagnosis for people with IRDs.
Collapse
Affiliation(s)
- Daniel C Brock
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Meng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Hafiz Muhammad Jafar Hussain
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - David E Rauch
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Molly Marra
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 515 SW Campus Drive, Portland, OR 97239, United States
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 515 SW Campus Drive, Portland, OR 97239, United States
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 515 SW Campus Drive, Portland, OR 97239, United States
| | - Lesley Everett
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 515 SW Campus Drive, Portland, OR 97239, United States
| | - Radwan S Ajlan
- Department of Ophthalmology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, United States
| | - Jason Colbert
- Department of Ophthalmology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, United States
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Rua dos Otoni, 735/507 - Santa Efigênia, Belo Horizonte, MG 30150270, Brazil
- Department of Ophthalmology, Santa Casa de Misericórdia de Belo Horizonte, Av. Francisco Sales, 1111 - Santa Efigênia, Belo Horizonte, MG 30150221, Brazil
- Centro Oftalmológico de Minas Gerais, R. Santa Catarina, 941 - Lourdes, Belo Horizonte, MG 30180070, Brazil
| | - Anna Matynia
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77004, United States
| | - Michael B Gorin
- Jules Stein Eye Institute, University of California Los Angeles, 100 Stein Plaza, Los Angeles, CA 90095, United States
- Department of Ophthalmology, University of California Los Angeles David Geffen School of Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, United States
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, 5252 Boul de Maisonneuve ouest, Montreal, QC H4A 3S5, Canada
| | - Irma Lopez
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, 5252 Boul de Maisonneuve ouest, Montreal, QC H4A 3S5, Canada
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, WC67+HW Dongcheng, Beijing 100005, China
| | - Gang Zou
- Department of Ophthalmology, Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, F4RJ+43 Xixia District, Yinchuan, Ningxia, China
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| |
Collapse
|
8
|
Torii K, Nishina S, Morikawa H, Mizobuchi K, Takayama M, Tachibana N, Kurata K, Hikoya A, Sato M, Nakano T, Fukami M, Azuma N, Hayashi T, Saitsu H, Hotta Y. The Structural Abnormalities Are Deeply Involved in the Cause of RPGRIP1-Related Retinal Dystrophy in Japanese Patients. Int J Mol Sci 2023; 24:13678. [PMID: 37761981 PMCID: PMC10531429 DOI: 10.3390/ijms241813678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy. RPGRIP1-related LCA accounts for 5-6% of LCA. We performed whole-exome sequencing and whole-genome sequencing (WGS) on 29 patients with clinically suspected LCA and examined ophthalmic findings in patients with biallelic pathogenic variants of RPGRIP1. In addition to five previously reported cases, we identified five cases from four families with compound heterozygous RPGRIP1 variants using WGS. Five patients had null variants comprising frameshift variants, an Alu insertion, and microdeletions. A previously reported 1339 bp deletion involving exon 18 was found in four cases, and the deletion was relatively prevalent in the Japanese population (allele frequency: 0.002). Microdeletions involving exon 1 were detected in four cases. In patients with RPGRIP1 variants, visual acuity remained low, ranging from light perception to 0.2, and showed no correlation with age. In optical coherence tomography images, the ellipsoid zone (EZ) length decreased with age in all but one case of unimpaired EZ. The retinal structure was relatively preserved in all cases; however, there were cases with great differences in visual function compared to their siblings and a 56-year-old patient who still had a faint EZ line. Structural abnormalities may be important genetic causes of RPGRIP1-related retinal dystrophy in Japanese patients, and WGS was useful for detecting them.
Collapse
Affiliation(s)
- Kaoruko Torii
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Sachiko Nishina
- Division of Ophthalmology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Hazuki Morikawa
- Division of Ophthalmology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Masakazu Takayama
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Nobutaka Tachibana
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Akiko Hikoya
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Miho Sato
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Noriyuki Azuma
- Division of Ophthalmology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|