1
|
Federico C, Brancato D, Bruno F, Galvano D, Caruso M, Saccone S. Robertsonian Translocation between Human Chromosomes 21 and 22, Inherited across Three Generations, without Any Phenotypic Effect. Genes (Basel) 2024; 15:722. [PMID: 38927657 PMCID: PMC11202415 DOI: 10.3390/genes15060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Chromosomal translocations can result in phenotypic effects of varying severity, depending on the position of the breakpoints and the rearrangement of genes within the interphase nucleus of the translocated chromosome regions. Balanced translocations are often asymptomatic phenotypically and are typically detected due to a decrease in fertility resulting from issues during meiosis. Robertsonian translocations are among the most common chromosomal abnormalities, often asymptomatic, and can persist in the population as a normal polymorphism. We serendipitously discovered a Robertsonian translocation between chromosome 21 and chromosome 22, which is inherited across three generations without any phenotypic effect, notably only in females. In situ hybridization with alpha-satellite DNAs revealed the presence of both centromeric sequences in the translocated chromosome. The reciprocal translocation resulted in a partial deletion of the short arm of both chromosomes 21, and 22, with the ribosomal RNA genes remaining present in the middle part of the new metacentric chromosome. The rearrangement did not cause alterations to the long arm. The spread of an asymptomatic heterozygous chromosomal polymorphism in a population can lead to mating between heterozygous individuals, potentially resulting in offspring with a homozygous chromosomal configuration for the anomaly they carry. This new karyotype may not produce phenotypic effects in the individual who presents it. The frequency of karyotypes with chromosomal rearrangements in asymptomatic heterozygous form in human populations is likely underestimated, and molecular karyotype by array Comparative Genomic Hybridization (array-CGH) analysis does not allow for the identification of this type of chromosomal anomaly, making classical cytogenetic analysis the preferred method for obtaining clear results on a karyotype carrying a balanced rearrangement.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Desiree Brancato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Daiana Galvano
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Mariella Caruso
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| |
Collapse
|
2
|
Messina G, Prozzillo Y, Delle Monache F, Santopietro MV, Atterrato MT, Dimitri P. The ATPase SRCAP is associated with the mitotic apparatus, uncovering novel molecular aspects of Floating-Harbor syndrome. BMC Biol 2021; 19:184. [PMID: 34474679 PMCID: PMC8414691 DOI: 10.1186/s12915-021-01109-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background A variety of human genetic diseases is known to be caused by mutations in genes encoding chromatin factors and epigenetic regulators, such as DNA or histone modifying enzymes and members of ATP-dependent chromatin remodeling complexes. Floating-Harbor syndrome is a rare genetic disease affecting human development caused by dominant truncating mutations in the SRCAP gene, which encodes the ATPase SRCAP, the core catalytic subunit of the homonymous chromatin-remodeling complex. The main function of the SRCAP complex is to promote the exchange of histone H2A with the H2A.Z variant. According to the canonical role played by the SRCAP protein in epigenetic regulation, the Floating-Harbor syndrome is thought to be a consequence of chromatin perturbations. However, additional potential physiological functions of SRCAP have not been sufficiently explored. Results We combined cell biology, reverse genetics, and biochemical approaches to study the subcellular localization of the SRCAP protein and assess its involvement in cell cycle progression in HeLa cells. Surprisingly, we found that SRCAP associates with components of the mitotic apparatus (centrosomes, spindle, midbody), interacts with a plethora of cytokinesis regulators, and positively regulates their recruitment to the midbody. Remarkably, SRCAP depletion perturbs both mitosis and cytokinesis. Similarly, DOM-A, the functional SRCAP orthologue in Drosophila melanogaster, is found at centrosomes and the midbody in Drosophila cells, and its depletion similarly affects both mitosis and cytokinesis. Conclusions Our findings provide first evidence suggesting that SRCAP plays previously undetected and evolutionarily conserved roles in cell division, independent of its functions in chromatin regulation. SRCAP may participate in two different steps of cell division: by ensuring proper chromosome segregation during mitosis and midbody function during cytokinesis. Moreover, our findings emphasize a surprising scenario whereby alterations in cell division produced by SRCAP mutations may contribute to the onset of Floating-Harbor syndrome. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01109-x.
Collapse
Affiliation(s)
- Giovanni Messina
- Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Via dei Sardi, 70, Roma, Italy. .,Istituto Pasteur Italia Fondazione Cenci-Bolognetti, Viale Regina Elena, 291, 00161, Roma, Italy.
| | - Yuri Prozzillo
- Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Via dei Sardi, 70, Roma, Italy
| | - Francesca Delle Monache
- Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Via dei Sardi, 70, Roma, Italy
| | - Maria Virginia Santopietro
- Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Via dei Sardi, 70, Roma, Italy
| | - Maria Teresa Atterrato
- Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Via dei Sardi, 70, Roma, Italy
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Via dei Sardi, 70, Roma, Italy.
| |
Collapse
|
3
|
Prozzillo Y, Delle Monache F, Ferreri D, Cuticone S, Dimitri P, Messina G. The True Story of Yeti, the "Abominable" Heterochromatic Gene of Drosophila melanogaster. Front Physiol 2019; 10:1093. [PMID: 31507454 PMCID: PMC6713933 DOI: 10.3389/fphys.2019.01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
The Drosophila Yeti gene (CG40218) was originally identified by recessive lethal mutation and subsequently mapped to the deep pericentromeric heterochromatin of chromosome 2. Functional studies have shown that Yeti encodes a 241 amino acid protein called YETI belonging to the evolutionarily conserved family of Bucentaur (BCNT) proteins and exhibiting a widespread distribution in animals and plants. Later studies have demonstrated that YETI protein: (i) is able to bind both subunits of the microtubule-based motor kinesin-I; (ii) is required for proper chromosome organization in both mitosis and meiosis divisions; and more recently (iii) is a new subunit of dTip60 chromatin remodeling complex. To date, other functions of YETI counterparts in chicken (CENtromere Protein 29, CENP-29), mouse (Cranio Protein 27, CP27), zebrafish and human (CranioFacial Development Protein 1, CFDP1) have been reported in literature, but the fully understanding of the multifaceted molecular function of this protein family remains still unclear. In this review we comprehensively highlight recent work and provide a more extensive hypothesis suggesting a broader range of YETI protein functions in different cellular processes.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Francesca Delle Monache
- "Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Diego Ferreri
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Stefano Cuticone
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Patrizio Dimitri
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Messina
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Genomic properties of chromosomal bands are linked to evolutionary rearrangements and new centromere formation in primates. Chromosome Res 2017; 25:261-276. [PMID: 28717965 DOI: 10.1007/s10577-017-9560-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
Abstract
Chromosomal rearrangements in humans are largely related to pathological conditions, and phenotypic effects are also linked to alterations in the expression profile following nuclear relocation of genes between functionally different compartments, generally occupying the periphery or the inner part of the cell nuclei. On the other hand, during evolution, chromosomal rearrangements may occur apparently without damaging phenotypic effects and are visible in currently phylogenetically related species. To increase our insight into chromosomal reorganisation in the cell nucleus, we analysed 18 chromosomal regions endowed with different genomic properties in cell lines derived from eight primate species covering the entire evolutionary tree. We show that homologous loci, in spite of their evolutionary relocation along the chromosomes, generally remain localised to the same functional compartment of the cell nuclei. We conclude that evolutionarily successful chromosomal rearrangements are those that leave the nuclear position of the regions involved unchanged. On the contrary, in pathological situations, the effect typically observed is on gene structure alteration or gene nuclear reposition. Moreover, our data indicate that new centromere formation could potentially occur everywhere in the chromosomes, but only those emerging in very GC-poor/gene-poor regions, generally located in the nuclear periphery, have a high probability of being retained through evolution. This suggests that, in the cell nucleus of related species, evolutionary chromosomal reshufflings or new centromere formation does not alter the functionality of the regions involved or the interactions between different loci, thus preserving the expression pattern of orthologous genes.
Collapse
|
5
|
Expression of human Cfdp1 gene in Drosophila reveals new insights into the function of the evolutionarily conserved BCNT protein family. Sci Rep 2016; 6:25511. [PMID: 27151176 PMCID: PMC4858687 DOI: 10.1038/srep25511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
The Bucentaur (BCNT) protein family is widely distributed in eukaryotes and is characterized by a highly conserved C-terminal domain. This family was identified two decades ago in ruminants, but its role(s) remained largely unknown. Investigating cellular functions and mechanism of action of BCNT proteins is challenging, because they have been implicated in human craniofacial development. Recently, we found that YETI, the D. melanogaster BCNT, is a chromatin factor that participates to H2A.V deposition. Here we report the effects of in vivo expression of CFDP1, the human BCNT protein, in Drosophila melanogaster. We show that CFDP1, similarly to YETI, binds to chromatin and its expression results in a wide range of abnormalities highly reminiscent of those observed in Yeti null mutants. This indicates that CFDP1 expressed in flies behaves in a dominant negative fashion disrupting the YETI function. Moreover, GST pull-down provides evidence indicating that 1) both YETI and CFDP1 undergo homodimerization and 2) YETI and CFDP1 physically interact each other by forming inactive heterodimers that would trigger the observed dominant-negative effect. Overall, our findings highlight unanticipated evidences suggesting that homodimerization mediated by the BCNT domain is integral to the chromatin functions of BCNT proteins.
Collapse
|
6
|
Messina G, Atterrato MT, Dimitri P. When chromatin organisation floats astray: theSrcapgene and Floating–Harbor syndrome. J Med Genet 2016; 53:793-797. [DOI: 10.1136/jmedgenet-2016-103842] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 01/19/2023]
|
7
|
Abstract
Genetic causes for human disorders are being discovered at an unprecedented pace. A growing subclass of disease-causing mutations involves changes in the epigenome or in the abundance and activity of proteins that regulate chromatin structure. This article focuses on research that has uncovered human diseases that stem from such epigenetic deregulation. Disease may be caused by direct changes in epigenetic marks, such as DNA methylation, commonly found to affect imprinted gene regulation. Also described are disease-causing genetic mutations in epigenetic modifiers that either affect chromatin in trans or have a cis effect in altering chromatin configuration.
Collapse
Affiliation(s)
- Huda Y Zoghbi
- Howard Hughes Medical Institute, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
8
|
Site specificity analysis of Piccolo NuA4-mediated acetylation for different histone complexes. Biochem J 2015; 472:239-48. [PMID: 26420880 DOI: 10.1042/bj20150654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/29/2015] [Indexed: 12/21/2022]
Abstract
We have a limited understanding of the site specificity of multi-subunit lysine acetyltransferase (KAT) complexes for histone-based substrates, especially in regards to the different complexes formed during nucleosome assembly. Histone complexes could be a major factor in determining the acetylation specificity of KATs. In the present study, we utilized a label-free quantitative MS-based method to determine the site specificity of acetylation catalysed by Piccolo NuA4 on (H3/H4)2 tetramer, tetramer bound DNA (tetrasome) and nucleosome core particle (NCP). Our results show that Piccolo NuA4 can acetylate multiple lysine residues on these three histone complexes, of which NCP is the most favourable, (H3/H4)2 tetramer is the second and tetrasome is the least favourable substrate for Piccolo NuA4 acetylation. Although Piccolo NuA4 preferentially acetylates histone H4 (H4K12), the site specificity of the enzyme is altered with different histone complex substrates. Our results show that before nucleosome assembly is complete, H3K14 specificity is almost equal to that of H4K12 and DNA-histone interactions suppress the acetylation ability of Piccolo NuA4. These data suggest that the H2A/H2B dimer could play a critical role in the increase in acetylation specificity of Piccolo NuA4 for NCP. This demonstrates that histone complex formation can alter the acetylation preference of Piccolo NuA4. Such findings provide valuable insight into regulating Piccolo NuA4 specificity by modulating chromatin dynamics and in turn manipulating gene expression.
Collapse
|
9
|
Himeda CL, Jones TI, Jones PL. Facioscapulohumeral muscular dystrophy as a model for epigenetic regulation and disease. Antioxid Redox Signal 2015; 22:1463-82. [PMID: 25336259 PMCID: PMC4432493 DOI: 10.1089/ars.2014.6090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Aberrant epigenetic regulation is an integral aspect of many diseases and complex disorders. Facioscapulohumeral muscular dystrophy (FSHD), a progressive myopathy that afflicts individuals of all ages, is caused by disrupted genetic and epigenetic regulation of a macrosatellite repeat. FSHD provides a powerful model to investigate disease-relevant epigenetic modifiers and general mechanisms of epigenetic regulation that govern gene expression. RECENT ADVANCES In the context of a genetically permissive allele, the one aspect of FSHD that is consistent across all known cases is the aberrant epigenetic state of the disease locus. In addition, certain mutations in the chromatin regulator SMCHD1 (structural maintenance of chromosomes hinge-domain protein 1) are sufficient to cause FSHD2 and enhance disease severity in FSHD1. Thus, there are multiple pathways to generate the epigenetic dysregulation required for FSHD. CRITICAL ISSUES Why do some individuals with the genetic requirements for FSHD develop disease pathology, while others remain asymptomatic? Similarly, disease progression is highly variable among individuals. What are the relative contributions of genetic background and environmental factors in determining disease manifestation, progression, and severity in FSHD? What is the interplay between epigenetic factors regulating the disease locus and which, if any, are viable therapeutic targets? FUTURE DIRECTIONS Epigenetic regulation represents a potentially powerful therapeutic target for FSHD. Determining the epigenetic signatures that are predictive of disease severity and identifying the spectrum of disease modifiers in FSHD are vital to the development of effective therapies.
Collapse
Affiliation(s)
- Charis L Himeda
- The Wellstone Program and the Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School , Worcester, Massachusetts
| | | | | |
Collapse
|
10
|
Messina G, Celauro E, Atterrato MT, Giordano E, Iwashita S, Dimitri P. The Bucentaur (BCNT) protein family: a long-neglected class of essential proteins required for chromatin/chromosome organization and function. Chromosoma 2014; 124:153-62. [DOI: 10.1007/s00412-014-0503-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
11
|
Messina G, Damia E, Fanti L, Atterrato MT, Celauro E, Mariotti FR, Accardo MC, Walther M, Vernì F, Picchioni D, Moschetti R, Caizzi R, Piacentini L, Cenci G, Giordano E, Dimitri P. Yeti, an essential Drosophila melanogaster gene, encodes a protein required for chromatin organization. J Cell Sci 2014; 127:2577-88. [PMID: 24652835 DOI: 10.1242/jcs.150243] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolutionarily conserved family of Bucentaur (BCNT) proteins exhibits a widespread distribution in animal and plants, yet its biological role remains largely unknown. Using Drosophila melanogaster as a model organism, we investigated the in vivo role of the Drosophila BCNT member called YETI. We report that loss of YETI causes lethality before pupation and defects in higher-order chromatin organization, as evidenced by severe impairment in the association of histone H2A.V, nucleosomal histones and epigenetic marks with polytene chromosomes. We also find that YETI binds to polytene chromosomes through its conserved BCNT domain and interacts with the histone variant H2A.V, HP1a and Domino-A (DOM-A), the ATPase subunit of the DOM/Tip60 chromatin remodeling complex. Furthermore, we identify YETI as a downstream target of the Drosophila DOM-A. On the basis of these results, we propose that YETI interacts with H2A.V-exchanging machinery, as a chaperone or as a new subunit of the DOM/Tip60 remodeling complex, and acts to regulate the accumulation of H2A.V at chromatin sites. Overall, our findings suggest an unanticipated role of YETI protein in chromatin organization and provide, for the first time, mechanistic clues on how BCNT proteins control development in multicellular organisms.
Collapse
Affiliation(s)
- Giovanni Messina
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Elisabetta Damia
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Laura Fanti
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Teresa Atterrato
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Emanuele Celauro
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Francesca Romana Mariotti
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Carmela Accardo
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | | | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy
| | - Daria Picchioni
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| | - Roberta Moschetti
- Dipartimento di Biologia, Università degli Studi di Bari, 70121 Bari, Italy
| | - Ruggiero Caizzi
- Dipartimento di Biologia, Università degli Studi di Bari, 70121 Bari, Italy
| | - Lucia Piacentini
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Ennio Giordano
- Dipartimento di Biologia, Università Federico II, 80134 Napoli, Italy
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, 00185 Roma, Italy Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
12
|
Surace C, Berardinelli F, Masotti A, Roberti MC, Da Sacco L, D'Elia G, Sirleto P, Digilio MC, Cusmai R, Grotta S, Petrocchi S, Hachem ME, Pisaneschi E, Ciocca L, Russo S, Lepri FR, Sgura A, Angioni A. Telomere shortening and telomere position effect in mild ring 17 syndrome. Epigenetics Chromatin 2014; 7:1. [PMID: 24393457 PMCID: PMC3892072 DOI: 10.1186/1756-8935-7-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022] Open
Abstract
Background Ring chromosome 17 syndrome is a rare disease that arises from the breakage and reunion of the short and long arms of chromosome 17. Usually this abnormality results in deletion of genetic material, which explains the clinical features of the syndrome. Moreover, similar phenotypic features have been observed in cases with complete or partial loss of the telomeric repeats and conservation of the euchromatic regions. We studied two different cases of ring 17 syndrome, firstly, to clarify, by analyzing gene expression analysis using real-time qPCR, the role of the telomere absence in relationship with the clinical symptoms, and secondly, to look for a new model of the mechanism of ring chromosome transmission in a rare case of familial mosaicism, through cytomolecular and quantitative fluorescence in-situ hybridization (Q-FISH) investigations. Results The results for the first case showed that the expression levels of genes selected, which were located close to the p and q ends of chromosome 17, were significantly downregulated in comparison with controls. Moreover, for the second case, we demonstrated that the telomeres were conserved, but were significantly shorter than those of age-matched controls; data from segregation analysis showed that the ring chromosome was transmitted only to the affected subjects of the family. Conclusions Subtelomeric gene regulation is responsible for the phenotypic aspects of ring 17 syndrome; telomere shortening influences the phenotypic spectrum of this disease and strongly contributes to the familial transmission of the mosaic ring. Together, these results provide new insights into the genotype-phenotype relationships in mild ring 17 syndrome.
Collapse
Affiliation(s)
- Cecilia Surace
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Andrea Masotti
- Gene Expression-Microarrays Laboratory, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Maria Cristina Roberti
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Letizia Da Sacco
- Gene Expression-Microarrays Laboratory, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Gemma D'Elia
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Pietro Sirleto
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Raffaella Cusmai
- Neurology Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Simona Grotta
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Stefano Petrocchi
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - May El Hachem
- Dermatology Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Pisaneschi
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Laura Ciocca
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Serena Russo
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Francesca Romana Lepri
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | - Adriano Angioni
- Cytogenetics and Molecular Genetics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
13
|
Pagani M, Rossetti G, Panzeri I, de Candia P, Bonnal RJP, Rossi RL, Geginat J, Abrignani S. Role of microRNAs and long-non-coding RNAs in CD4(+) T-cell differentiation. Immunol Rev 2013; 253:82-96. [PMID: 23550640 DOI: 10.1111/imr.12055] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CD4(+) T lymphocytes orchestrate adaptive immune responses by differentiating into various subsets of effector T cells such as T-helper 1 (Th1), Th2, Th17, and regulatory T cells. These subsets have been generally described by master transcription factors that dictate the expression of cytokines and receptors, which ultimately define lymphocyte effector functions. However, the view of T-lymphocyte subsets as stable and terminally differentiated lineages has been challenged by increasing evidence of functional plasticity within CD4(+) T-cell subsets, which implies flexible programming of effector functions depending on time and space of T-cell activation. An outstanding question with broad basic and traslational implications relates to the mechanisms, besides transcriptional regulation, which define the plasticity of effector functions. In this study, we discuss the emerging role of regulatory non-coding RNAs in T-cell differentiation and plasticity. Not only microRNAs have been proven to be important for CD4(+) T-cell differentiation, but it is also likely that the overall T-cell functioning is the result of a multilayered network composed by coding RNAs as well as by short and long non-coding RNAs. The integrated study of all the nodes of this network will provide a comprehensive view of the molecular mechanisms underlying T-cell functions in health and disease.
Collapse
|
14
|
Kasnauskiene J, Cimbalistiene L, Utkus A, Ciuladaite Z, Preiksaitiene E, Pečiulytė A, Kučinskas V. Two new de novo interstitial duplications covering 2p14-p22.1: clinical and molecular analysis. Cytogenet Genome Res 2012; 139:52-8. [PMID: 23036992 DOI: 10.1159/000342544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
We provide a detailed clinical and molecular analysis of 2 patients with de novo interstitial duplications at 2p14-p16.1 and 2p16.1-p22.1. The 10.13-Mb duplication of chromosome 2p14-p16.1 was identified in a 9-year-old boy with mental retardation, behavioral problems (hyperactivity, hyperphagia, and subsequent vomiting), recurrent respiratory tract infections, macrocephaly, epilepsy, and dysmorphic features. The 17.49-Mb duplication of 2p16.1-p22.1 was found in a 17-year-old girl with moderate mental retardation, behavioral and emotional problems, anxiety, and facial dysmorphic features. Very few cases of de novo interstitial duplication of 2p14-p22.1 are reported in the literature, with the great majority of them lacking a detailed molecular analysis. The abnormal phenotype of these cases is caused by mechanisms such as the overdose of a duplicated gene (or genes), the disruption of a gene or its regulatory sequence by the breakpoints of duplication, or by an excess of genetic material which may disorganize chromatin conformation affecting distant gene expression. The clinical and molecular analysis of these 2 rare de novo interstitial duplications provides useful information which is extremely valuable for clinical evaluation at the prenatal and postnatal level and for the molecular understanding of the underlying mechanisms of human diseases.
Collapse
Affiliation(s)
- J Kasnauskiene
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang R, Li Q, Helfer CM, Jiao J, You J. Bromodomain protein Brd4 associated with acetylated chromatin is important for maintenance of higher-order chromatin structure. J Biol Chem 2012; 287:10738-52. [PMID: 22334664 DOI: 10.1074/jbc.m111.323493] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chromatin structure organization is crucial for regulating many fundamental cellular processes. However, the molecular mechanism that regulates the assembly of higher-order chromatin structure remains poorly understood. In this study, we demonstrate that Brd4 (bromodomain-containing protein 4) protein participates in the maintenance of the higher-order chromatin structure. Brd4, a member of the BET family of proteins, has been shown to play important roles in cellular growth control, cell cycle progression, and cancer development. We apply in situ single cell chromatin imaging and micrococcal nuclease (MNase) assay to show that Brd4 depletion leads to a large scale chromatin unfolding. A dominant-negative inhibitor encoding the double bromodomains (BDI/II) of Brd4 can competitively dissociate endogenous Brd4 from chromatin to trigger severely fragmented chromatin morphology. Mechanistic studies using Brd4 truncation mutants reveal that the Brd4 C-terminal domain is crucial for maintaining normal chromatin structure. Using bimolecular fluorescence complementation technology, we demonstrate that Brd4 molecules interact intermolecularly on chromatin and that replacing Brd4 molecules by BDI/II causes abnormal nucleosome aggregation and chromatin fragmentation. These studies establish a novel structural role of Brd4 in supporting the higher chromatin architecture.
Collapse
Affiliation(s)
- Ranran Wang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
16
|
Pikó H, Molnár MJ, Herczegfalvi A, Mayer P, Karcagi V. [Role of associated alleles and hypomethylation status in the clinical expression of facioscapulohumeral muscular dystrophy]. Orv Hetil 2011; 152:1576-85. [PMID: 21920844 DOI: 10.1556/oh.2011.29179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
UNLABELLED Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of the D4Z4 repeat region on 4q35. In addition, epigenetic modifying factors play a role in the complex pathomechanism of the disease. AIMS Introduction of a new diagnostic panel in Hungary for the extended molecular analysis of the disease which also provides new insights into the pathomechanism. METHODS In total, DNA samples of 185 clinically diagnosed FSHD patients and 71 asymptomatic relatives were analyzed by EcoRI and BlnI restriction digestion and Southern blot technique with probe p13-E11. Further investigations of the 4q35 alleles associated with the FSHD phenotype utilized qA and qB probes and a restriction analysis of the proximal D4Z4 unit by detecting a G/C SNP and the methylation status. RESULTS From the patients analyzed 115 had the D4Z4 repeat contraction, whereas from 71 asymptomatic family members five harbored the pathogenic fragment size. In eight families, prenatal testing had to be offered with an outcome of four affected fetuses. Methylation test was performed in 31 genetically confirmed FSHD patients and hypomethylation status was detected in all cases. All the 115 confirmed patients had 4qA alleles with the G polymorphism. Translocation events between 4q35 and the homologous 10q26 regions were also detected. CONCLUSION Molecular diagnosis of FSHD became a routine approach in Hungary thus supporting the work of the clinicians, improving quality of life and genetic counseling of the affected families. The provided results from this research suggest that FSHD is associated with complex epigenetic disease mechanisms.
Collapse
Affiliation(s)
- Henriett Pikó
- Országos Környezet-egészségügyi Intézet, Molekuláris Genetikai és Diagnosztikai Osztály, Budapest
| | | | | | | | | |
Collapse
|
17
|
Richards M, Coppée F, Thomas N, Belayew A, Upadhyaya M. Facioscapulohumeral muscular dystrophy (FSHD): an enigma unravelled? Hum Genet 2011; 131:325-40. [PMID: 21984394 DOI: 10.1007/s00439-011-1100-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/26/2011] [Indexed: 01/02/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is the third most common muscular dystrophy after the dystrophinopathies and myotonic dystrophy and is associated with a typical pattern of muscle weakness. Most patients with FSHD carry a large deletion in the polymorphic D4Z4 macrosatellite repeat array at 4q35 and present with 1-10 repeats whereas non-affected individuals possess 11-150 repeats. An almost identical repeat array is present at 10q26 and the high sequence identity between these two arrays can cause difficulties in molecular diagnosis. Each 3.3-kb D4Z4 unit contains a DUX4 (double homeobox 4) gene that, among others, is activated upon contraction of the 4q35 repeat array due to the induction of chromatin remodelling of the 4qter region. A number of 4q subtelomeric sequence variants are now recognised, although FSHD only occurs in association with three 'permissive' haplotypes, each of which is associated with a polyadenylation signal located immediately distal of the last D4Z4 unit. The resulting poly-A tail appears to stabilise DUX4 mRNAs transcribed from this most distal D4Z4 unit in FSHD muscle cells. Synthesis of both the DUX4 transcripts and protein in FSHD muscle cells induces significant cell toxicity. DUX4 is a transcription factor that may target several genes which results in a deregulation cascade which inhibits myogenesis, sensitises cells to oxidative stress and induces muscle atrophy, thus recapitulating many of the key molecular features of FSHD.
Collapse
Affiliation(s)
- Mark Richards
- School of Medicine, Institute of Medical Genetics, Cardiff University, Cardiff, CF14 4XN, UK
| | | | | | | | | |
Collapse
|
18
|
Elizondo LI, Jafar-Nejad P, Clewing JM, Boerkoel CF. Gene clusters, molecular evolution and disease: a speculation. Curr Genomics 2011; 10:64-75. [PMID: 19721813 PMCID: PMC2699835 DOI: 10.2174/138920209787581271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/20/2008] [Accepted: 12/21/2008] [Indexed: 01/10/2023] Open
Abstract
Traditionally eukaryotic genes are considered independently expressed under the control of their promoters and cis-regulatory domains. However, recent studies in worms, flies, mice and humans have shown that genes co-habiting a chromatin domain or “genomic neighborhood” are frequently co-expressed. Often these co-expressed genes neither constitute part of an operon nor function within the same biological pathway. The mechanisms underlying the partitioning of the genome into transcriptional genomic neighborhoods are poorly defined. However, cross-species analyses find that the linkage among the co-expressed genes of these clusters is significantly conserved and that the expression patterns of genes within clusters have coevolved with the clusters. Such selection could be mediated by chromatin interactions with the nuclear matrix and long-range remodeling of chromatin structure. In the context of human disease, we propose that dysregulation of gene expression across genomic neighborhoods will cause highly pleiotropic diseases. Candidate genomic neighborhood diseases include the nuclear laminopathies, chromosomal translocations and genomic instability disorders, imprinting disorders of errant insulator function, syndromes from impaired cohesin complex assembly, as well as diseases of global covalent histone modifications and DNA methylation. The alteration of transcriptional genomic neighborhoods provides an exciting and novel model for studying epigenetic alterations as quantitative traits in complex common human diseases.
Collapse
|
19
|
Dupont C, Guimiot F, Perrin L, Marey I, Smiljkovski D, Le Tessier D, Lebugle C, Baumann C, Bourdoncle P, Tabet AC, Aboura A, Benzacken B, Dupont JM. 3D position of pericentromeric heterochromatin within the nucleus of a patient with ICF syndrome. Clin Genet 2011; 82:187-92. [PMID: 21554265 DOI: 10.1111/j.1399-0004.2011.01697.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ICF (immunodeficiency, centromeric region instability, facial anomalies) syndrome is a rare autosomal recessive disorder characterised by severe immunodeficiency, craniofacial anomalies and chromosome instability. Chromosome analyses from blood samples show a high frequency of decondensation of pericentromeric heterochromatin (PH) and rearrangements involving chromosomes 1 and 16. It is the first and, as far as we know, the only disease associated with a mutation in a DNA methyltransferase gene, DNMT3B, with significant hypomethylation of the classical satellite DNA, the major component of the juxtacentromeric heterochromatin. To better understand the complex links between the hypomethylation of the satellite DNA, the cytogenetic anomalies and the clinical features of ICF syndrome, we performed three-dimensional (3D) FISH on preserved cells from a patient with a suspected ICF phenotype. Analysis of DNMT3B did not reveal any mutation in our patient, making this case an ICF type 2. The results of 3D-FISH showed a statistically significant change in the intranuclear position of PH of chromosome 1 in cells of the patient as compared to normal cells. It is difficult to understand how a defect in the methylation pathway can be responsible for the various symptoms of this condition. From our observations we suggest a mechanistic link between the reorganisation of the nuclear architecture and the altered gene expression.
Collapse
Affiliation(s)
- C Dupont
- Institut Cochin, Inserm U567-UMR CNRS 8104 équipe 21, Université Paris Descartes, Faculté de médecine, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jefferson A, Colella S, Moralli D, Wilson N, Yusuf M, Gimelli G, Ragoussis J, Volpi EV. Altered intra-nuclear organisation of heterochromatin and genes in ICF syndrome. PLoS One 2010; 5:e11364. [PMID: 20613881 PMCID: PMC2894064 DOI: 10.1371/journal.pone.0011364] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 05/27/2010] [Indexed: 12/16/2022] Open
Abstract
The ICF syndrome is a rare autosomal recessive disorder, the most common symptoms of which are immunodeficiency, facial anomalies and cytogenetic defects involving decondensation and instability of chromosome 1, 9 and 16 centromeric regions. ICF is also characterised by significant hypomethylation of the classical satellite DNA, the major constituent of the juxtacentromeric heterochromatin. Here we report the first attempt at analysing some of the defining genetic and epigenetic changes of this syndrome from a nuclear architecture perspective. In particular, we have compared in ICF (Type 1 and Type 2) and controls the large-scale organisation of chromosome 1 and 16 juxtacentromeric heterochromatic regions, their intra-nuclear positioning, and co-localisation with five specific genes (BTG2, CNN3, ID3, RGS1, F13A1), on which we have concurrently conducted expression and methylation analysis. Our investigations, carried out by a combination of molecular and cytological techniques, demonstrate the existence of specific and quantifiable differences in the genomic and nuclear organisation of the juxtacentromeric heterochromatin in ICF. DNA hypomethylation, previously reported to correlate with the decondensation of centromeric regions in metaphase described in these patients, appears also to correlate with the heterochromatin spatial configuration in interphase. Finally, our findings on the relative positioning of hypomethylated satellite sequences and abnormally expressed genes suggest a connection between disruption of long-range gene-heterochromatin associations and some of the changes in gene expression in ICF. Beyond its relevance to the ICF syndrome, by addressing fundamental principles of chromosome functional organisation within the cell nucleus, this work aims to contribute to the current debate on the epigenetic impact of nuclear architecture in development and disease.
Collapse
Affiliation(s)
- Andrew Jefferson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Stefano Colella
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Daniela Moralli
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Natalie Wilson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Mohammed Yusuf
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Giorgio Gimelli
- Laboratorio di Citogenetica, Istituto G. Gaslini, Genova, Italy
| | - Jiannis Ragoussis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Emanuela V. Volpi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Sotgia S, Zinellu A, Pisanu E, Murgia L, Pinna GA, Gaspa L, Deiana L, Carru C. A hydrophilic interaction ultraperformance liquid chromatography (HILIC–UPLC) method for genomic DNA methylation assessment by UV detection. Anal Bioanal Chem 2010; 396:2937-41. [DOI: 10.1007/s00216-010-3565-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/05/2010] [Accepted: 02/10/2010] [Indexed: 01/30/2023]
|
22
|
Surace C, Piazzolla S, Sirleto P, Digilio MC, Roberti MC, Lombardo A, D'Elia G, Tomaiuolo AC, Petrocchi S, Capolino R, El Hachem M, Claps Sepulveda D, Sgura A, Angioni A. Mild ring 17 syndrome shares common phenotypic features irrespective of the chromosomal breakpoints location. Clin Genet 2010; 76:256-62. [PMID: 19793054 DOI: 10.1111/j.1399-0004.2009.01203.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ring 17 syndrome is a rare disorder with clinical features influenced by the presence or deletion of the Miller-Dieker critical region (MDCR). Presence of the MDCR is associated with a mild phenotype, including growth delay (GD), mental retardation (MR), seizures, cafè au lait skin (CALS) spots and minor facial dysmorphisms. Previous studies have been mainly focused on this locus providing poor information about the role of other genes located on the p- and q-arms. Here, we used bacterial artificial chromosome (BAC)/P1 artificial chromosome (PAC) and fosmid clones as fluorescence in situ hybridization (FISH) probes to perform a cyto-molecular analysis of a ring 17 case and found that the breakpoints were close to the telomeric ends. METRNL is the sole gene located on the q-arm terminal end, whereas two open reading frames and the RPH3AL gene are located on the terminal p-arm. To detect possibly unrevealed small deletions involving the transcription units, we used subcloned FISH probes obtained by long-range polymerase chain reaction (PCR), which showed that the investigated regions were preserved. Comparing our findings with other reports, it emerges that different breakpoints, involving (or not) large genomic deletions, present overlapping clinical aspects. In conclusion, our data suggest that a mechanism based on gene expression control besides haploinsufficiency should be considered to explain the common phenotypic features found in the mild ring 17 syndrome.
Collapse
Affiliation(s)
- C Surace
- Dipartimento dei Laboratori, U.O. Anatomia Patologica, Struttura Semplice di Citogenetica e Genetica Molecolare, Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ectopic expression of the HLXB9 gene is associated with an altered nuclear position in t(7;12) leukaemias. Leukemia 2009; 23:1179-82. [PMID: 19212340 DOI: 10.1038/leu.2009.15] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Lebedev IN, Sazhenova EA. Epimutations of imprinted genes in the human genome: Classification, causes, association with hereditary pathology. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408100062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density. Chromosoma 2008; 117:399-410. [PMID: 18418623 DOI: 10.1007/s00412-008-0160-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 03/12/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
Abstract
In the nuclei of human lymphocytes, chromosome territories are distributed according to the average gene density of each chromosome. However, chromosomes are very heterogeneous in size and base composition, and can contain both very gene-dense and very gene-poor regions. Thus, a precise analysis of chromosome organisation in the nuclei should consider also the distribution of DNA belonging to the chromosomal bands in each chromosome. To improve our understanding of the chromatin organisation, we localised chromosome 7 DNA regions, endowed with different gene densities, in the nuclei of human lymphocytes. Our results showed that this chromosome in cell nuclei is arranged radially with the gene-dense/GC-richest regions exposed towards the nuclear interior and the gene-poorest/GC-poorest ones located at the nuclear periphery. Moreover, we found that chromatin fibres from the 7p22.3 and the 7q22.1 bands are not confined to the territory of the bulk of this chromosome, protruding towards the inner part of the nucleus. Overall, our work demonstrates the radial arrangement of the territory of chromosome 7 in the lymphocyte nucleus and confirms that human genes occupy specific radial positions, presumably to enhance intra- and inter-chromosomal interaction among loci displaying a similar expression pattern, and/or similar replication timing.
Collapse
|
26
|
Sotgia S, Carru C, Franconi F, Fiori PB, Manca S, Pettinato S, Magliona S, Ginanneschi R, Deiana L, Zinellu A. Rapid quantification of total genomic DNA methylation degree by short-end injection capillary zone electrophoresis. J Chromatogr A 2008; 1185:145-50. [DOI: 10.1016/j.chroma.2008.01.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/09/2008] [Accepted: 01/15/2008] [Indexed: 11/29/2022]
|
27
|
Goetze S, Mateos-Langerak J, van Driel R. Three-dimensional genome organization in interphase and its relation to genome function. Semin Cell Dev Biol 2007; 18:707-14. [PMID: 17905616 DOI: 10.1016/j.semcdb.2007.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/22/2007] [Indexed: 01/10/2023]
Abstract
Higher order chromatin structure, i.e. the three-dimensional (3D) organization of the genome in the interphase nucleus, is an important component in the orchestration of gene expression in the mammalian genome. In this review we describe principles of higher order chromatin structure discussing three organizational parameters, i.e. chromatin folding, chromatin compaction and the nuclear position of the chromatin fibre. We argue that principles of 3D genome organization are probabilistic traits, reflected in a considerable cell-to-cell variation in 3D genome structure. It will be essential to understand how such higher order organizational aspects contribute to genome function to unveil global genome regulation.
Collapse
Affiliation(s)
- Sandra Goetze
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands.
| | | | | |
Collapse
|
28
|
Kowaljow V, Marcowycz A, Ansseau E, Conde CB, Sauvage S, Mattéotti C, Arias C, Corona ED, Nuñez NG, Leo O, Wattiez R, Figlewicz D, Laoudj-Chenivesse D, Belayew A, Coppée F, Rosa AL. The DUX4 gene at the FSHD1A locus encodes a pro-apoptotic protein. Neuromuscul Disord 2007; 17:611-23. [PMID: 17588759 DOI: 10.1016/j.nmd.2007.04.002] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 03/28/2007] [Accepted: 04/05/2007] [Indexed: 12/19/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) patients carry contractions of the D4Z4-tandem repeat array on chromosome 4q35. Decrease in D4Z4 copy number is thought to alter a chromatin structure and activate expression of neighboring genes. D4Z4 contains a putative double-homeobox gene called DUX4. We identified DUX4 mRNAs in cells transfected with genomic fragments containing the DUX4 gene. Using RT-PCR we also recognized expressed DUX4 mRNAs in primary FSHD myoblasts. Polyclonal antibodies raised against specific DUX4 peptides detected the DUX4 protein in cells transfected with D4Z4 elements. DUX4 localizes in the nucleus of cells transfected with CMV-DUX4 expression vectors. A DUX4-related protein is endogenously expressed in nuclei of adult and fetal human rhabdomyosarcoma cell lines. Overexpression of DUX4 induces cell death, induces caspase 3/7 activity and alters emerin distribution at the nuclear envelope. We propose that DUX4-mediated cell death contributes to the pathogenic pathway in FSHD.
Collapse
Affiliation(s)
- Valeria Kowaljow
- Laboratorio de Neurogenética, Instituto de Investigación, Médica Mercedes y Martín Ferreyra (INIMEC-CONICET), Córdoba, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Moss TJ, Wallrath LL. Connections between epigenetic gene silencing and human disease. Mutat Res 2007; 618:163-74. [PMID: 17306846 PMCID: PMC1892579 DOI: 10.1016/j.mrfmmm.2006.05.038] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/25/2006] [Indexed: 04/15/2023]
Abstract
Alterations in epigenetic gene regulation are associated with human disease. Here, we discuss connections between DNA methylation and histone methylation, providing examples in which defects in these processes are linked with disease. Mutations in genes encoding DNA methyltransferases and proteins that bind methylated cytosine residues cause changes in gene expression and alterations in the patterns of DNA methylation. These changes are associated with cancer and congenital diseases due to defects in imprinting. Gene expression is also controlled through histone methylation. Altered levels of methyltransferases that modify lysine 27 of histone H3 (K27H3) and lysine 9 of histone H3 (K9H3) correlate with changes in Rb signaling and disruption of the cell cycle in cancer cells. The K27H3 mark recruits a Polycomb complex involved in regulating stem cell pluripotency, silencing of developmentally regulated genes, and controlling cancer progression. The K9H3 methyl mark recruits HP1, a structural protein that plays a role in heterochromatin formation, gene silencing, and viral latency. Cells exhibiting altered levels of HP1 are predicted to show a loss of silencing at genes regulating cancer progression. Gene silencing through K27H3 and K9H3 can involve histone deacetylation and DNA methylation, suggesting cross talk between epigenetic silencing systems through direct interactions among the various players. The reversible nature of these epigenetic modifications offers therapeutic possibilities for a wide spectrum of disease.
Collapse
Affiliation(s)
- Timothy J Moss
- Department of Biochemistry, 3136 MERF, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
30
|
Bodega B, Cardone MF, Müller S, Neusser M, Orzan F, Rossi E, Battaglioli E, Marozzi A, Riva P, Rocchi M, Meneveri R, Ginelli E. Evolutionary genomic remodelling of the human 4q subtelomere (4q35.2). BMC Evol Biol 2007; 7:39. [PMID: 17359533 PMCID: PMC1852401 DOI: 10.1186/1471-2148-7-39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 03/14/2007] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In order to obtain insights into the functionality of the human 4q35.2 domain harbouring the facioscapulohumeral muscular dystrophy (FSHD) locus, we investigated in African apes genomic and chromatin organisations, and the nuclear topology of orthologous regions. RESULTS A basic block consisting of short D4Z4 arrays (10-15 repeats), 4q35.2 specific sequences, and approximately 35 kb of interspersed repeats from different LINE subfamilies was repeated at least twice in the gorilla 4qter. This genomic organisation has undergone evolutionary remodelling, leading to the single representation of both the D4Z4 array and LINE block in chimpanzee, and the loss of the LINE block in humans. The genomic remodelling has had an impact on 4qter chromatin organisation, but not its interphase nuclear topology. In comparison with humans, African apes show very low or undetectable levels of FRG1 and FRG2 histone 4 acetylation and gene transcription, although histone deacetylase inhibition restores gene transcription to levels comparable with those of human cells, thus indicating that the 4qter region is capable of acquiring a more open chromatin structure. Conversely, as in humans, the 4qter region in African apes has a very peripheral nuclear localisation. CONCLUSION The 4q subtelomere has undergone substantial genomic changes during evolution that have had an impact on chromatin condensation and the region's transcriptional regulation. Consequently, the 4qter genes in African apes and humans seem to be subjected to a different strategy of regulation in which LINE and D4Z4 sequences may play a pivotal role. However, the effect of peripheral nuclear anchoring of 4qter on these regulation mechanisms is still unclear. The observed differences in the regulation of 4qter gene expression between African apes and humans suggest that the human 4q35.2 locus has acquired a novel functional relevance.
Collapse
Affiliation(s)
- Beatrice Bodega
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| | | | - Stefan Müller
- Biology II – Anthropology and Human Genetics, University of Ludwig Maximilians, Munich, Germany
| | - Michaela Neusser
- Biology II – Anthropology and Human Genetics, University of Ludwig Maximilians, Munich, Germany
| | - Francesca Orzan
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| | - Elena Rossi
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| | - Elena Battaglioli
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| | - Anna Marozzi
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| | - Paola Riva
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| | - Mariano Rocchi
- Department of Genetics and Microbiology, University of Bari, Bari, Italy
| | - Raffaella Meneveri
- Department of Experimental Medicine, University of Milan-Bicocca, Monza, Italy
| | - Enrico Ginelli
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Berndsen CE, Selleck W, McBryant SJ, Hansen JC, Tan S, Demi JM. Nucleosome recognition by the Piccolo NuA4 histone acetyltransferase complex. Biochemistry 2007; 46:2091-9. [PMID: 17274630 PMCID: PMC1994252 DOI: 10.1021/bi602366n] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms by which multisubunit histone acetyltransferase (HAT) complexes recognize and perform efficient acetylation on nucleosome substrates are largely unknown. Here, we use a variety of biochemical approaches and compare histone-based substrates of increasing complexity to determine the critical components of nucleosome recognition by the MOZ, Ybf2/Sas3, Sas2, Tip60 family HAT complex, Piccolo NuA4 (picNuA4). We find the histone tails to be dispensable for binding to both nucleosomes and free histones and that the H2A, H3, and H2B tails do not influence the ability of picNuA4 to tetra-acetylate the H4 tail within the nucleosome. Most notably, we discovered that the histone-fold domain (HFD) regions of histones, particularly residues 21-52 of H4, are critical for tight binding and efficient tail acetylation. Presented evidence suggests that picNuA4 recognizes the open surface of the nucleosome on which the HFD of H4 is located. This binding mechanism serves to direct substrate access to the tails of H4 and H2A and allows the enzyme to be "tethered", thereby increasing the effective concentration of the histone tail and permitting successive cycles of H4 tail acetylation.
Collapse
Affiliation(s)
| | | | | | | | | | - John M. Demi
- * To whom correspondence should be addressed: University of Wisconsin–Madison School of Medicine and Public Health, 551 Medical Sciences Center, 1300 University Ave., Madison, WI 53706. Telephone: 608-265-1859. Fax: 608-262-5253. E-mail:
| |
Collapse
|
32
|
Abstract
Recurring chromosome abnormalities are strongly associated with certain subtypes of leukemia, lymphoma and sarcomas. More recently, their potential involvement in carcinomas, i.e. prostate cancer, has been recognized. They are among the most important factors in determining disease prognosis, and in many cases, identification of these chromosome abnormalities is crucial in selecting appropriate treatment protocols. Chromosome translocations are frequently observed in both de novo and therapy-related acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). The mechanisms that result in such chromosome translocations in leukemia and other cancers are largely unknown. Genomic breakpoints in all the common chromosome translocations in leukemia, including t(4;11), t(9;11), t(8;21), inv(16), t(15;17), t(12;21), t(1;19) and t(9;22), have been cloned. Genomic breakpoints tend to cluster in certain intronic regions of the relevant genes including MLL, AF4, AF9, AML1, ETO, CBFB, MYHI1, PML, RARA, TEL, E2A, PBX1, BCR and ABL. However, whereas the genomic breakpoints in MLL tend to cluster in the 5' portion of the 8.3 kb breakpoint cluster region (BCR) in de novo and adult patients and in the 3' portion in infant leukemia patients and t-AML patients, those in both the AML1 and ETO genes occur in the same clustered regions in both de novo and t-AML patients. These differences may reflect differences in the mechanisms involved in the formation of the translocations. Specific chromatin structural elements, such as in vivo topoisomerase II (topo II) cleavage sites, DNase I hypersensitive sites and scaffold attachment regions (SARs) have been mapped in the breakpoint regions of the relevant genes. Strong in vivo topo II cleavage sites and DNase I hypersensitive sites often co-localize with each other and also with many of the BCRs in most of these genes, whereas SARs are associated with BCRs in MLL, AF4, AF9, AML1, ETO and ABL, but not in the BCR gene. In addition, the BCRs in MLL, AML1 and ETO have the lowest free energy level for unwinding double strand DNA. Virtually all chromosome translocations in leukemia that have been analyzed to date show no consistent homologous sequences at the breakpoints, whereas a strong non-homologous end joining (NHEJ) repair signature exists at all of these chromosome translocation breakpoint junctions; this includes small deletions and duplications in each breakpoint, and micro-homologies and non-template insertions at genomic junctions of each chromosome translocation. Surprisingly, the size of these deletions and duplications in the same translocation is much larger in de novo leukemia than in therapy-related leukemia. We propose a non-homologous chromosome recombination model as one of the mechanisms that results in chromosome translocations in leukemia. The topo II cleavage sites at open chromatin regions (DNase I hypersensitive sites), SARs or the regions with low energy level are vulnerable to certain genotoxic or other agents and become the initial breakage sites, which are followed by an excision end joining repair process.
Collapse
Affiliation(s)
- Yanming Zhang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, USA
| | | |
Collapse
|
33
|
van der Maarel SM, Frants RR, Padberg GW. Facioscapulohumeral muscular dystrophy. Biochim Biophys Acta Mol Basis Dis 2006; 1772:186-94. [PMID: 16837171 DOI: 10.1016/j.bbadis.2006.05.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 05/30/2006] [Accepted: 05/30/2006] [Indexed: 01/01/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by a cascade of epigenetic events following contraction of the polymorphic macrosatellite repeat D4Z4 in the subtelomere of chromosome 4q. Currently, the central issue is whether immediate downstream effects are local (i.e., at chromosome 4q) or global (genome-wide) and there is evidence for both scenarios. Currently, there is no therapy for FSHD, mostly because of our lack of understanding of the primary pathogenic process in FSHD muscle. Clinical trials based on suppression of inflammatory reactions or increasing muscle mass by drugs or training have been disappointing. A recent, probably the first evidence-based pilot trial to revert epigenetic changes did also not provide grounds for a larger clinical study. Clearly, better disease models need to be developed to identify and test novel intervention strategies to eventually improve the quality of life for patients with FSHD.
Collapse
Affiliation(s)
- Silvère M van der Maarel
- Leiden University Medical Center (LUMC), Department of Human Genetics, Postal zone S-3-P, PO box 9600, 2300 RC Leiden, The Netherlands.
| | | | | |
Collapse
|
34
|
Shen HM, Nakamura A, Sugimoto J, Sakumoto N, Oda T, Jinno Y, Okazaki Y. Tissue specificity of methylation and expression of human genes coding for neuropeptides and their receptors, and of a human endogenous retrovirus K family. J Hum Genet 2006; 51:440-450. [PMID: 16544050 DOI: 10.1007/s10038-006-0382-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 01/23/2006] [Indexed: 02/03/2023]
Abstract
The purpose of the present study was to understand the tissue specificity of DNA methylation and the relationship between methylation and expression of genes with essential roles in neurodevelopment and brain function. We chose dopamine receptor genes (DRD1 and DRD2), NCAM, and COMT as examples of genes with CpG islands around the promoter region, and serotonin receptor genes (HTR2A and HTR3A), HCRT, and DRD3 as genes without CpG islands. Methylation states were investigated in fetal brain, fetal liver, placenta, and in adult peripheral leukocytes from three individuals by Southern blot and bisulfite-modified DNA sequencing. A repetitive sequence, human endogenous retrovirus (HERV)-K was also examined. All genes examined were almost completely unmethylated in brains. The genes with CpG islands were unmethylated regardless of their expression state. In contrast, genes without CpG islands showed various methylation patterns, which did not necessarily reflect the transcriptional activity of the genes. Most HERV-K loci were methylated, but some loci showed relatively low methylation in the placenta and liver. Interestingly, we found inter-individual differences in methylation levels in HTR2A and HCRT in the placenta and in some loci of HERV-K in the placenta and liver. The sample with the lowest methylation levels in the two unique genes showed higher methylation of HERV-K loci than the other samples. These results provide detailed information about the methylation states of the genes analyzed and evidence for inter-individual variations in methylation in both unique and repetitive sequences.
Collapse
Affiliation(s)
- Hong-Mei Shen
- Department of Molecular Biology, Ryukyu University School of Medicine, 207 Nishihara, Okinawa 903-0215, Japan
| | - Akifumi Nakamura
- Department of Molecular Biology, Ryukyu University School of Medicine, 207 Nishihara, Okinawa 903-0215, Japan
- Department of Neuropsychiatry, Ryukyu University School of Medicine, Okinawa, Japan
| | - Jun Sugimoto
- Department of Molecular Biology, Ryukyu University School of Medicine, 207 Nishihara, Okinawa 903-0215, Japan
| | - Noboru Sakumoto
- Department of Neuropsychiatry, Ryukyu University School of Medicine, Okinawa, Japan
| | - Takaya Oda
- Department of Molecular Biology, Ryukyu University School of Medicine, 207 Nishihara, Okinawa 903-0215, Japan
| | - Yoshihiro Jinno
- Department of Molecular Biology, Ryukyu University School of Medicine, 207 Nishihara, Okinawa 903-0215, Japan.
| | - Yuji Okazaki
- Department of Neuropsychiatry, Mie University School of Medicine, Mie, Japan
| |
Collapse
|
35
|
Maraldi NM, Lattanzi G, Capanni C, Columbaro M, Mattioli E, Sabatelli P, Squarzoni S, Manzoli FA. Laminopathies: A chromatin affair. ACTA ACUST UNITED AC 2006; 46:33-49. [PMID: 16857244 DOI: 10.1016/j.advenzreg.2006.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Filesi I, Gullotta F, Lattanzi G, D'Apice MR, Capanni C, Nardone AM, Columbaro M, Scarano G, Mattioli E, Sabatelli P, Maraldi NM, Biocca S, Novelli G. Alterations of nuclear envelope and chromatin organization in mandibuloacral dysplasia, a rare form of laminopathy. Physiol Genomics 2005; 23:150-8. [PMID: 16046620 DOI: 10.1152/physiolgenomics.00060.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal recessive mandibuloacral dysplasia [mandibuloacral dysplasia type A (MADA); Online Mendelian Inheritance in Man (OMIM) no. 248370] is caused by a mutation in LMNA encoding lamin A/C. Here we show that this mutation causes accumulation of the lamin A precursor protein, a marked alteration of the nuclear architecture and, hence, chromatin disorganization. Heterochromatin domains are altered or completely lost in MADA nuclei, consistent with the finding that heterochromatin-associated protein HP1beta and histone H3 methylated at lysine 9 and their nuclear envelope partner protein lamin B receptor (LBR) are delocalized and solubilized. Both accumulation of lamin A precursor and chromatin defects become more severe in older patients. These results strongly suggest that altered chromatin remodeling is a key event in the cascade of epigenetic events causing MADA and could be related to the premature-aging phenotype.
Collapse
Affiliation(s)
- Ilaria Filesi
- Laboratory of Clinical Biochemistry and Department of Neuroscience, University of Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Velagaleti GVN, Bien-Willner GA, Northup JK, Lockhart LH, Hawkins JC, Jalal SM, Withers M, Lupski JR, Stankiewicz P. Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am J Hum Genet 2005; 76:652-62. [PMID: 15726498 PMCID: PMC1199302 DOI: 10.1086/429252] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 01/26/2005] [Indexed: 01/25/2023] Open
Abstract
Campomelic dysplasia (CD) is a semilethal skeletal malformation syndrome with or without XY sex reversal. In addition to the multiple mutations found within the sex-determining region Y-related high-mobility group box gene (SOX9) on 17q24.3, several chromosome anomalies (translocations, inversions, and deletions) with breakpoints scattered over 1 Mb upstream of SOX9 have been described. Here, we present a balanced translocation, t(4;17)(q28.3;q24.3), segregating in a family with a mild acampomelic CD with Robin sequence. Both chromosome breakpoints have been identified by fluorescence in situ hybridization and have been sequenced using a somatic cell hybrid. The 17q24.3 breakpoint maps approximately 900 kb upstream of SOX9, which is within the same bacterial artificial chromosome clone as the breakpoints of two other reported patients with mild CD. We also report a prenatal identification of acampomelic CD with male-to-female sex reversal in a fetus with a de novo balanced complex karyotype, 46,XY,t(4;7;8;17)(4qter-->4p15.1::17q25.1-->17qter;7qter-->7p15.3::4p15.1-->4pter;8pter-->8q12.1::7p15.3-->7pter;17pter-->17q25.1::8q12.1-->8qter). Surprisingly, the 17q breakpoint maps approximately 1.3 Mb downstream of SOX9, making this the longest-range position effect found in the field of human genetics and the first report of a patient with CD with the chromosome breakpoint mapping 3' of SOX9. By using the Regulatory Potential score in conjunction with analysis of the rearrangement breakpoints, we identified a candidate upstream cis-regulatory element, SOX9cre1. We provide evidence that this 1.1-kb evolutionarily conserved element and the downstream breakpoint region colocalize with SOX9 in the interphase nucleus, despite being located 1.1 Mb upstream and 1.3 Mb downstream of it, respectively. The potential molecular mechanism responsible for the position effect is discussed.
Collapse
Affiliation(s)
- Gopalrao V. N. Velagaleti
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Gabriel A. Bien-Willner
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Jill K. Northup
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Lillian H. Lockhart
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Judy C. Hawkins
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Syed M. Jalal
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Marjorie Withers
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - James R. Lupski
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Pawel Stankiewicz
- Departments of Pathology and Pediatrics, University of Texas Medical Branch, Galveston; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children's Hospital, Houston; and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
38
|
van Overveld PGM, Enthoven L, Ricci E, Rossi M, Felicetti L, Jeanpierre M, Winokur ST, Frants RR, Padberg GW, van der Maarel SM. Variable hypomethylation of D4Z4 in facioscapulohumeral muscular dystrophy. Ann Neurol 2005; 58:569-76. [PMID: 16178028 DOI: 10.1002/ana.20625] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) progressively affects the facial, shoulder, and upper arm muscles and is associated with contractions of the polymorphic D4Z4 repeat array in 4q35. Recently, we demonstrated that FSHD alleles are hypomethylated at D4Z4. To study potential relationships between D4Z4 hypomethylation and both residual repeat size and clinical severity, we compared the clinical severity score with D4Z4 methylation in unrelated FSHD patients. Correcting the clinical severity score for age at examination improves the parameter to define clinical severity and provides further support for hypomethylation of FSHD alleles. However, a linear relationship between repeat size and clinical severity of the disease cannot be established. Interestingly, FSHD can be separated in two clinical severity classes: patients with residual repeat sizes of 10 to 20 kb are severely affected and show pronounced D4Z4 hypomethylation. In contrast, patients with repeat sizes of 20 to 31kb show large interindividual variation in clinical severity and D4Z4 hypomethylation. Because the majority of familial FSHD cases are represented in this interval and considering the overt variation in clinical severity in these familial cases, it thus is imperative to develop comprehensive allele-specific assays monitoring total D4Z4 methylation to investigate whether interindividual variation in D4Z4 methylation can be translated into a prognostic factor for clinical severity.
Collapse
Affiliation(s)
- Petra G M van Overveld
- Department of Human Genetics, Center for Human and Clinical Genetics, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kleinjan DA, van Heyningen V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 2005; 76:8-32. [PMID: 15549674 PMCID: PMC1196435 DOI: 10.1086/426833] [Citation(s) in RCA: 648] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 10/08/2004] [Indexed: 02/04/2023] Open
Abstract
Transcriptional control is a major mechanism for regulating gene expression. The complex machinery required to effect this control is still emerging from functional and evolutionary analysis of genomic architecture. In addition to the promoter, many other regulatory elements are required for spatiotemporally and quantitatively correct gene expression. Enhancer and repressor elements may reside in introns or up- and downstream of the transcription unit. For some genes with highly complex expression patterns--often those that function as key developmental control genes--the cis-regulatory domain can extend long distances outside the transcription unit. Some of the earliest hints of this came from disease-associated chromosomal breaks positioned well outside the relevant gene. With the availability of wide-ranging genome sequence comparisons, strong conservation of many noncoding regions became obvious. Functional studies have shown many of these conserved sites to be transcriptional regulatory elements that sometimes reside inside unrelated neighboring genes. Such sequence-conserved elements generally harbor sites for tissue-specific DNA-binding proteins. Developmentally variable chromatin conformation can control protein access to these sites and can regulate transcription. Disruption of these finely tuned mechanisms can cause disease. Some regulatory element mutations will be associated with phenotypes distinct from any identified for coding-region mutations.
Collapse
Affiliation(s)
- Dirk A Kleinjan
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom
| | | |
Collapse
|
40
|
Bottardi S, Bourgoin V, Pierre-Charles N, Milot E. Onset and inheritance of abnormal epigenetic regulation in hematopoietic cells. Hum Mol Genet 2004; 14:493-502. [PMID: 15615768 DOI: 10.1093/hmg/ddi046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abnormal epigenetic regulation of gene expression contributes significantly to a variety of human pathologies including cancer. Deletion of hypersensitive site 2 (HS2) at the human beta-globin locus control region can lead to abnormal epigenetic regulation of globin genes in transgenic mice. Here, two HS2-deleted transgenic mouse lines were used as model to demonstrate that heritable alteration of chromatin organization at the human beta-globin locus in multipotent hematopoietic progenitors contributes to the abnormal expression of the beta-globin gene in mature erythroid cells. This alteration is characterized by specific patterns of histone covalent modifications that are inherited during erythropoiesis and, moreover, is plastic because it can be reverted by transient treatment with the histone deacetylase inhibitor Trichostatin A. Altogether, our results indicate that aberrant epigenetic regulation can be detected and modified before tissue-specific gene transcription, a finding which may lead to novel strategies for the prevention of chromatin-related pathologies.
Collapse
Affiliation(s)
- Stefania Bottardi
- Guy-Bernier Research Centre, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, 5415 Boulevard l'Assomption, Montreal, Quebec, Canada H1T 2M4
| | | | | | | |
Collapse
|
41
|
Tam R, Smith KP, Lawrence JB. The 4q subtelomere harboring the FSHD locus is specifically anchored with peripheral heterochromatin unlike most human telomeres. ACTA ACUST UNITED AC 2004; 167:269-79. [PMID: 15504910 PMCID: PMC2172553 DOI: 10.1083/jcb.200403128] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper investigates the nuclear localization of human telomeres and, specifically, the 4q35 subtelomere mutated in facioscapulohumeral dystrophy (FSHD). FSHD is a common muscular dystrophy that has been linked to contraction of D4Z4 tandem repeats, widely postulated to affect distant gene expression. Most human telomeres, such as 17q and 17p, avoid the nuclear periphery to reside within the internal, euchromatic compartment. In contrast, 4q35 localizes at the peripheral heterochromatin with 4p more internal, generating a reproducible chromosome orientation that we relate to gene expression profiles. Studies of hybrid and translocation cell lines indicate this localization is inherent to the distal tip of 4q. Investigation of heterozygous FSHD myoblasts demonstrated no significant displacement of the mutant allele from the nuclear periphery. However, consistent association of the pathogenic D4Z4 locus with the heterochromatic compartment supports a potential role in regulating the heterochromatic state and makes a telomere positioning effect more likely. Furthermore, D4Z4 repeats on other chromosomes also frequently organize with the heterochromatic compartment at the nuclear or nucleolar periphery, demonstrating a commonality among chromosomes harboring this subtelomere repeat family.
Collapse
Affiliation(s)
- Rose Tam
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
42
|
Abstract
Epigenetics is comprised of the stable and heritable (or potentially heritable) changes in gene expression that do not entail a change in DNA sequence. The role of epigenetics in the etiology of human disease is increasingly recognized with the most obvious evidence found for genes subject to genomic imprinting. Mutations and epimutations in imprinted genes can give rise to genetic and epigenetic phenotypes, respectively; uniparental disomy and imprinting defects represent epigenetic disease phenotypes. There are also genetic disorders that affect chromatin structure and remodeling. These disorders can affect chromatin in trans or in cis, as well as expression of both imprinted and nonimprinted genes. Data from Angelman and Beckwith-Wiedemann syndromes and other disorders indicate that a monogenic or oligogenic phenotype can be caused by a mixed epigenetic and genetic and mixed de novo and inherited (MEGDI) model. The MEGDI model may apply to some complex disease traits and could explain negative results in genome-wide genetic scans.
Collapse
Affiliation(s)
- Yong-Hui Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
43
|
D'Antoni S, Mattina T, Di Mare P, Federico C, Motta S, Saccone S. Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and Velocardiofacial syndromes. Gene 2004; 333:111-9. [PMID: 15177686 DOI: 10.1016/j.gene.2004.02.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 12/19/2003] [Accepted: 02/10/2004] [Indexed: 02/07/2023]
Abstract
DiGeorge and Velocardiofacial syndromes (DGS/VCFS) are endowed by a similar complex phenotype including cardiovascular, craniofacial, and thymic malformations, and are associated with heterozygous deletions of 22q11 chromosomal band. The Typically Deleted Region in the 22q11.21 subband (here called TDR22) is very gene-dense, and the extent of the deletion has been defined precisely in several studies. However, to date there is no evidence for a mechanism of haploinsufficiency that can fully explain the DGS/VCFS phenotype. In this study, we show that the candidate gene HIRA/Tuple1 mapping on the non-deleted TDR22, in DGS/VCFS subjects presents a delayed replication timing. Moreover, we observed an increase in the cell ratio showing the HIRA/Tuple1 locus localised toward the nuclear periphery. It is known that replication timing and nuclear location are generally correlated to the transcription activity of the relative DNA region. We propose that the alteration in the replication/nuclear location pattern of the non-deleted TDR22 indicates an altered gene regulation hence an altered transcritpion in DGS/VCFS.
Collapse
Affiliation(s)
- Simona D'Antoni
- Dipartimento di Pediatria, University of Catania, via S. Sofia 78, Catania I-95123, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R, Prasanth KV, Ried T, Shav-Tal Y, Bertrand E, Singer RH, Spector DL. From silencing to gene expression: real-time analysis in single cells. Cell 2004; 116:683-698. [PMID: 15006351 PMCID: PMC4942132 DOI: 10.1016/s0092-8674(04)00171-0] [Citation(s) in RCA: 557] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 01/21/2004] [Accepted: 01/23/2004] [Indexed: 12/29/2022]
Abstract
We have developed an inducible system to visualize gene expression at the levels of DNA, RNA and protein in living cells. The system is composed of a 200 copy transgene array integrated into a euchromatic region of chromosome 1 in human U2OS cells. The condensed array is heterochromatic as it is associated with HP1, histone H3 methylated at lysine 9, and several histone methyltransferases. Upon transcriptional induction, HP1alpha is depleted from the locus and the histone variant H3.3 is deposited suggesting that histone exchange is a mechanism through which heterochromatin is transformed into a transcriptionally active state. RNA levels at the transcription site increase immediately after the induction of transcription and the rate of synthesis slows over time. Using this system, we are able to correlate changes in chromatin structure with the progression of transcriptional activation allowing us to obtain a real-time integrative view of gene expression.
Collapse
Affiliation(s)
- Susan M Janicki
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | | | - Simone E Salghetti
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - William P Tansey
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - Ravi Sachidanandam
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | | | - Thomas Ried
- Genetics Branch, Center for Cancer Research/National Cancer Institute/NIH, 50 South Drive, Bethesda, MD 20892 USA
| | - Yaron Shav-Tal
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Edouard Bertrand
- Institut de Genetique Moleculaire de Montpellier-CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | - Robert H Singer
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - David L Spector
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| |
Collapse
|