1
|
Curcumin-loaded alginate hydrogels for cancer therapy and wound healing applications: A review. Int J Biol Macromol 2023; 232:123283. [PMID: 36657541 DOI: 10.1016/j.ijbiomac.2023.123283] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Hydrogels have emerged as a versatile platform for a numerous biomedical application due to their ability to absorb a huge quantity of biofluids. In order to design hydrogels, natural polymers are an attractive option owing to their biocompatibility and biodegradability. Due to abundance in occurrence, cost effectiveness, and facile crosslinking approaches, alginate has been extensively investigated to fabricate hydrogel matrix. Management of cancer and chronic wounds have always been a challenge for pharmaceutical and healthcare sector. In both cases, curcumin have been shown significant improvement and effectiveness. However, the innate restraints like poor bioavailability, hydrophobicity, and rapid systemic clearance associated with curcumin have restricted its clinical translations. The current review explores the cascade of research around curcumin encapsulated alginate hydrogel matrix for wound healing and cancer therapy. The focus of the review is to emphasize the mechanistic effects of curcumin with its fate inside the cells. Further, the review discusses different approaches to designed curcumin loaded alginate hydrogels along with the parameters that regulates their release behavior. Finally, the review is concluded with emphasize on some key aspect on increasing the efficacy of these hydrogels along with novel strategies to further develop curcumin loaded alginate hydrogel matrix with multifacet applications.
Collapse
|
2
|
Zhang W, Cui N, Ye J, Yang B, Sun Y, Kuang H. Curcumin's prevention of inflammation-driven early gastric cancer and its molecular mechanism. CHINESE HERBAL MEDICINES 2022; 14:244-253. [PMID: 36117672 PMCID: PMC9476644 DOI: 10.1016/j.chmed.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/29/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
|
3
|
Brown S, Pawlyn C, Tillotson AL, Sherratt D, Flanagan L, Low E, Morgan GJ, Williams C, Kaiser M, Davies FE, Jenner MW. Bortezomib, Vorinostat, and Dexamethasone Combination Therapy in Relapsed Myeloma: Results of the Phase 2 MUK four Trial. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:154-161.e3. [DOI: 10.1016/j.clml.2020.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
|
4
|
Tsang B, Pritišanac I, Scherer SW, Moses AM, Forman-Kay JD. Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell 2020; 183:1742-1756. [DOI: 10.1016/j.cell.2020.11.050] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
|
5
|
Fan Y, Zeng F, Brown RW, Price JB, Jones TC, Zhu MY. Transcription Factors Phox2a/2b Upregulate Expression of Noradrenergic and Dopaminergic Phenotypes in Aged Rat Brains. Neurotox Res 2020; 38:793-807. [PMID: 32617854 PMCID: PMC7484387 DOI: 10.1007/s12640-020-00250-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/30/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
The present study investigated the effects of forced overexpression of Phox2a/2b, two transcription factors, in the locus coeruleus (LC) of aged rats on noradrenergic and dopaminergic phenotypes in brains. Results showed that a significant increase in Phox2a/2b mRNA levels in the LC region was paralleled by marked enhancement in expression of DBH and TH per se. Furthermore, similar increases in TH protein levels were observed in the substantial nigra and striatum, as well as in the hippocampus and frontal cortex. Overexpression of Phox2 genes also significantly increased BrdU-positive cells in the hippocampal dentate gyrus and NE levels in the striatum. Moreover, this manipulation significantly improved the cognition behavior. The in vitro experiments revealed that norepinephrine treatments may increase the transcription of TH gene through the epigenetic action on the TH promoter. The results indicate that Phox2 genes may play an important role in improving the function of the noradrenergic and dopaminergic neurons in aged animals, and regulation of Phox2 gene expression may have therapeutic utility in aging or disorders involving degeneration of noradrenergic neurons.
Collapse
Affiliation(s)
- Yan Fan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
- Department of Biochemistry, Nantong University College of Medicine, Nantong, China
| | - Fei Zeng
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
- Department of Neurology, Remin Hospital of the Wuhan University, Wuhan, China
| | - Russell W Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jennifer B Price
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Thomas C Jones
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
6
|
Wu R, Wang L, Yin R, Hudlikar R, Li S, Kuo HCD, Peter R, Sargsyan D, Guo Y, Liu X, Kong AN. Epigenetics/epigenomics and prevention by curcumin of early stages of inflammatory-driven colon cancer. Mol Carcinog 2020; 59:227-236. [PMID: 31820492 PMCID: PMC6946865 DOI: 10.1002/mc.23146] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is associated with significant morbidity and mortality in the US and worldwide. CRC is the second most common cancer-related death in both men and women globally. Chronic inflammation has been identified as one of the major risk factors of CRC. It may drive genetic and epigenetic/epigenomic alterations, such as DNA methylation, histone modification, and non-coding RNA regulation. Current prevention modalities for CRC are limited and some treatment regimens such as use the nonsteroidal anti-inflammatory drug aspirin may have severe side effects, namely gastrointestinal ulceration and bleeding. Therefore, there is an urgent need of developing alternative strategies. Recently, increasing evidence suggests that several dietary cancer chemopreventive phytochemicals possess anti-inflammation and antioxidative stress activities, and may prevent cancers including CRC. Curcumin (CUR) is the yellow pigment that is found in the rhizomes of turmeric (Curcuma longa). Many studies have demonstrated that CUR exhibit strong anticancer, antioxidative stress, and anti-inflammatory activities by regulating signaling pathways, such as nuclear factor erythroid-2-related factor 2, nuclear factor-κB, and epigenetics/epigenomics pathways of histones modifications, and DNA methylation. In this review, we will discuss the latest evidence in epigenetics/epigenomics alterations by CUR in CRC and their potential contribution in the prevention of CRC.
Collapse
Affiliation(s)
- Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hsiao-Chen D Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Yue Guo
- Janssen Research & Development, Spring House, Pennsylvania
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - A N Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
7
|
Zhu MY, Raza MU, Zhan Y, Fan Y. Norepinephrine upregulates the expression of tyrosine hydroxylase and protects dopaminegic neurons against 6-hydrodopamine toxicity. Neurochem Int 2019; 131:104549. [PMID: 31539561 DOI: 10.1016/j.neuint.2019.104549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
As a classic neurotransmitter in the brain, norepinephrine (NE) also is an important modulator to other neuronal systems. Using primary cultures from rat ventral mesencephalon (VM) and dopaminergic cell line MN9D, the present study examined the neuroprotective effects of NE and its effects on the expression of tyrosine hydroxylase (TH). The results showed that NE protected both VM cultures and MN9D cells against 6-hydroxydopamine-caused apoptosis, with possible involvement of adrenal receptors. In addition, treatment with NE upregulated TH protein levels in dose- and time-dependent manner. Further experiments to investigate the potential mechanisms underlying this NE-induced upregulation of TH demonstrated a marked increase in protein levels of the brain-derived neurotrophic factor (BDNF) and the phosphorylated extracellular signal-regulated protein kinase 1 and 2 (pERK1/2) in VM cultures treated with NE. In MN9D cells, a significantly increase of TH and pERK1/2 protein levels were observed after their transfection with BDNF cDNA or exposure to BDNF peptides. Treatment of VM cultures with K252a, an antagonist of the tropomyosin-related kinase B, blocked the upregulatory effects of NE on TH, BDNF and pERK1/2. Administration of MEK1 & MEK2 inhibitors also reversed NE-induced upregulation of TH and pERK1/2. Moreover, ChIP assay showed that treatment with NE or BDNF increased H4 acetylation in the TH promoter. These results suggest that the neuroprotection and modulation of NE on dopaminergic neurons are mediated via BDNF and MAPK/ERK pathways, as well as through epigenetic histone modification, which may have implications for the improvement of therapeutic strategies for Parkinson's disease.
Collapse
Affiliation(s)
- Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Yanqiang Zhan
- Department of Neurology, Remin Hospital of the Wuhan University, Wuhan, China
| | - Yan Fan
- Department of Biochemistry, Nantong University College of Medicine, Nantong, China
| |
Collapse
|
8
|
Hassan FU, Rehman MSU, Khan MS, Ali MA, Javed A, Nawaz A, Yang C. Curcumin as an Alternative Epigenetic Modulator: Mechanism of Action and Potential Effects. Front Genet 2019; 10:514. [PMID: 31214247 PMCID: PMC6557992 DOI: 10.3389/fgene.2019.00514] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Curcumin (a polyphenolic compound in turmeric) is famous for its potent anti-inflammatory, anti-oxidant, and anti-cancer properties, and has a great potential to act as an epigenetic modulator. The epigenetic regulatory roles of curcumin include the inhibition of DNA methyltransferases (DNMTs), regulation of histone modifications via the regulation of histone acetyltransferases (HATs) and histone deacetylases (HDACs), regulation of microRNAs (miRNA), action as a DNA binding agent and interaction with transcription factors. These mechanisms are interconnected and play a vital role in tumor progression. The recent research has demonstrated the role of epigenetic inactivation of pivotal genes that regulate human pathologies such as cancers. Epigenetics helps to understand the mechanism of chemoprevention of cancer through different therapeutic agents. In this regard, dietary phytochemicals, such as curcumin, have emerged as a potential source to reverse epigenetic modifications and efficiently regulate the expression of genes and molecular targets that are involved in the promotion of tumorigenesis. The curcumin may also act as an epigenetic regulator in neurological disorders, inflammation, and diabetes. Moreover, curcumin can induce the modifications of histones (acetylation/deacetylation), which are among the most important epigenetic changes responsible for altered expression of genes leading to modulating the risks of cancers. Curcumin is an effective medicinal agent, as it regulates several important molecular signaling pathways that modulate survival, govern anti-oxidative properties like nuclear factor E2-related factor 2 (Nrf2) and inflammation pathways, e.g., nuclear factor kappa B (NF-κB). Curcumin is a potent proteasome inhibitor that increases p-53 level and induces apoptosis through caspase activation. Moreover, the disruption of 26S proteasome activity induced by curcumin through inhibiting DYRK2 in different cancerous cells resulting in the inhibition of cell proliferation opens up a new horizon for using curcumin as a potential preventive and treatment approach in proteasome-linked cancers. This review presents a brief summary of knowledge about the mechanism of epigenetic changes induced by curcumin and the potential effects of curcumin such as anti-oxidant activity, enhancement of wound healing, modulation of angiogenesis and its interaction with inflammatory cytokines. The development of curcumin as a clinical molecule for successful chemo-prevention and alternate therapeutic approach needs further mechanistic insights.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Saif-Ur Rehman
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Sajjad Khan
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Amjad Ali
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Aroosa Javed
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Nawaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
9
|
Li W, Yu X, Xia Z, Yu X, Xie L, Ma X, Zhou H, Liu L, Wang J, Yang Y, Liu H. Repression of Noxa by Bmi1 contributes to deguelin-induced apoptosis in non-small cell lung cancer cells. J Cell Mol Med 2018; 22:6213-6227. [PMID: 30255595 PMCID: PMC6237602 DOI: 10.1111/jcmm.13908] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/21/2018] [Indexed: 01/07/2023] Open
Abstract
Deguelin, a natural rotenoid isolated from several plants, has been reported to exert anti‐tumour effects in various cancers. However, the molecular mechanism of this regulation remains to be fully elucidated. Here, we found that deguelin inhibited the growth of non‐small cell lung cancer (NSCLC) cells both in vitro and in vivo by downregulation of Bmi1 expression. Our data showed that Bmi1 is highly expressed in human NSCLC tissues and cell lines. Knockdown of Bmi1 significantly suppressed NSCLC cell proliferation and colony formation. Deguelin treatment attenuated the binding activity of Bmi1 to the Noxa promoter, thus resulting in Noxa transcription and apoptosis activation. Knockdown of Bmi1 promoted Noxa expression and enhanced deguelin‐induced apoptosis, whereas overexpression of Bmi1 down‐regulated Noxa protein level and deguelin‐induced apoptosis. Overall, our study demonstrated a novel apoptotic mechanism for deguelin to exert its anti‐tumour activity in NSCLC cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinyou Yu
- Shangdong Lvdu Bio-Industry Co., Ltd., Binzhou, Shangdong, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Chidambaram A, Sundararaju K, Chidambaram RK, Subbiah R, Jayaraj JM, Muthusamy K, Vilwanathan R. Design, synthesis, and characterization of α, β-unsaturated carboxylic acid, and its urea based derivatives that explores novel epigenetic modulators in human non-small cell lung cancer A549 cell line. J Cell Physiol 2018; 233:5293-5309. [PMID: 29215703 DOI: 10.1002/jcp.26333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Histone deacetylase inhibitors (HDACi) are a small molecule chemotherapeutics that target the chromatin remodeling through the regulation of histone and non-histone proteins. These inhibitors directed against histone deacetylase (HDAC) enzymes have become an important therapeutic tool in oncology; consequently, scientific efforts have fortified the quest for newer and novel HDACi, which forces the design of structurally innovative HDACi. Various urea containing compounds exhibited admirable anticancer activity. On the basis of these observations, we design and synthesize HDAC specific blocker molecules which are specifically besieged towards class I, class II, and class IV HDAC isoforms to enhance the structural assortment for HDACi. Through docking experiments, we identified that the compounds were tightly bound to the isoforms of the HDAC enzymes at their receptor regions. These derivatives potently inhibited the different isoforms, namely, class I, II, and IV of HDACs, by hyperacetylation of lysine residues in A549 cells. The mechanism of apoptosis is evident, regulating tumor suppressor genes and proteins, thereby facilitating the activation of the death receptor pathway by the tumor necrosis factor (TNF) receptor. These derivative facilitated the induction of reactive oxygen species (ROS) generation leading to downregulation of Bcl2 , and upregulation of Bax expression, thereby dysregulating mitochondrial membrane potential (ΔΨm ) to release cytochrome c, and activation of intrinsic pathway. These compounds downregulate the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway to inhibit cell growth, proliferation, and metastasis through the matrix metalloproteinases (MMPs) MMP2 and MMP9 in A549 cells. These results suggest that our designed urea based derivatives act as epigenetic targeting agents through HDAC inhibition.
Collapse
Affiliation(s)
- Anusha Chidambaram
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kavya Sundararaju
- Department of Chemistry, Vel Tech University, Chennai, Tamil Nadu, India
| | | | - Rajasekaran Subbiah
- Department of Biotechnology, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - John M Jayaraj
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Ravikumar Vilwanathan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
11
|
Abstract
Abstract
Clinical practice and experimental studies have shown the necessity of sufficient quantities of folic acid intake for normal embryogenesis and fetal development in the prevention of neural tube defects (NTDs) and neurological malformations. So, women of childbearing age must be sure to have an adequate folate intake periconceptionally, prior to and during pregnancy. Folic acid fortification of all enriched cereal grain product flour has been implemented in many countries. Thus, hundreds of thousands of people have been exposed to an increased intake of folic acid. Folate plays an essential role in the biosynthesis of methionine. Methionine is the principal aminopropyl donor required for polyamine biosynthesis, which is up-regulated in actively growing cells, including cancer cells. Folates are important in RNA and DNA synthesis, DNA stability and integrity. Clinical and epidemiological evidence links folate deficiency to DNA damage and cancer. On the other hand, long-term folate oversupplementation leads to adverse toxic effects, resulting in the appearance of malignancy. Considering the relationship of polyamines and rapidly proliferating tissues (especially cancers), there is a need for better investigation of the relationship between the ingestion of high amounts of folic acid in food supplementation and polyamine metabolism, related to malignant processes in the human body.
Collapse
|
12
|
Di Tomaso MV, Gregoire E, Martínez-López W. Effects of Valproic Acid on Radiation-Induced Chromosomal Aberrations in Human Lymphocytes. Genome Integr 2017; 8:4. [PMID: 28250911 PMCID: PMC5320781 DOI: 10.4103/2041-9414.198909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One of the most widely employed histone deacetylases inhibitors in the clinic is the valproic acid (VA), proving to have a good tolerance and low side effects on human health. VA induces changes in chromatin structure making DNA more susceptible to damage induction and influence DNA repair efficiency. VA is also proposed as a radiosensitizing agent. To know if VA is suitable to sensitize human lymphocytes γ-irradiation in vitro, different types of chromosomal aberrations in the lymphocytes, either in the absence or presence of VA, were analyzed. For this purpose, blood samples from four healthy donors were exposed to γ-rays at a dose of 1.5 Gy and then treated with two different doses of VA (0.35 or 0.70 mM). Unstable and stable chromosomal aberrations were analyzed by means of fluorescence in situ hybridization. Human lymphocytes treated with VA alone did not show any increase in the frequency of chromosomal aberrations. However, a moderate degree of sensitization was observed, through the increase of chromosomal aberrations, when 0.35 mM VA was employed after γ-irradiation, whereas 0.70 mM VA did not modify chromosomal aberration frequencies. The lower number of chromosomal aberrations obtained when VA was employed at higher dose after γ-irradiation, could be related to the induction of a cell cycle arrest, a fact that should be taken into consideration when VA is employed in combination with physical or chemical agents.
Collapse
Affiliation(s)
- María Vittoria Di Tomaso
- Clemente Estable Biological Research Institute, Montevideo, Uruguay; Laboratoire de Dosimétrie Biologique, Institut de Radiobiologie et de Sureté Nucléaire, Fontenay-Aux-Roses, France; Department of Genetics, Clemente Estable Biological Research Institute, Montevideo, Uruguay
| | - Eric Gregoire
- Laboratoire de Dosimétrie Biologique, Institut de Radiobiologie et de Sureté Nucléaire, Fontenay-Aux-Roses, France
| | - Wilner Martínez-López
- Clemente Estable Biological Research Institute, Montevideo, Uruguay; Epigenetics and Genomic Instability Laboratory, Clemente Estable Biological Research Institute, Montevideo, Uruguay
| |
Collapse
|
13
|
Liu TT, Xu H, Gao WP, Zhang SX, Zhou XH, Tang J, Liu QN. SET and MYND Domain-Containing Protein 3 (SMYD3) Polymorphism as a Risk Factor for Susceptibility and Poor Prognosis in Ovarian Cancer. Med Sci Monit 2016; 22:5131-5140. [PMID: 28024138 PMCID: PMC5207010 DOI: 10.12659/msm.898095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/26/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND We investigated the relationship of the polymorphisms of SET and MYND domain-containing protein 3 (SMYD3) with risk and prognosis of ovarian cancer. MATERIAL AND METHODS The polymerase chain reaction (PCR) amplification method was applied to detect the polymorphisms of variable number of tandem repeats (VNTR) in the SMYD3 gene promoter region for 156 patients with ovarian cancer (case group) and 174 healthy people (control group). Quantitative reverse transcription polymerase chain reaction and Western blot were applied to detect SMYD3 mRNA and protein expressions. RESULTS The frequencies of VNTR genotype 3/3 and allele genotype 3 in the case group were significantly higher than those in the control group, while the frequency of genotype 2/2 in the control group was significantly higher than that in case group (all P<0.05). The proportion of poorly differentiated patients carrying VNTR genotype 3/3 was significantly higher than the proportion of poorly differentiated patients carrying VNTR genotype 2/2+2/3, while the proportion of patients carrying genotype 3/3 with International Federation of Gynecology and Obstetrics (FIGO) stage III-IV disease was significantly higher than the proportion of patients carrying genotype 2/2 +2/3 with FIGO stage III-IV disease (all P<0.05). SMYD3 mRNA and protein expressions were higher in the patients carrying genotype 3/3 than they were in the patients with the 2/2+2/3 genotype (all P<0.05). The 5-year survival rate for patients carrying VNTR genotype 3/3 was significantly lower than that of patients carrying genotype 2/2+2/3, and Cox regression analysis showed that VNTR genotype 3/3 was an independent risk factor for ovarian cancer prognosis (all P<0.05). CONCLUSIONS VNTR genotype 3/3 of the SMYD3 gene was associated with the risk of ovarian cancer. The polymorphism of VNTR genotype could be recognized as an indicator for the poor prognosis of patients with ovarian cancer.
Collapse
|
14
|
Huang R, Langdon SP, Tse M, Mullen P, Um IH, Faratian D, Harrison DJ. The role of HDAC2 in chromatin remodelling and response to chemotherapy in ovarian cancer. Oncotarget 2016; 7:4695-711. [PMID: 26683361 PMCID: PMC4826236 DOI: 10.18632/oncotarget.6618] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022] Open
Abstract
Chromatin undergoes structural changes in response to extracellular and environmental signals. We observed changes in nuclear morphology in cancer tissue biopsied after chemotherapy and hypothesised that these DNA damage-induced changes are mediated by histone deacetylases (HDACs). Nuclear morphological changes in cell lines (PE01 and PE04 models) and a xenograft model (OV1002) were measured in response to platinum chemotherapy by image analysis of nuclear texture. HDAC2 expression increased in PEO1 cells treated with cisplatin at 24h, which was accompanied by increased expression of heterochromatin protein 1 (HP1). HDAC2 and HP1 expression were also increased after carboplatin treatment in the OV1002 carboplatin-sensitive xenograft model but not in the insensitive HOX424 model. Expression of DNA damage response pathways (pBRCA1, γH2AX, pATM, pATR) showed time-dependent changes after cisplatin treatment. HDAC2 knockdown by siRNA reduced HP1 expression, induced DNA double strand breaks (DSB) measured by γH2AX, and interfered with the activation of DNA damage response induced by cisplatin. Furthermore, HDAC2 depletion affected γH2AX foci formation, cell cycle distribution, and apoptosis triggered by cisplatin, and was additive to the inhibitory effect of cisplatin in cell lines. By inhibiting expression of HDAC2, reversible alterations in chromatin patterns during cisplatin treatment were observed. These results demonstrate quantifiable alterations in nuclear morphology after chemotherapy, and implicate HDAC2 in higher order chromatin changes and cellular DNA damage responses in ovarian cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Rui Huang
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Matthew Tse
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Peter Mullen
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| | - Dana Faratian
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| |
Collapse
|
15
|
Singh R, Lillard JW, Singh S. Epigenetic Changes and Potential Targets in Pancreatic Cancer. EPIGENETIC ADVANCEMENTS IN CANCER 2016:27-63. [DOI: 10.1007/978-3-319-24951-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Lu W, Liu S, Li B, Xie Y, Adhiambo C, Yang Q, Ballard BR, Nakayama KI, Matusik RJ, Chen Z. SKP2 inactivation suppresses prostate tumorigenesis by mediating JARID1B ubiquitination. Oncotarget 2015; 6:771-88. [PMID: 25596733 PMCID: PMC4359254 DOI: 10.18632/oncotarget.2718] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022] Open
Abstract
Aberrant elevation of JARID1B and histone H3 lysine 4 trimethylation (H3K4me3) is frequently observed in many diseases including prostate cancer (PCa), yet the mechanisms on the regulation of JARID1B and H3K4me3 through epigenetic alterations still remain poorly understood. Here we report that Skp2 modulates JARID1B and H3K4me3 levels in vitro in cultured cells and in vivo in mouse models. We demonstrated that Skp2 inactivation decreased H3K4me3 levels, along with a reduction of cell growth, cell migration and malignant transformation of Pten/Trp53 double null MEFs, and further restrained prostate tumorigenesis of Pten/Trp53 mutant mice. Mechanistically, Skp2 decreased the K63-linked ubiquitination of JARID1B by E3 ubiquitin ligase TRAF6, thus decreasing JARID1B demethylase activity and in turn increasing H3K4me3. In agreement, Skp2 deficiency resulted in an increase of JARID1B ubiquitination and in turn a reduction of H3K4me3, and induced senescence through JARID1B accumulation in nucleoli of PCa cells and prostate tumors of mice. Furthermore, we showed that the elevations of Skp2 and H3K4me3 contributed to castration-resistant prostate cancer (CRPC) in mice, and were positively correlated in human PCa specimens. Taken together, our findings reveal a novel network of SKP2-JARID1B, and targeting SKP2 and JARID1B may be a potential strategy for PCa control.
Collapse
Affiliation(s)
- Wenfu Lu
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| | - Shenji Liu
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| | - Bo Li
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| | - Yingqiu Xie
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| | - Christine Adhiambo
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| | - Qing Yang
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| | - Billy R Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, TN 37208, USA
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Robert J Matusik
- Department of Urologic Surgery, Vanderbilt University School of Medicine, TN 37232, USA
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, TN 37208, USA
| |
Collapse
|
17
|
Huang J, Tufan T, Deng M, Wright G, Zhu MY. Corticotropin releasing factor up-regulates the expression and function of norepinephrine transporter in SK-N-BE (2) M17 cells. J Neurochem 2015. [PMID: 26212818 DOI: 10.1111/jnc.13268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Corticotropin releasing factor (CRF) has been implicated to act as a neurotransmitter or modulator in central nervous activation during stress. In this study, we examined the regulatory effect of CRF on the expression and function of the norepinephrine transporter (NET) in vitro. SK-N-BE (2) M17 cells were exposed to different concentrations of CRF for different periods. Results showed that exposure of cells to CRF significantly increased mRNA and protein levels of NET in a concentration- and time-dependent manner. The CRF-induced increase in NET expression was mimicked by agonists of either CRF receptor 1 or 2. Furthermore, similar CRF treatments induced a parallel increase in the uptake of [(3) H] norepinephrine. Both increased expression and function of NET caused by CRF were abolished by simultaneous administration of CRF receptor antagonists, indicating a mediation by CRF receptors. However, there was no additive effect for the combination of both receptor antagonists. Chromatin immunoprecipitation assays confirm an increased acetylation of histone H3 on the NET promoter following treatment with CRF. Taken together, this study demonstrates that CRF up-regulates the expression and function of NET in vitro. This regulation is mediated through CRF receptors and an epigenetic mechanism related to histone acetylation may be involved. This CRF-induced regulation on NET expression and function may play a role in development of stress-related depression and anxiety. This study demonstrated that corticotropin release factor (CRF) up-regulated the expression and function of norepinephrine transporter (NET) in a concentration- and time-dependent manner, through activation of CRF receptors and possible histone acetylation in NET promoter. The results indicate that their interaction may play an important role in stress-related physiological and pathological status.
Collapse
Affiliation(s)
- Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Turan Tufan
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Maoxian Deng
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Jiangsu Polytechnic College of A&F, Jurong, Jiangsu, China
| | - Gary Wright
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Departments of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
18
|
Garcia-Sanz P, Quintanilla A, Lafita MC, Moreno-Bueno G, García-Gutierrez L, Tabor V, Varela I, Shiio Y, Larsson LG, Portillo F, Leon J. Sin3b interacts with Myc and decreases Myc levels. J Biol Chem 2014; 289:22221-36. [PMID: 24951594 DOI: 10.1074/jbc.m113.538744] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myc expression is deregulated in many human cancers. A yeast two-hybrid screen has revealed that the transcriptional repressor Sin3b interacts with Myc protein. Endogenous Myc and Sin3b co-localize and interact in the nuclei of human and rat cells, as assessed by co-immunoprecipitation, immunofluorescence, and proximity ligation assay. The interaction is Max-independent. A conserved Myc region (amino acids 186-203) is required for the interaction with Sin3 proteins. Histone deacetylase 1 is recruited to Myc-Sin3b complexes, and its deacetylase activity is required for the effects of Sin3b on Myc. Myc and Sin3a/b co-occupied many sites on the chromatin of human leukemia cells, although the presence of Sin3 was not associated with gene down-regulation. In leukemia cells and fibroblasts, Sin3b silencing led to Myc up-regulation, whereas Sin3b overexpression induced Myc deacetylation and degradation. An analysis of Sin3b expression in breast tumors revealed an association between low Sin3b expression and disease progression. The data suggest that Sin3b decreases Myc protein levels upon Myc deacetylation. As Sin3b is also required for transcriptional repression by Mxd-Max complexes, our results suggest that, at least in some cell types, Sin3b limits Myc activity through two complementary activities: Mxd-dependent gene repression and reduction of Myc levels.
Collapse
Affiliation(s)
- Pablo Garcia-Sanz
- From the Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas, Universidad de Cantabria, Sociedad para el Desarrollo de Cantabria and the Departamento de Biología Molecular, Universidad de Cantabria, Santander 39011, Spain, the Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Facultad de Medicina, Universidad Autónoma de Madrid, 28046 Madrid, Spain, the Fundación M. D. Anderson Internacional, Madrid, Spain
| | - Andrea Quintanilla
- From the Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas, Universidad de Cantabria, Sociedad para el Desarrollo de Cantabria and the Departamento de Biología Molecular, Universidad de Cantabria, Santander 39011, Spain
| | - M Carmen Lafita
- From the Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas, Universidad de Cantabria, Sociedad para el Desarrollo de Cantabria and the Departamento de Biología Molecular, Universidad de Cantabria, Santander 39011, Spain
| | - Gema Moreno-Bueno
- the Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Facultad de Medicina, Universidad Autónoma de Madrid, 28046 Madrid, Spain, the Fundación M. D. Anderson Internacional, Madrid, Spain
| | - Lucia García-Gutierrez
- From the Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas, Universidad de Cantabria, Sociedad para el Desarrollo de Cantabria and the Departamento de Biología Molecular, Universidad de Cantabria, Santander 39011, Spain
| | - Vedrana Tabor
- the Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm SE-17177, Sweden, and
| | - Ignacio Varela
- From the Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas, Universidad de Cantabria, Sociedad para el Desarrollo de Cantabria and the Departamento de Biología Molecular, Universidad de Cantabria, Santander 39011, Spain
| | - Yuzuru Shiio
- the Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, Texas 78229-3900
| | - Lars-Gunnar Larsson
- the Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm SE-17177, Sweden, and
| | - Francisco Portillo
- the Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Facultad de Medicina, Universidad Autónoma de Madrid, 28046 Madrid, Spain,
| | - Javier Leon
- From the Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas, Universidad de Cantabria, Sociedad para el Desarrollo de Cantabria and the Departamento de Biología Molecular, Universidad de Cantabria, Santander 39011, Spain,
| |
Collapse
|
19
|
Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:71-87. [DOI: 10.1016/j.bbagrm.2013.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 12/31/2022]
|
20
|
DNA methylation pattern as important epigenetic criterion in cancer. GENETICS RESEARCH INTERNATIONAL 2013; 2013:317569. [PMID: 24455281 PMCID: PMC3884803 DOI: 10.1155/2013/317569] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/13/2013] [Accepted: 11/02/2013] [Indexed: 11/17/2022]
Abstract
Epigenetic modifications can affect the long-term gene expression without any change in nucleotide sequence of the DNA. Epigenetic processes intervene in the cell differentiation, chromatin structure, and activity of genes since the embryonic period. However, disorders in genes' epigenetic pattern can affect the mechanisms such as cell division, apoptosis, and response to the environmental stimuli which may lead to the incidence of different diseases and cancers. Since epigenetic changes may return to their natural state, they could be used as important targets in the treatment of cancer and similar malignancies. The aim of this review is to assess the epigenetic changes in normal and cancerous cells, the causative factors, and epigenetic therapies and treatments.
Collapse
|
21
|
EZH2, an epigenetic driver of prostate cancer. Protein Cell 2013; 4:331-41. [PMID: 23636686 DOI: 10.1007/s13238-013-2093-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/02/2012] [Indexed: 12/20/2022] Open
Abstract
The histone methyltransferase EZH2 has been in the limelight of the field of cancer epigenetics for a decade now since it was first discovered to exhibit an elevated expression in metastatic prostate cancer. It persists to attract much scientific attention due to its important role in the process of cancer development and its potential of being an effective therapeutic target. Thus here we review the dysregulation of EZH2 in prostate cancer, its function, upstream regulators, downstream effectors, and current status of EZH2-targeting approaches. This review therefore provides a comprehensive overview of EZH2 in the context of prostate cancer.
Collapse
|
22
|
Richardson PG, Mitsiades CS, Laubach JP, Hajek R, Spicka I, Dimopoulos MA, Moreau P, Siegel DS, Jagannath S, Anderson KC. Preclinical data and early clinical experience supporting the use of histone deacetylase inhibitors in multiple myeloma. Leuk Res 2013; 37:829-37. [PMID: 23582718 DOI: 10.1016/j.leukres.2013.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/06/2013] [Accepted: 03/10/2013] [Indexed: 10/27/2022]
Abstract
Histone deacetylases (HDACs) mediate protein acetylation states, which in turn regulate normal cellular processes often dysregulated in cancer. These observations led to the development of HDAC inhibitors that target tumors through multiple effects on protein acetylation. Clinical evidence demonstrates that treatment with HDAC inhibitors (such as vorinostat, panobinostat, and romidepsin) in combination with other antimyeloma agents (such as proteasome inhibitors and immunomodulatory drugs) has promising antitumor activity in relapsed/refractory multiple myeloma patients. This mini-review highlights the role of protein acetylation in the development of cancers and the rationale for the use of HDAC inhibitors in this patient population.
Collapse
|
23
|
Li KK, Luo C, Wang D, Jiang H, Zheng YG. Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 2012; 32:815-67. [PMID: 22777714 DOI: 10.1002/mrr.20228] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone methylation represents one of the most critical epigenetic events in DNA function regulation in eukaryotic organisms. Classic molecular biology and genetics tools provide significant knowledge about mechanisms and physiological roles of histone methyltransferases and demethylases in various cellular processes. In addition to this stream line, development and application of chemistry and chemistry-related techniques are increasingly involved in biological study, and offer information otherwise difficult to obtain by standard molecular biology methods. Herein, we review recent achievements and progress in developing and applying chemical and biochemical approaches in the study of histone methylation, including chromatin immunoprecipitation, chemical ligation, mass spectrometry, biochemical methylation and demethylation assays, and inhibitor development. These technological advances allow histone methylation to be studied from genome-wide level to molecular and atomic levels. With ChIP technology, information can be obtained about precise mapping of histone methylation patterns at specific promoters, genes, or other genomic regions. MS is particularly useful in detecting and analyzing methylation marks in histone and nonhistone protein substrates. Chemical approaches that permit site-specific incorporation of methyl groups into histone proteins greatly facilitate the investigation of biological impacts of methylation at individual modification sites. Discovery and design of selective organic inhibitors of histone methyltransferases and demethylases provide chemical probes to interrogate methylation-mediated cellular pathways. Overall, these chemistry-related technological advances have greatly improved our understanding of the biological functions of histone methylation in normal physiology and diseased states, and also are of great potential to translate basic epigenetics research into diagnostic and therapeutic applications in the clinic.
Collapse
Affiliation(s)
- Keqin Kathy Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
24
|
Franco R, Nicoletti G, Lombardi A, Di Domenico M, Botti G, Zito Marino F, Caraglia M. Current treatment of cutaneous squamous cancer and molecular strategies for its sensitization to new target-based drugs. Expert Opin Biol Ther 2012; 13:51-66. [PMID: 22998482 DOI: 10.1517/14712598.2012.725720] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Cutaneous squamous cell carcinoma (cSCC) is considered one of the most common skin malignancy with a relatively high risk of metastasis occurrence. AREAS COVERED We discuss the pathogenetic mechanisms of cSCC and the main therapeutic strategies available for the treatment of cSCC. EXPERT OPINION Chemotherapy and biological therapy with Interferon α (IFN-α) and cis retinoic acid are active but give limited results. Recently, strategies based on the use of molecularly target-based agents (MTA) have been used with promising results. Based on the available findings, we hypothesize that SCC cells can develop survival and resistance mechanisms to MTAs. The detection of these mechanisms could be useful in designing strategies able to overcome the latter and to potentiate the anticancer activity of MTAs. We describe the example of the EGF-dependent survival pathway elicited by IFN-α and the different strategies to abrogate this survival pathway. Other strategies to potentiate the antitumor activity of cytotoxic agents such as docetaxel or cisplatin are also discussed. Illuminating examples are the inhibition of multichaperone activity or the inactivation of the proteasome. In conclusion, a new dawn based upon the rationale use of MTAs is rising up in the treatment of advanced cSCC.
Collapse
Affiliation(s)
- Renato Franco
- Second University of Naples, Department of Biochemistry and Biophysics, Naples Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Orlikova B, Schnekenburger M, Zloh M, Golais F, Diederich M, Tasdemir D. Natural chalcones as dual inhibitors of HDACs and NF-κB. Oncol Rep 2012; 28:797-805. [PMID: 22710558 PMCID: PMC3583578 DOI: 10.3892/or.2012.1870] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/04/2012] [Indexed: 01/30/2023] Open
Abstract
Histone deacetylase enzymes (HDACs) are emerging as a promising biological target for cancer and inflammation. Using a fluorescence assay, we tested the in vitro HDAC inhibitory activity of twenty-one natural chalcones, a widespread group of natural products with well-known anti-inflammatory and antitumor effects. Since HDACs regulate the expression of the transcription factor NF-κB, we also evaluated the inhibitory potential of the compounds on NF-κB activation. Only four chalcones, isoliquiritigenin (no. 10), butein (no. 12), homobutein (no. 15) and the glycoside marein (no. 21) showed HDAC inhibitory activity with IC50 values of 60–190 μM, whereas a number of compounds inhibited TNFα-induced NF-κB activation with IC50 values in the range of 8–41 μM. Interestingly, three chalcones (nos. 10, 12 and 15) inhibited both TNFα-induced NF-κB activity and total HDAC activity of classes I, II and IV. Molecular modeling and docking studies were performed to shed light into dual activity and to draw structure-activity relationships among chalcones (nos. 1–21). To the best of our knowledge this is the first study that provides evidence for HDACs as potential drug targets for natural chalcones. The dual inhibitory potential of the selected chalcones on NF-κB and HDACs was investigated for the first time. This study demonstrates that chalcones can serve as lead compounds in the development of dual inhibitors against both targets in the treatment of inflammation and cancer.
Collapse
Affiliation(s)
- B Orlikova
- Laboratory of Molecular and Cellular Biology of Cancer, Cancer and Blood Research Foundation, Kirchberg Hospital, Luxembourg, Luxembourg
| | | | | | | | | | | |
Collapse
|
26
|
Pal-Bhadra M, Ramaiah MJ, Reddy TL, Krishnan A, Pushpavalli SNCVL, Babu KS, Tiwari AK, Rao JM, Yadav JS, Bhadra U. Plant HDAC inhibitor chrysin arrest cell growth and induce p21WAF1 by altering chromatin of STAT response element in A375 cells. BMC Cancer 2012; 12:180. [PMID: 22591439 PMCID: PMC3407000 DOI: 10.1186/1471-2407-12-180] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/16/2012] [Indexed: 12/30/2022] Open
Abstract
Background Chrysin and its analogues, belongs to flavonoid family and possess potential anti-tumour activity. The aim of this study is to determine the molecular mechanism by which chrysin controls cell growth and induce apoptosis in A375 cells. Methods Effect of chrysin and its analogues on cell viability and cell cycle analysis was determined by MTT assay and flowcytometry. A series of Western blots was performed to determine the effect of chrysin on important cell cycle regulatory proteins (Cdk2, cyclin D1, p53, p21, p27). The fluorimetry and calorimetry based assays was conducted for characterization of chrysin as HDAC inhibitor. The changes in histone tail modification such as acetylation and methylation was studied after chrysin treatment was estimated by immuno-fluorescence and western blot analysis. The expression of Bcl-xL, survivin and caspase-3 was estimated in chrysin treated cells. The effect of chrysin on p21 promoter activity was studied by luciferase and ChIP assays. Results Chrysin cause G1 cell cycle arrest and found to inhibit HDAC-2 and HDAC-8. Chrysin treated cells have shown increase in the levels of H3acK14, H4acK12, H4acK16 and decrease in H3me2K9 methylation. The p21 induction by chrysin treatment was found to be independent of p53 status. The chromatin remodelling at p21WAF1 promoter induces p21 activity, increased STAT-1 expression and epigenetic modifications that are responsible for ultimate cell cycle arrest and apoptosis. Conclusion Chrysin shows in vitro anti-cancer activity that is correlated with induction of histone hyperacetylation and possible recruitment of STAT-1, 3, 5 proteins at STAT (−692 to −684) region of p21 promoter. Our results also support an unexpected action of chrysin on the chromatin organization of p21WAF1 promoter through histone methylation and hyper-acetylation. It proposes previously unknown sequence specific chromatin modulations in the STAT responsive elements for regulating cell cycle progression negatively via the induction of the CDK inhibitor p21WAF1.
Collapse
Affiliation(s)
- Manika Pal-Bhadra
- Department of Chemical Biology, Indian Institute of Chemical Technology, Hyderabad, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liep J, Rabien A, Jung K. Feedback networks between microRNAs and epigenetic modifications in urological tumors. Epigenetics 2012; 7:315-25. [PMID: 22414795 DOI: 10.4161/epi.19464] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modifications and microRNAs are known to play key roles in human cancer. For urological tumors, changes in epigenetic modifications and aberrant microRNA profiles have been reported. However, the mechanisms of epigenetic and microRNA regulation are not entirely separable. Increasingly, recent research in these fields overlaps. There seems to be a complicated feedback interrelationship between epigenetic and microRNA regulation that must be highly controlled. Disruptions of this feedback network can have serious consequences for various biological processes and can result in cellular transformation. Investigation of the network between microRNAs and epigenetics could lead to a better understanding of the processes involved in development and progression of urological tumors. This understanding could provide new approaches for the development of novel individualized therapies, which are adjusted to the molecular pattern of a tumor. In this review, we present an overview of microRNA-epigenetic circuits acting in urological tumors.
Collapse
Affiliation(s)
- Julia Liep
- Department of Urology, University Hospital Charité, Berlin, Germany
| | | | | |
Collapse
|
28
|
Song JS, Kim YS, Kim DK, Park SI, Jang SJ. Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol Int 2012; 62:182-90. [DOI: 10.1111/j.1440-1827.2011.02776.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Abstract
Disruption of deoxyribonucleic acid (DNA) methylation patterns has emerged as one of the possible origins of leukemogenesis. Calcitonin (CALCA) gene is a hot-spot for gene hypermethylation in acute leukemias. This study aimed to systematically analyze the methylation status of CALCA gene in pediatric acute leukemia using methylation-specific polymerase chain reaction (MSP) and assess its value as a potential prognostic biomarker. The study population consisted of 70 children divided into; 35 acute myeloblastic leukemia (AML) and 35 acute lymphoblastic leukemia (ALL) patients. CALCA gene was found to be hypermethylated in 54.3% of AML and 65.7% of ALL patients. CALCA hypermethylation was neither correlated to any of the clinicopathologic characteristics of patients, standard prognostic factors nor response to induction therapy (P>0.05). Hypermethylated AML and ALL patients displayed poorer clinical outcome when compared with hypomethylated counterparts as evidenced by high relapse and mortality rates with the occurrence of early relapse (P<0.05). The estimated overall and disease-free survival rates at 2.5-years were significantly shorter for hypermethylated patients in both groups (P<0.01). Our results suggest that CALCA gene methylation pattern is an independent prognostic factor in pediatric acute leukemia that could characterize a group of patients with enhanced risk of relapse and death.
Collapse
|
30
|
Gadad SS, Rajan RE, Senapati P, Chatterjee S, Shandilya J, Dash PK, Ranga U, Kundu TK. HIV-1 infection induces acetylation of NPM1 that facilitates Tat localization and enhances viral transactivation. J Mol Biol 2011; 410:997-1007. [PMID: 21763502 DOI: 10.1016/j.jmb.2011.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 01/09/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) following integration hijacks host cell machineries where chromatinization of the viral genome regulates its latency, transcription, and replication. The cooperation among ATP-dependent chromatin remodeling factors, posttranslational modifying enzymes, and histone chaperones is well established during transcriptional activation in eukaryotes. However, the role of histone chaperones in transcription of the HIV promoter is poorly understood. Previous studies from our group have established the role of the human histone chaperone nucleophosmin (NPM1) in the acetylation-dependent chromatin transcription. NPM1 is known to interact with HIV-Tat. Here, we report that infection by HIV-1 induces the acetylation of histone chaperone NPM1. Acetylation of NPM1 was found to be critical for nuclear localization of Tat as well as Tat-mediated transcription alluding to the critical role for the host factor towards viral pathogenesis. Furthermore, knockdown experiments mediated by small interfering RNA identified the critical role played by the chaperone NPM1 in transcriptional activation of the integrated provirus. These results shed further insights into the possible role of histone chaperone NPM1 acetylation in viral gene transcription, which could be a potential therapeutic target.
Collapse
Affiliation(s)
- Shrikanth S Gadad
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Molecular markers in cutaneous squamous cell carcinoma. Int J Surg Oncol 2011; 2011:231475. [PMID: 22312497 PMCID: PMC3265276 DOI: 10.1155/2011/231475] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/04/2011] [Indexed: 02/08/2023] Open
Abstract
Nonmelanoma skin carcinoma (NMSC) is the most frequent cancer in the USA with over 1.3 million new diagnoses a year; however due to an underappreciation of its associated mortality and growing incidence and its ability to be highly aggressive, the molecular mechanism is not well delineated. Whereas the molecular profiles of melanoma have been well characterized, those for cutaneous squamous cell carcinoma (cSCC) have trailed behind. This importance of the new staging paradigm is linked to the ability currently to better clinically cluster similar biologic behavior in order to risk-stratify lesions and patients. In this paper we discuss the trends in NMSC and the etiologies for the subset of NMSC with the most mortality, cutaneous SCC, as well as where the field stands in the discovery of a molecular profile. The molecular markers are highlighted to demonstrate the recent advances in cSCC.
Collapse
|
32
|
Elizondo LI, Jafar-Nejad P, Clewing JM, Boerkoel CF. Gene clusters, molecular evolution and disease: a speculation. Curr Genomics 2011; 10:64-75. [PMID: 19721813 PMCID: PMC2699835 DOI: 10.2174/138920209787581271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/20/2008] [Accepted: 12/21/2008] [Indexed: 01/10/2023] Open
Abstract
Traditionally eukaryotic genes are considered independently expressed under the control of their promoters and cis-regulatory domains. However, recent studies in worms, flies, mice and humans have shown that genes co-habiting a chromatin domain or “genomic neighborhood” are frequently co-expressed. Often these co-expressed genes neither constitute part of an operon nor function within the same biological pathway. The mechanisms underlying the partitioning of the genome into transcriptional genomic neighborhoods are poorly defined. However, cross-species analyses find that the linkage among the co-expressed genes of these clusters is significantly conserved and that the expression patterns of genes within clusters have coevolved with the clusters. Such selection could be mediated by chromatin interactions with the nuclear matrix and long-range remodeling of chromatin structure. In the context of human disease, we propose that dysregulation of gene expression across genomic neighborhoods will cause highly pleiotropic diseases. Candidate genomic neighborhood diseases include the nuclear laminopathies, chromosomal translocations and genomic instability disorders, imprinting disorders of errant insulator function, syndromes from impaired cohesin complex assembly, as well as diseases of global covalent histone modifications and DNA methylation. The alteration of transcriptional genomic neighborhoods provides an exciting and novel model for studying epigenetic alterations as quantitative traits in complex common human diseases.
Collapse
|
33
|
Abstract
Runt-related (RUNX) family proteins function as context-dependent transcription factors during developmental processes such as hematopoiesis, neurogenesis, and osteogenesis. RUNX3 is involved in a variety of physiological processes including neurogenesis, thymopoiesis, and dendritic cell maturation. A large amount of information indicates that RUNX3 may be a tumor suppressor. Recent data suggest that the molecular mechanism responsible for RUNX3 deficiency in numerous cancers is a primarily epigenetic silencing. The present review focuses on the regulation of RUNX3 gene expression by histone modification, emphasizing histone methylation at the RUNX3 promoter and inactivation of protein itself. Inactivation of the promoter and protein can be the results of various chemical modifications, including methylation by histone methyltransferase. Inactivation of RUNX3 may contribute to the tumor initiation, progression and pathogenesis in specific microenvironmental contexts. Finally, this review describes the reactivation of RUNX3 by epigenetic regulatory agents.
Collapse
Affiliation(s)
- You Mie Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Buk-gu, Daegu, Korea.
| |
Collapse
|
34
|
Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB. Epigenetic changes induced by curcumin and other natural compounds. GENES AND NUTRITION 2011; 6:93-108. [PMID: 21516481 DOI: 10.1007/s12263-011-0222-1] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/05/2011] [Indexed: 12/12/2022]
Abstract
Epigenetic regulation, which includes changes in DNA methylation, histone modifications, and alteration in microRNA (miRNA) expression without any change in the DNA sequence, constitutes an important mechanism by which dietary components can selectively activate or inactivate gene expression. Curcumin (diferuloylmethane), a component of the golden spice Curcuma longa, commonly known as turmeric, has recently been determined to induce epigenetic changes. This review summarizes current knowledge about the effect of curcumin on the regulation of histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and miRNAs. How these changes lead to modulation of gene expression is also discussed. We also discuss other nutraceuticals which exhibit similar properties. The development of curcumin for clinical use as a regulator of epigenetic changes, however, needs further investigation to determine novel and effective chemopreventive strategies, either alone or in combination with other anticancer agents, for improving cancer treatment.
Collapse
Affiliation(s)
- Simone Reuter
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
35
|
ATM mediated phosphorylation of CHD4 contributes to genome maintenance. Genome Integr 2011; 2:1. [PMID: 21219611 PMCID: PMC3035021 DOI: 10.1186/2041-9414-2-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 01/10/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In order to maintain cellular viability and genetic integrity cells must respond quickly following the induction of cytotoxic double strand DNA breaks (DSB). This response requires a number of processes including stabilisation of the DSB, signalling of the break and repair. It is becoming increasingly apparent that one key step in this process is chromatin remodelling. RESULTS Here we describe the chromodomain helicase DNA-binding protein (CHD4) as a target of ATM kinase. We show that ionising radiation (IR)-induced phosphorylation of CHD4 affects its intranuclear organization resulting in increased chromatin binding/retention. We also show assembly of phosphorylated CHD4 foci at sites of DNA damage, which might be required to fulfil its function in the regulation of DNA repair. Consistent with this, cells overexpressing a phospho-mutant version of CHD4 that cannot be phosphorylated by ATM fail to show enhanced chromatin retention after DSBs and display high rates of spontaneous damage. CONCLUSION These results provide insight into how CHD4 phosphorylation might be required to remodel chromatin around DNA breaks allowing efficient DNA repair to occur.
Collapse
|
36
|
Do SI, Lim SJ, Kim YW, Olvi LG, Santini-Araujo E, Park YK. The Global Histone Modification Patterns of Osteosarcoma. KOREAN JOURNAL OF PATHOLOGY 2011. [DOI: 10.4132/koreanjpathol.2011.45.2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sung-Im Do
- Department of Pathology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Sung-Jig Lim
- Department of Pathology, East-West Neo Medical Center, Kyung Hee University College of Medicine, Seoul, Korea
| | - Youn-Wha Kim
- Department of Pathology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Liliana G. Olvi
- Laboratory of Orthopaedic Pathology, School of Medicine University of Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Santini-Araujo
- Laboratory of Orthopaedic Pathology, School of Medicine University of Buenos Aires, Buenos Aires, Argentina
- Department of Pathology, School of Medicine University of Buenos Aires, Buenos Aires, Argentina
| | - Yong-Koo Park
- Department of Pathology, Kyung Hee University College of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Epigenetic regulation of cell life and death decisions and deregulation in cancer. Essays Biochem 2010; 48:121-46. [PMID: 20822491 DOI: 10.1042/bse0480121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For every cell, there is a time to live and a time to die. It is apparent that cell life and death decisions are taken by individual cells based on their interpretation of physiological or non-physiological stimuli, or their own self-assessment of internal damage or changes in their environment. Apoptosis or programmed cell death is a key regulator of physiological growth control and regulation of tissue homoeostasis. One of the most important advances in cancer research in recent years is the recognition that cell death, mostly by apoptosis, is crucially involved in the regulation of tumour formation and also critically determines treatment response. The initiation and progression of cancer, traditionally seen as a genetic disease, is now realized to involve epigenetic abnormalities along with genetic alterations. The study of epigenetic mechanisms in cancer, such as DNA methylation, histone modifications and microRNA expression, has revealed a plethora of events that contribute to the neoplastic phenotype through stable changes in the expression of genes critical to cell death pathways. A better understanding of the epigenetic molecular events that regulate apoptosis, together with the reversible nature of epigenetic aberrations, should contribute to the emergence of the promising field of epigenetic therapy.
Collapse
|
38
|
Vallot C, Stransky N, Bernard-Pierrot I, Hérault A, Zucman-Rossi J, Chapeaublanc E, Vordos D, Laplanche A, Benhamou S, Lebret T, Southgate J, Allory Y, Radvanyi F. A novel epigenetic phenotype associated with the most aggressive pathway of bladder tumor progression. J Natl Cancer Inst 2010; 103:47-60. [PMID: 21173382 PMCID: PMC3014990 DOI: 10.1093/jnci/djq470] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Epigenetic silencing can extend to whole chromosomal regions in cancer. There have been few genome-wide studies exploring its involvement in tumorigenesis. Methods We searched for chromosomal regions affected by epigenetic silencing in cancer by using Affymetrix microarrays and real-time quantitative polymerase chain reaction to analyze RNA from 57 bladder tumors compared with normal urothelium. Epigenetic silencing was verified by gene re-expression following treatment of bladder cell lines with 5-aza-deoxycytidine, a DNA demethylating agent, and trichostatin A, a histone deacetylase inhibitor. DNA methylation was studied by bisulfite sequencing and histone methylation and acetylation by chromatin immunoprecipitation. Clustering was used to distinguish tumors with multiple regional epigenetic silencing (MRES) from those without and to analyze the association of this phenotype with histopathologic and molecular types of bladder cancer. The results were confirmed with a second panel of 40 tumor samples and extended in vitro with seven bladder cancer cell lines. All statistical tests were two-sided. Results We identified seven chromosomal regions of contiguous genes that were silenced by an epigenetic mechanism. Epigenetic silencing was not associated with DNA methylation but was associated with histone H3K9 and H3K27 methylation and histone H3K9 hypoacetylation. All seven regions were concordantly silenced in a subgroup of 26 tumors, defining an MRES phenotype. MRES tumors exhibited a carcinoma in situ–associated gene expression signature (25 of 26 MRES tumors vs 0 of 31 non-MRES tumors, P < 10−14), rarely carried FGFR3 mutations (one of 26 vs 22 of 31 non-MRES tumors, P < 10−6), and contained 25 of 33 (76%) of the muscle-invasive tumors. Cell lines derived from aggressive bladder tumors presented epigenetic silencing of the same regions. Conclusions We have identified an MRES phenotype characterized by the concomitant epigenetic silencing of several chromosomal regions, which, in bladder cancer, is specifically associated with the carcinoma in situ gene expression signature.
Collapse
Affiliation(s)
- Céline Vallot
- UMR 144 CNRS/IC, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li KK, Luo C, Wang D, Jiang H, Zheng YG. Chemical and biochemical approaches in the study of histone methylation and demethylation. Med Res Rev 2010. [DOI: 10.1002/med.20228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Bachmann PS, Piazza RG, Janes ME, Wong NC, Davies C, Mogavero A, Bhadri VA, Szymanska B, Geninson G, Magistroni V, Cazzaniga G, Biondi A, Miranda-Saavedra D, Göttgens B, Saffery R, Craig JM, Marshall GM, Gambacorti-Passerini C, Pimanda JE, Lock RB. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood 2010; 116:3013-22. [PMID: 20647567 DOI: 10.1182/blood-2010-05-284968] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids play a critical role in the therapy of lymphoid malignancies, including pediatric acute lymphoblastic leukemia (ALL), although the mechanisms underlying cellular resistance remain unclear. We report glucocorticoid resistance attributable to epigenetic silencing of the BIM gene in pediatric ALL biopsies and xenografts established in immune-deficient mice from direct patient explants as well as a therapeutic approach to reverse resistance in vivo. Glucocorticoid resistance in ALL xenografts was consistently associated with failure to up-regulate BIM expression after dexamethasone exposure despite confirmation of a functional glucocorticoid receptor. Although a comprehensive assessment of BIM CpG island methylation revealed no consistent changes, glucocorticoid resistance in xenografts and patient biopsies significantly correlated with decreased histone H3 acetylation. Moreover, the histone deacetylase inhibitor vorinostat relieved BIM repression and exerted synergistic antileukemic efficacy with dexamethasone in vitro and in vivo. These findings provide a novel therapeutic strategy to reverse glucocorticoid resistance and improve outcome for high-risk pediatric ALL.
Collapse
Affiliation(s)
- Petra S Bachmann
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dalvai M, Bystricky K. The role of histone modifications and variants in regulating gene expression in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15:19-33. [PMID: 20131086 DOI: 10.1007/s10911-010-9167-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/08/2010] [Indexed: 02/03/2023] Open
Abstract
The role of epigenetic phenomena in cancer biology is increasingly being recognized. Here we focus on the mechanisms and enzymes involved in regulating histone methylation and acetylation, and the modulation of histone variant expression and deposition. Implications of these epigenetic marks for tumor development, progression and invasiveness are discussed with a particular emphasis on breast cancer progression.
Collapse
Affiliation(s)
- Mathieu Dalvai
- Université de Toulouse, LBME, 118 route de Narbonne, 31062, Toulouse, France.
| | | |
Collapse
|
42
|
Luo XG, Zou JN, Wang SZ, Zhang TC, Xi T. Novobiocin decreases SMYD3 expression and inhibits the migration of MDA-MB-231 human breast cancer cells. IUBMB Life 2010; 62:194-199. [PMID: 20039369 DOI: 10.1002/iub.288] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
SET and MYND domain-containing protein 3 (SMYD3) is a histone methyltransferase that plays an important role in transcriptional regulation in human carcinogenesis, and heat-shock protein HSP90A has been shown to increase the activity of SMYD3. We previously reported that overexpression of SMYD3 stimulated the migration of cells. In this study, we further found that novobiocin, a HSP90 inhibitor, could decrease the expression of SMYD3 and dose dependently inhibit the proliferation and migration of MDA-MB-231 human breast cancer cells. As a control, the short hairpin RNA (shRNA) targeting SMYD3 gene also showed similar effects with novobicin. This study is the first to show that novobiocin can inhibit the migration of breast cancer cells and such event may involve the downregulation of SMYD3. These findings might throw light on the development of novel therapeutic approaches to human cancers, and lend further understanding to the potential role of SMYD3 in human carcinogenesis.
Collapse
|
43
|
Application of histone modification in the risk prediction of the biochemical recurrence after radical prostatectomy. Asian J Androl 2009; 12:171-9. [PMID: 19935671 DOI: 10.1038/aja.2009.81] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The role of histone modifications in the development and progression of cancer remains unclear. Here, we gave an investigation of the relationship between the various histone modifications and the risk prediction of the biochemical recurrence after radical prostatectomy (RP). Histone 3 lysine 4 dimethylation (H3K4diMe), trimethylation (H3K4triMe), lysine 36 trimethylation (H3K36triMe), histone 4 lysine 20 trimethylation (H4K20triMe) and acetylation of histome 3 lysine 9 (H3K9Ac) were evaluated using immnuohistochemistry coupled with the tissue microarray technique in 169 primary prostatectomy tissue samples. Recursive partitioning analysis (RPA) was used to analyze the data. Through global histone modification analysis in patients who underwent radical prostatectomy, we found that H3K4triMe can predict the risk of the biochemical recurrence for the low grade prostate cancer (Gleason score < or = 6) after RP. In the case of high grade prostate cancer (Gleason score > or = 7), H4K20triMe and H3K9Ac accompanying with the pre-operation prostate-specific antigen (PSA) level could also predict the risk of the biochemical recurrence after RP. In combination with the Gleason score and pre-operation PSA level, the acetylation and methylation of histones H3 and H4 can predict the biochemical recurrence of the prostate cancer following RP.
Collapse
|
44
|
Guda P, Chittur SV, Guda C. Comparative analysis of protein-protein interactions in cancer-associated genes. GENOMICS PROTEOMICS & BIOINFORMATICS 2009; 7:25-36. [PMID: 19591789 PMCID: PMC4551074 DOI: 10.1016/s1672-0229(08)60030-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein-protein interactions (PPIs) have been widely studied to understand the biological processes or molecular functions associated with different disease systems like cancer. While focused studies on individual cancers have generated valuable information, global and comparative analysis of datasets from different cancer types has not been done. In this work, we carried out bioinformatic analysis of PPIs corresponding to differentially expressed genes from microarrays of various tumor tissues (belonging to bladder, colon, kidney and thyroid cancers) and compared their associated biological processes and molecular functions (based on Gene Ontology terms). We identified a set of processes or functions that are common to all these cancers, as well as those that are specific to only one or partial cancer types. Similarly, protein interaction networks in nucleic acid metabolism were compared to identify the common/specific clusters of proteins across different cancer types. Our results provide a basis for further experimental investigations to study protein interaction networks associated with cancer. The methodology developed in this work can also be applied to study similar disease systems.
Collapse
Affiliation(s)
- Purnima Guda
- GenNYsis Center for Excellence in Cancer Genomics and Department of Epidemiology & Biostatistics, State University of New York at Albany, Rensselaer, NY 12144-3456, USA
| | - Sridar V. Chittur
- Center for Functional Genomics and Department of Biomedical Sciences, State University of New York at Albany, Rensselaer, NY 12144-3456, USA
| | - Chittibabu Guda
- GenNYsis Center for Excellence in Cancer Genomics and Department of Epidemiology & Biostatistics, State University of New York at Albany, Rensselaer, NY 12144-3456, USA
- Corresponding author.
| |
Collapse
|
45
|
Magerl C, Ellinger J, Braunschweig T, Kremmer E, Koch LK, Höller T, Büttner R, Lüscher B, Gütgemann I. H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Hum Pathol 2009; 41:181-9. [PMID: 19896696 DOI: 10.1016/j.humpath.2009.08.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 07/07/2009] [Accepted: 08/04/2009] [Indexed: 12/29/2022]
Abstract
Methylation of core histones regulates chromatin structure and gene expression. Recent studies have demonstrated that these methylation patterns have prognostic value for some tumors. Therefore, we investigated dimethylation of histone H3 at lysine 4 (H3K4diMe) and H3K4 methylating (Ash2 complex) and demethylating enzymes (LSD1) in carcinomas of the hepatic and gastrointestinal tract. High levels of H3K4diMe were rarely observed in 15.7% of hepatocellular carcinoma (8/51) unlike other carcinomas including, in ascending order, cholangiocellular carcinoma/adenocarcinoma of the extrahepatic biliary tract, gastric carcinoma, pancreatic ductal adenocarcinoma, and neuroendocrine carcinoma (P < .001). Ash2 was expressed in 84.4% of hepatocellular carcinomas (38/45) and correlated directly with H3K4diMe modification (correlation coefficient r = 0.53) and LSD1 expression (r = 0.35). In contrast to other carcinomas, 65.9% (29/44) of hepatocellular carcinomas analyzed showed no LSD1 expression (P < .001). Interestingly, hepatocellular carcinomas without LSD1 expression appeared to be frequently Ash2 and H3K4diMe weak or negative (P = .004). In summary, high H3K4diMe expression is rare in hepatocellular carcinoma compared with other carcinomas (negative predictive value 92.3%), which may aid in the differential diagnosis. Lack of H3K4diMe is possibly due to complex epigenetic regulation involving Ash2 and LSD1.
Collapse
Affiliation(s)
- Christian Magerl
- Department of Pathology, University of Bonn, Sigmund-Freud-Strabetae 25, 53127 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mazin AL. Suicidal function of DNA methylation in age-related genome disintegration. Ageing Res Rev 2009; 8:314-27. [PMID: 19464391 DOI: 10.1016/j.arr.2009.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/17/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
This article is dedicated to the 60th anniversary of 5-methylcytosine discovery in DNA. Cytosine methylation can affect genetic and epigenetic processes, works as a part of the genome-defense system and has mutagenic activity; however, the biological functions of this enzymatic modification are not well understood. This review will put forward the hypothesis that the host-defense role of DNA methylation in silencing and mutational destroying of retroviruses and other intragenomic parasites was extended during evolution to most host genes that have to be inactivated in differentiated somatic cells, where it acquired a new function in age-related self-destruction of the genome. The proposed model considers DNA methylation as the generator of 5mC>T transitions that induce 40-70% of all spontaneous somatic mutations of the multiple classes at CpG and CpNpG sites and flanking nucleotides in the p53, FIX, hprt, gpt human genes and some transgenes. The accumulation of 5mC-dependent mutations explains: global changes in the structure of the vertebrate genome throughout evolution; the loss of most 5mC from the DNA of various species over their lifespan and the Hayflick limit of normal cells; the polymorphism of methylation sites, including asymmetric mCpNpN sites; cyclical changes of methylation and demethylation in genes. The suicidal function of methylation may be a special genetic mechanism for increasing DNA damage and the programmed genome disintegration responsible for cell apoptosis and organism aging and death.
Collapse
|
47
|
Lin HJL, Zuo T, Chao JR, Peng Z, Asamoto LK, Yamashita SS, Huang THM. Seed in soil, with an epigenetic view. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:920-4. [PMID: 19162126 PMCID: PMC2845923 DOI: 10.1016/j.bbagen.2008.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/17/2022]
Abstract
It is becoming increasingly evident that discrete genetic alterations in neoplastic cells alone cannot explain multistep carcinogenesis whereby tumor cells are able to express diverse phenotypes during the complex phases of tumor development and progression. The epigenetic model posits that the host microenvironment exerts an initial, inhibitory constraint on tumor growth that is followed by acceleration of tumor progression through complex cell-matrix interactions. This review emphasizes the epigenetic aspects of breast cancer development in light of such interactions between epithelial cells ("seed") and the tumor microenvironment ("soil"). Our recent research findings suggest that epigenetic perturbations induced by the tumor microenvironment may play a causal role in promoting breast cancer development. It is believed that abrogation of these initiators could offer a promising therapeutic strategy.
Collapse
Affiliation(s)
- Huey-Jen L. Lin
- Division of Medical Technology, School of Allied Medical Professions, the Ohio State University, Columbus, Ohio, USA
- Human Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, USA
| | - Tao Zuo
- Division of Medical Technology, School of Allied Medical Professions, the Ohio State University, Columbus, Ohio, USA
- Human Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, USA
| | - Jennifer R. Chao
- Human Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Sciences, the Ohio State University, Columbus, Ohio, USA
| | - Zhengang Peng
- Division of Medical Technology, School of Allied Medical Professions, the Ohio State University, Columbus, Ohio, USA
- Human Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, USA
| | - Lisa K. Asamoto
- Human Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, USA
- Department of Biology, the Ohio State University, Columbus, Ohio, USA
| | - Sonya S. Yamashita
- Human Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, the Ohio State University, Columbus, Ohio, USA
| | - Tim H.-M. Huang
- Human Cancer Genetics Program, Comprehensive Cancer Center, the Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
48
|
Nelson WG, De Marzo AM, Yegnasubramanian S. Epigenetic alterations in human prostate cancers. Endocrinology 2009; 150:3991-4002. [PMID: 19520778 PMCID: PMC2736081 DOI: 10.1210/en.2009-0573] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/04/2009] [Indexed: 02/08/2023]
Abstract
Human prostate cancer cells carry a myriad of genome defects, including both genetic and epigenetic alterations. These changes, which can be maintained through mitosis, generate malignant phenotypes capable of selective growth, survival, invasion, and metastasis. During prostatic carcinogenesis, epigenetic changes arise earlier than genetic defects, linking the appearance of epigenetic alterations in some way to disease etiology. The most common genetic defect thus far described, leading to fusion transcripts between the androgen-regulated gene TMPRSS2 and genes from the ETS family of transcription factors, likely endows prostate cancer cells with the ability to co-opt androgen signaling, the major prostate differentiation pathway, to support the malignant phenotype. Whether epigenetic changes promote the appearance of TMPRSS2-ETS family fusion transcripts or collaborate with fusion transcript expression in the pathogenesis of prostate cancer has not been established. However, a growing list of epigenetic alterations has provided new opportunities for clinical tests that might aid in prostate cancer screening, detection, diagnosis, staging, and risk stratification. The epigenetic changes appear to be more attractive than genetic changes as prostate cancer biomarkers because epigenetic alterations are present in a greater fraction of prostate cancer cases than any of the known genetic defects. In addition, an emerging generation of assay strategies for detection of specific DNA sequences carrying (5-me)C, the major epigenetic genome mark, has pushed somatic epigenetic alterations to the forefront of molecular biomarker assay development for cancer. Finally, a growing portfolio of epigenetic drugs, capable of reversing the phenotypic consequences of somatic epigenetic defects, has entered clinical trials for prostate cancer in the search for a new rational therapy for the disease.
Collapse
Affiliation(s)
- William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231-1000, USA.
| | | | | |
Collapse
|
49
|
Liu Z, Liu Y, Wang H, Ge X, Jin Q, Ding G, Hu Y, Zhou B, Chen Z, Ge X, Zhang B, Man X, Zhai Q. Patt1, a novel protein acetyltransferase that is highly expressed in liver and downregulated in hepatocellular carcinoma, enhances apoptosis of hepatoma cells. Int J Biochem Cell Biol 2009; 41:2528-37. [PMID: 19695338 DOI: 10.1016/j.biocel.2009.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/02/2009] [Accepted: 08/11/2009] [Indexed: 01/02/2023]
Abstract
Protein acetylation is increasingly recognized as an important post-translational modification. Although a lot of protein acetyltransferases have been identified, a few putative acetyltransferases are yet to be studied. In this study, we identified a novel protein acetyltransferase, Patt1, which belongs to GNAT family. Patt1 exhibited histone acetyltransferase activity and auto-acetylation activity. Deletion and mutation analysis of the predicted acetyltransferase domain in Patt1 showed that the conserved Glu139 was an important residue for its protein acetyltransferase activity. Furthermore, we found that Patt1 was highly expressed in liver and significantly downregulated in hepatocellular carcinoma tissues. In addition, we showed that overexpression of Patt1 enhanced the apoptosis of hepatoma cells dependent on its acetyltransferase activity, whereas knockdown of Patt1 significantly protected Chang liver cells from apoptosis. These data suggest that Patt1 might be involved in the development of hepatocellular carcinoma, and could be served as a potential therapy target for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhen Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zou JN, Wang SZ, Yang JS, Luo XG, Xie JH, Xi T. Knockdown of SMYD3 by RNA interference down-regulates c-Met expression and inhibits cells migration and invasion induced by HGF. Cancer Lett 2009; 280:78-85. [PMID: 19321255 DOI: 10.1016/j.canlet.2009.02.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/21/2009] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
We previously reported that over-expression of SMYD3, a histone H3-K4 specific di- and tri-methyltransferase, plays a key role in cell viability, adhesion, migration and invasion. In this study, we investigated the mechanisms underlying these phenomena and found that knocking down SMYD3 expression in tumor cells significantly reduced the biological function of HGF and inhibited carcinoma cells migration and invasion. Due to the fact that the proto-oncogene c-Met encodes the high-affinity receptor for HGF, and the HGF-c-Met signaling plays a critical role in the tumor genesis, we further identified the partial correlation between SMYD3 and c-Met. The results showed that high expression of c-Met accompanied with over-expression of SMYD3. Silencing SMYD3 expression in tumor cells by specific shRNAs down-regulated c-Met gene transcription, while over-expressing SMYD3 induced c-Met transcription. Moreover, we demonstrated here that two SMYD3 binding sites within the c-Met core promoter region were significant in the transactivation of c-Met. The present findings provide significant insights into the epigenetic regulatory mechanisms of oncogene c-Met expression, and develop the strategies that may inhibit the progression of cancer migration and invasion.
Collapse
Affiliation(s)
- Jia-Ning Zou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | | | |
Collapse
|