1
|
Barade A, Lakshmi KM, Korula A, Abubacker FN, Kulkarni UP, Abraham A, Mathews V, George B, Edison ES. Comparison of telomere length in patients with bone marrow failure syndromes and healthy controls. Eur J Haematol 2024; 112:810-818. [PMID: 38213291 DOI: 10.1111/ejh.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
INTRODUCTION During normal aging, telomeric DNA is gradually lost in dividing somatic cells, and critically short telomeres lead to replicative senescence, apoptosis, or chromosomal instability. We studied telomere length in bone marrow failure syndromes (BMFS) compared to normal healthy population. METHODS Peripheral blood was collected from the participants, and genomic DNA was extracted. Relative telomere length was measured using a quantitative polymerase chain reaction. Statistical analysis was performed using SPSS and GraphPad Prism 8.2 software. RESULTS The median age of normal Indian population was 31 (0-60) years. As expected, telomere length (TL) showed a decline with age and no difference in TL between males and females. The median age of 650 patients with aplastic anemia (AA) was 30 (1-60) years. TL was significantly shorter in patients with AA compared to healthy controls (p < .001). In FA and MDS patients, TL was significantly shorter than age-matched healthy controls (p = .028; p < .001), respectively. There was no difference between the median TL in age-matched AA and FA patients (p = .727). However, patients with MDS had shorter TL than age-matched AA (p = .031). CONCLUSION TL in BMF syndrome patients was significantly shorter than age-matched healthy controls.
Collapse
Affiliation(s)
- Aruna Barade
- Department of Haematology, Christian Medical College, Vellore, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Kavitha M Lakshmi
- Department of Haematology, Christian Medical College, Vellore, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, India
| | | | - Uday P Kulkarni
- Department of Haematology, Christian Medical College, Vellore, India
| | - Aby Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | - Eunice S Edison
- Department of Haematology, Christian Medical College, Vellore, India
| |
Collapse
|
2
|
Moustakli E, Zikopoulos A, Skentou C, Dafopoulos S, Stavros S, Dafopoulos K, Drakakis P, Georgiou I, Zachariou A. Association of Obesity with Telomere Length in Human Sperm. J Clin Med 2024; 13:2150. [PMID: 38610915 PMCID: PMC11012429 DOI: 10.3390/jcm13072150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Telomere attrition and mitochondrial dysfunction are two fundamental aspects of aging. Calorie restriction (CR) is the best strategy to postpone aging since it can enhance telomere attrition, boost antioxidant capacity, and lower the generation of reactive oxygen species (ROS). Since ROS is produced by mitochondria and can readily travel to cell nuclei, it is thought to be a crucial molecule for information transfer between mitochondria and cell nuclei. Important variables that affect the quality and functionality of sperm and may affect male reproductive health and fertility include telomere length, mitochondrial content, and the ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA). Telomere damage results from mitochondrial failure, whereas nuclear DNA remains unaffected. This research aims to investigate potential associations between these three variables and how they might relate to body mass index. Methods: Data were collected from 82 men who underwent IVF/ICSI at the University Hospital of Ioannina's IVF Unit in the Obstetrics and Gynecology Department. Evaluations included sperm morphology, sperm count, sperm motility, and participant history. To address this, male participants who were categorized into three body mass index (ΒΜΙ) groups-normal, overweight, and obese-had their sperm samples tested. Results: For both the normal and overweight groups, our results show a negative connection between relative telomere length and ΒΜI. As an illustration of a potential connection between mitochondrial health and telomere maintenance, a positive correlation was found for the obese group. Only the obese group's results were statistically significant (p < 0.05). More evidence that longer telomeres are associated with lower mitochondrial content can be found in the negative connection between telomere length and mitochondrial content in both the normal and overweight groups. However, the obese group showed a positive association. The data did not reach statistical significance for any of the three groups. These associations may affect sperm quality since telomere length and mitochondrial concentration are indicators of cellular integrity and health. Moreover, the ratio of mtDNA to nDNA was positively correlated with the relative telomere lengths of the obese group, but negatively correlated with the normal and overweight groups. In every group that was studied, the results were not statistically significant. According to this, male fertility may be negatively impacted by an imbalance in the copy number of the mitochondrial genome compared to the nuclear DNA in sperm. Conclusions: Essentially, the goal of our work is to determine whether mitochondria and telomere length in human sperm interact. Understanding these connections may aid in the explanation of some male infertility causes and possibly contribute to the creation of new treatment modalities for problems pertaining to reproductive health. The functional implications of these connections and their applications in therapeutic settings require further investigation.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital, Barrack Rd., Exeter EX 25 DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Stefanos Dafopoulos
- Department of Health Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (P.D.)
| | - Konstantinos Dafopoulos
- IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece;
| | - Peter Drakakis
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (P.D.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece;
| |
Collapse
|
3
|
Chu B, Liu Z, Liu Y, Jiang H. The Role of Advanced Parental Age in Reproductive Genetics. Reprod Sci 2023; 30:2907-2919. [PMID: 37171772 PMCID: PMC10556127 DOI: 10.1007/s43032-023-01256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
The increase of parental reproductive age is a worldwide trend in modern society in recent decades. In general, older parents have a significant impact on reproductive genetics and the health of offspring. In particular, advanced parental age contributes to the increase in the risk of adverse neurodevelopmental outcomes in offspring. However, it is currently under debate how and to what extent the health of future generations was affected by the parental age. In this review, we aimed to (i) provide an overview of the effects of age on the fertility and biology of the reproductive organs of the parents, (ii) highlight the candidate biological mechanisms underlying reproductive genetic alterations, and (iii) discuss the relevance of the effect of parental age on offspring between animal experiment and clinical observation. In addition, we think that the impact of environmental factors on cognitive and emotional development of older offspring will be an interesting direction.
Collapse
Affiliation(s)
- Boling Chu
- Department of Biobank, Suining Central Hospital, Suining, 629000, China
| | - Zhi Liu
- Department of Pathology, Suining Central Hospital, Suining, 629000, China
| | - Yihong Liu
- College of Humanities And Management, Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Hui Jiang
- Department of Biobank, Suining Central Hospital, Suining, 629000, China.
| |
Collapse
|
4
|
Pendina AA, Krapivin MI, Sagurova YM, Mekina ID, Komarova EM, Tikhonov AV, Golubeva AV, Gzgzyan AM, Kogan IY, Efimova OA. Telomere Length in Human Spermatogenic Cells as a New Potential Predictor of Clinical Outcomes in ART Treatment with Intracytoplasmic Injection of Testicular Spermatozoa. Int J Mol Sci 2023; 24:10427. [PMID: 37445605 DOI: 10.3390/ijms241310427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Predicting the clinical outcomes of intracytoplasmic sperm injection (ICSI) cycles that use the testicular spermatozoa of azoospermic patients presents a challenge. Thus, the development of additional approaches to assessing the competence of a testicular-sperm-derived embryo without causing damage to gametes or the embryo is necessary. One of the key parameters in determining such developmental competence is telomere length (TL). We aimed to analyze TLs in spermatogenic cells from the testicular biopsy samples of azoospermic patients and determine how this parameter influences embryo competence for pre- and post-implantation development. Using Q-FISH, we studied the TL of the chromosomes in spermatogonia and spermatocytes I from the TESE biopsy samples of 30 azoospermic patients. An increase in TL was detected during the differentiation from spermatogonia to spermatocytes I. The patients' testicular spermatozoa were used in 37 ICSI cycles that resulted in 22 embryo transfers. Nine pregnancies resulted, of which, one was ectopic and eight ended in birth. The analysis of embryological outcomes revealed a dependence between embryo competence for development to the blastocyst stage and the TL in spermatogenic cells. The TLs in spermatogonia and spermatocytes I in the testicular biopsy samples were found to be higher in patients whose testicular sperm ICSI cycles resulted in a birth. Therefore, the length of telomeres in spermatogenic cells can be considered as a potential prognostic criterion in assessing the competence of testicular-sperm-derived embryos for pre- and post-implantation development. The results of this study provide the basis for the development of a laboratory test for the prediction of testicular sperm ICSI cycle outcomes.
Collapse
Affiliation(s)
- Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Mikhail I Krapivin
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Yanina M Sagurova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Irina D Mekina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Evgeniia M Komarova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Andrei V Tikhonov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Arina V Golubeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Alexander M Gzgzyan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| |
Collapse
|
5
|
Fattet AJ, Chaillot M, Koscinski I. Telomere Length, a New Biomarker of Male (in)Fertility? A Systematic Review of the Literature. Genes (Basel) 2023; 14:425. [PMID: 36833352 PMCID: PMC9957201 DOI: 10.3390/genes14020425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Male factors are suspected in around half cases of infertility, of which up to 40% are diagnosed as idiopathic. In the context of a continuously increased resort to ART and increased decline of semen parameters, it is of greatest interest to evaluate an additional potential biomarker of sperm quality. According to PRISMA guidelines, this systematic review of the literature selected studies evaluating telomere length in sperm and/or in leukocytes as a potential male fertility biomarker. Twenty-two publications (3168 participants) were included in this review of experimental evidence. For each study, authors determined if there was a correlation between telomere length and semen parameters or fertility outcomes. Of the 13 studies concerning sperm telomere length (STL) and semen parameters, ten found an association between short STL and altered parameters. Concerning the impact of STL on ART results, the data are conflicting. However, eight of the 13 included studies about fertility found significantly longer sperm telomeres in fertile men than in infertile men. In leukocytes, the seven studies reported conflicting findings. Shorter sperm telomeres appear to be associated with altered semen parameters or male infertility. Telomere length may be considered as a new molecular marker of spermatogenesis and sperm quality, and thus is related to male fertility potential. However, additional studies are needed to define the place of the STL in the assessment of individual fertility.
Collapse
Affiliation(s)
- Anne-Julie Fattet
- Centre d’AMP Majorelle-Atoutbio, 95 Rue Ambroise Paré, 54000 Nancy, France
| | - Maxime Chaillot
- Service de Médecine et Biologie du Développement et de la Reproduction, 38 Boulevard Jean Monnet, 44000 Nantes, France
- Faculté de Médecine, Université de Nantes, 44000 Nantes, France
| | - Isabelle Koscinski
- Inserm U1256, Nutrition Genetics Environmental Risks Exposure (NGERE), Université de Lorraine, 54000 Nancy, France
- Centre d’AMP Hôpital Saint Joseph, 26 Bd de Louvain, 13008 Marseille, France
| |
Collapse
|
6
|
Ribas-Maynou J, Llavanera M, Mateo-Otero Y, Ruiz N, Muiño R, Bonet S, Yeste M. Telomere length in bovine sperm is related to the production of reactive oxygen species, but not to reproductive performance. Theriogenology 2022; 189:290-300. [DOI: 10.1016/j.theriogenology.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
|
7
|
Telomere Length in Pig Sperm Is Related to In Vitro Embryo Development Outcomes. Animals (Basel) 2022; 12:ani12020204. [PMID: 35049825 PMCID: PMC8773156 DOI: 10.3390/ani12020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Understanding how gamete chromatin influences fertilization is highly important not only to improve animal production, but also to develop new biomarkers helping in the selection of those animals with higher fertility potential. In this regard, sperm telomere length has been pointed out as a putative biomarker in human infertility, but no studies have been conducted into its influence in pig fertility. Here, we determined that sperm telomere length is independent from the conventional sperm quality parameters and, through the production of in vitro embryos, we showed that it is indicative of the percentage of morulae and blastocysts, thus becoming useful to be used as biomarker in this species. Abstract Telomere length has attracted much interest as a topic of study in human reproduction; furthermore, the link between sperm telomere length and fertility outcomes has been investigated in other species. This biomarker, however, has not been much explored in other animals, such as pigs, and whether it is related to sperm quality and fertility outcomes remains unknown. The present work aimed to determine the absolute value of telomere length in pig sperm, as well as its relationship to sperm quality parameters and embryo development. Telomere length was determined through quantitative fluorescence in situ hybridization (qFISH) in 23 pig sperm samples and data were correlated to quality parameters (motility, morphology, and viability) and in vitro fertilization outcomes. We found that the mean telomere length in pig sperm was 22.1 ± 3.6 kb, which is longer than that previously described in humans. Whilst telomere length was not observed to be correlated to sperm quality variables (p > 0.05), a significant correlation between telomere length and the percentage of morulae 6 days after in vitro fertilization was observed (rs = 0.559; 95% C.I. = (−0.007 to 0.854); p = 0.047). Interestingly, this correlation was not found when percentages of early blastocysts/blastocysts (rs = 0.410; 95% C.I. = (−0.200 to 0.791); p = 0.164) and of hatching/hatched blastocysts (rs = 0.356; 95% C.I. = (− 0.260 to 0.766); p = 0.233) were considered. Through the separation of the samples into two groups by the median value, statistically significant differences between samples with shorter telomeres than the median and samples with longer telomeres than the median were found regarding development to morula (11.5 ± 3.6 vs. 21.8 ± 6.9, respectively) and to early blastocyst/blastocysts (7.6 ± 1.4 vs. 17.9 ± 12.2, respectively) (p < 0.05). In the light of these results, sperm telomere length may be a useful biomarker for embryo development in pigs, as sperm with longer telomeres lead to higher rates of morulae and blastocysts.
Collapse
|
8
|
Balmori C, Cordova-Oriz I, De Alba G, Medrano M, Jiménez-Tormo L, Polonio AM, Chico-Sordo L, Pacheco A, García-Velasco JA, Varela E. Effects of age and oligosthenozoospermia on telomeres of sperm and blood cells. Reprod Biomed Online 2021; 44:1090-1100. [DOI: 10.1016/j.rbmo.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
|
9
|
Turner KJ, Watson EM, Skinner BM, Griffin DK. Telomere Distribution in Human Sperm Heads and Its Relation to Sperm Nuclear Morphology: A New Marker for Male Factor Infertility? Int J Mol Sci 2021; 22:ijms22147599. [PMID: 34299219 PMCID: PMC8306796 DOI: 10.3390/ijms22147599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Infertility is a problem affecting an increasing number of couples worldwide. Currently, marker tests for male factor infertility are complex, highly technical and relatively subjective. Up to 40% of cases of male factor infertility are currently diagnosed as idiopathic therefore, there is a clear need for further research into better ways of diagnosing it. Changes in sperm telomere length have been associated with infertility and closely linked to DNA damage and fragmentation, which are also known to be related to infertility. However, telomere distribution is a parameter thus far underexplored as an infertility marker. Here, we assessed morphological parameters of sperm nuclei in fertile control and male factor infertile cohorts. In addition, we used 2D and 3D fluorescence in situ hybridization (FISH) to compare telomere distribution between these two groups. Our findings indicate that the infertile cohort sperm nuclei were, on average, 2.9% larger in area and showed subtle differences in sperm head height and width. Telomeres were mainly distributed towards the periphery of the nuclei in the control cohort, with diminishing telomere signals towards the center of the nuclei. Sperm nuclei of infertile males, however, had more telomere signals towards the center of the nuclei, a finding supported by 3D imaging. We conclude that, with further development, both morphology and telomere distribution may prove useful investigative tools in the fertility clinic.
Collapse
Affiliation(s)
- Kara J. Turner
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NH, UK;
| | - Eleanor M. Watson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; (E.M.W.); (B.M.S.)
| | - Benjamin M. Skinner
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; (E.M.W.); (B.M.S.)
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NH, UK;
- Correspondence:
| |
Collapse
|
10
|
Garcia-Martin I, Penketh RJA, Garay SM, Jones RE, Grimstead JW, Baird DM, John RM. Symptoms of Prenatal Depression Associated with Shorter Telomeres in Female Placenta. Int J Mol Sci 2021; 22:7458. [PMID: 34299077 PMCID: PMC8306199 DOI: 10.3390/ijms22147458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Depression is a common mood disorder during pregnancy impacting one in every seven women. Children exposed to prenatal depression are more likely to be born at a low birth weight and develop chronic diseases later in life. A proposed hypothesis for this relationship between early exposure to adversity and poor outcomes is accelerated aging. Telomere length has been used as a biomarker of cellular aging. We used high-resolution telomere length analysis to examine the relationship between placental telomere length distributions and maternal mood symptoms in pregnancy. METHODS This study utilised samples from the longitudinal Grown in Wales (GiW) study. Women participating in this study were recruited at their presurgical appointment prior to a term elective caesarean section (ELCS). Women completed the Edinburgh Postnatal Depression Scale (EPDS) and trait subscale of the State-Trait Anxiety Inventory (STAI). Telomere length distributions were generated using single telomere length analysis (STELA) in 109 term placenta (37-42 weeks). Multiple linear regression was performed to examine the relationship between maternally reported symptoms of depression and anxiety at term and mean placental telomere length. RESULTS Prenatal depression symptoms were significantly negatively associated with XpYp telomere length in female placenta (B = -0.098, p = 0.026, 95% CI -0.184, -0.012). There was no association between maternal depression symptoms and telomere length in male placenta (B = 0.022, p = 0.586, 95% CI -0.059, 0.103). There was no association with anxiety symptoms and telomere length for either sex. CONCLUSION Maternal prenatal depression is associated with sex-specific differences in term placental telomeres. Telomere shortening in female placenta may indicate accelerated placental aging.
Collapse
Affiliation(s)
- Isabel Garcia-Martin
- Division of Biomedicine, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK; (I.G.-M.); (S.M.G.)
| | - Richard J. A. Penketh
- Department of Obstetrics and Gynaecology, University Hospital Wales, Cardiff, Wales CF14 4XW, UK;
| | - Samantha M. Garay
- Division of Biomedicine, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK; (I.G.-M.); (S.M.G.)
| | - Rhiannon E. Jones
- Division of Cancer and Genetics, Cardiff School of Medicine, Cardiff University, Cardiff, Wales CF14 4XW, UK; (R.E.J.); (J.W.G.); (D.M.B.)
| | - Julia W. Grimstead
- Division of Cancer and Genetics, Cardiff School of Medicine, Cardiff University, Cardiff, Wales CF14 4XW, UK; (R.E.J.); (J.W.G.); (D.M.B.)
| | - Duncan M. Baird
- Division of Cancer and Genetics, Cardiff School of Medicine, Cardiff University, Cardiff, Wales CF14 4XW, UK; (R.E.J.); (J.W.G.); (D.M.B.)
| | - Rosalind M. John
- Division of Biomedicine, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK; (I.G.-M.); (S.M.G.)
| |
Collapse
|
11
|
Chico-Sordo L, Córdova-Oriz I, Polonio AM, S-Mellado LS, Medrano M, García-Velasco JA, Varela E. Reproductive aging and telomeres: Are women and men equally affected? Mech Ageing Dev 2021; 198:111541. [PMID: 34245740 DOI: 10.1016/j.mad.2021.111541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
Successful reproduction is very important for individuals and for society. Currently, the human health span and lifespan are the object of intense and productive investigation with great achievements, compared to the last century. However, reproduction span does not progress concomitantly with lifespan. Reproductive organs age, decreasing the levels of sexual hormones, which are protectors of health through their action on several organs of the body. Thus, this is the starting point of the organismal decay and infertility. This starting point is easily detected in women. In men, it goes under the surface, undetected, but it goes, nevertheless. Regarding fertility, aging alters the hormonal equilibrium, decreases the potential of reproductive organs, diminishes the quality of the gametes and worsen the reproductive outcomes. All these events happen at a different pace and affecting different organs in women and men. The question is what molecular pathways are involved in reproductive aging and if there is a possible halting or even reversion of the aging events. Answers to all these points will be explained in the present review.
Collapse
Affiliation(s)
- Lucía Chico-Sordo
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Isabel Córdova-Oriz
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Alba María Polonio
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Lucía Sánchez S-Mellado
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Marta Medrano
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; IVIRMA Madrid, Spain.
| | - Juan Antonio García-Velasco
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain; IVIRMA Madrid, Spain; Rey Juan Carlos University, Madrid, Spain.
| | - Elisa Varela
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rey Juan Carlos University, Madrid, Spain.
| |
Collapse
|
12
|
Pendina AA, Krapivin MI, Efimova OA, Tikhonov AV, Mekina ID, Komarova EM, Koltsova AS, Gzgzyan AM, Kogan IY, Chiryaeva OG, Baranov VS. Telomere Length in Metaphase Chromosomes of Human Triploid Zygotes. Int J Mol Sci 2021; 22:ijms22115579. [PMID: 34070406 PMCID: PMC8197529 DOI: 10.3390/ijms22115579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/02/2023] Open
Abstract
The human lifespan is strongly influenced by telomere length (TL) which is defined in a zygote—when two highly specialised haploid cells form a new diploid organism. Although TL is a variable parameter, it fluctuates in a limited range. We aimed to establish the determining factors of TL in chromosomes of maternal and paternal origin in human triploid zygotes. Using Q-FISH, we examined TL in the metaphase chromosomes of 28 human triploid zygotes obtained from 22 couples. The chromosomes’ parental origin was identified immunocytochemically through weak DNA methylation and strong hydroxymethylation in the sperm-derived (paternal) chromosomes versus strong DNA methylation and weak hydroxymethylation in the oocyte-derived (maternal) ones. In 24 zygotes, one maternal and two paternal chromosome sets were identified, while the four remaining zygotes contained one paternal and two maternal sets. For each zygote, we compared mean relative TLs between parental chromosomes, identifying a significant difference in favour of the paternal chromosomes, which attests to a certain “imprinting” of these regions. Mean relative TLs in paternal or maternal chromosomes did not correlate with the respective parent’s age. Similarly, no correlation was observed between the mean relative TL and sperm quality parameters: concentration, progressive motility and normal morphology. Based on the comparison of TLs in chromosomes inherited from a single individual’s gametes with those in chromosomes inherited from different individuals’ gametes, we compared intraindividual (intercellular) and interindividual variability, obtaining significance in favour of the latter and thus validating the role of heredity in determining TL in zygotes. A comparison of the interchromatid TL differences across the chromosomes from sets of different parental origin with those from PHA-stimulated lymphocytes showed an absence of a significant difference between the maternal and paternal sets but a significant excess over the lymphocytes. Therefore, interchromatid TL differences are more pronounced in zygotes than in lymphocytes. To summarise, TL in human zygotes is determined both by heredity and parental origin; the input of other factors is possible within the individual’s reaction norm.
Collapse
|
13
|
Hangül C, Karaüzüm SB, Akkol EK, Demir-Dora D, Çetin Z, Saygılı Eİ, Evcili G, Sobarzo-Sánchez E. Promising Perspective to Facioscapulohumeral Muscular Dystrophy Treatment: Nutraceuticals and Phytochemicals. Curr Neuropharmacol 2021; 19:2276-2295. [PMID: 34315378 PMCID: PMC9185762 DOI: 10.2174/1570159x19666210726151924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 12/03/2022] Open
Abstract
Facioscapulohumeral Muscular Dystrophy (FSHD) is in the top three list of all dystrophies with an approximate 1:8000 incidence. It is not a life-threatening disease; however, the progression of the disease extends over being wheelchair bound. Despite some drug trials continuing, including DUX4 inhibition, TGF-ß inhibition and resokine which promote healthier muscle, there is not an applicable treatment option for FSHD today. Still, there is a need for new agents to heal, stop or at least slow down muscle wasting. Current FSHD studies involving nutraceuticals as vitamin C, vitamin E, coenzyme Q10, zinc, selenium, and phytochemicals as curcumin or genistein, daidzein flavonoids provide promising treatment strategies. In this review, we present the clinical and molecular nature of FSHD and focus on nutraceuticals and phytochemicals that may alleviate FSHD. In the light of the association of impaired pathophysiological FSHD pathways with nutraceuticals and phytochemicals according to the literature, we present both studied and novel approaches that can contribute to FSHD treatment.
Collapse
Affiliation(s)
| | | | - Esra Küpeli Akkol
- Address correspondence to this author at the Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey; E-mail:
| | | | | | | | | | | |
Collapse
|
14
|
Liu J, Hong X, Liang CY, Liu JP. Simultaneous visualisation of the complete sets of telomeres from the MmeI generated terminal restriction fragments in yeasts. Yeast 2020; 37:585-595. [PMID: 32776370 DOI: 10.1002/yea.3517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022] Open
Abstract
Telomere length is measured using Southern blotting of the chromosomal terminal restriction fragments (TRFs) released by endonuclease digestion in cells from yeast to human. In the budding yeast Saccharomyces cerevisiae, XhoI or PstI is applied to cut the subtelomere Y' element and release TRFs from the 17 subtelomeres. However, telomeres from other 15 X-element-only subtelomeres are omitted from analysis. Here, we report a method for measuring all 32 telomeres in S. cerevisiae using the endonuclease MmeI. Based on analyses of the endonuclease cleavage sites, we found that the TRFs generated by MmeI displayed two distinguishable bands in the sizes of ~500 and ~700 bp comprising telomeres (300 bp) and subtelomeres (200-400 bp). The modified MmeI-restricted TRF (mTRF) method recapitulated telomere shortening and lengthening caused by deficiencies of YKu and Rif1 respectively in S. cerevisiae. Furthermore, we found that mTRF was also applicable to telomere length analysis in S. paradoxus strains. These results demonstrate a useful tool for simultaneous detection of telomeres from all chromosomal ends with both X-element-only and Y'-element subtelomeres in S. cerevisiae species.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaojing Hong
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chao-Ya Liang
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jun-Ping Liu
- Institute of Ageing Research, College of Medicine, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Faculty of Medicine, Monash University, Prahran, Victoria, Australia
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Lopes AC, Oliveira PF, Pinto S, Almeida C, Pinho MJ, Sá R, Rocha E, Barros A, Sousa M. Discordance between human sperm quality and telomere length following differential gradient separation/swim-up. J Assist Reprod Genet 2020; 37:2581-2603. [PMID: 32767207 DOI: 10.1007/s10815-020-01897-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/20/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Strong evidence has suggested an important role of telomeres in meiosis, fertilization, and embryo development. PURPOSE To determine if sperm telomere length (STL) in sperm purified by differential gradient centrifugation followed by swim-up (selected STL) is correlated with sperm quality and clinical outcomes. METHODS Relative selected STL was assessed by quantitative polymerase chain reaction (Q-PCR) in 78 consecutive assisted reproductive technology (ART) treatments during 2017. Statistical analyses were performed in the totality of patients, and in normozoospermic and non-normozoospermic patients. These included correlations between selected STL and sperm quality parameters, embryological parameters (multivariable linear regression), and clinical parameters (multivariable logistic regression). RESULTS No significant correlations were found between selected STL and sperm quality in the total population. However, selected STL was significantly correlated with total sperm count (r = 0.361; P = 0.039) and sperm DNA fragmentation-post-acrosomal region pattern (r = - 0.464; P = 0.030) in normozoospermic patients. No relation was observed between selected STL and clinical outcomes in any clinical group. CONCLUSIONS As the correlations observed in normozoospermic patients were not representative of the whole heterogeneous population, differences in the sperm characteristics of the study population may lead to discrepant results when evaluating the association of STL with sperm quality. Since the total population selected STL was not related with sperm quality and with clinical outcomes, results do not support the use of selected STL measurement to evaluate the reproductive potential of the male patient or to predict the success rates of ART treatments.
Collapse
Affiliation(s)
- Ana Catarina Lopes
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,Department of Life Sciences, Faculty of Science and Technology, New University of Lisbon, Campus Caparica, 2829-516, Caparica, Portugal
| | - Pedro Fontes Oliveira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,Institute of Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Soraia Pinto
- Centre for Reproductive Genetics Prof. Alberto Barros, 4100-009, Porto, Portugal
| | - Carolina Almeida
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Maria João Pinho
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,Multidisciplinary Unit for Biomedical Research, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313, Porto, Portugal
| | - Alberto Barros
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,Institute of Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.,Centre for Reproductive Genetics Prof. Alberto Barros, 4100-009, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal. .,Multidisciplinary Unit for Biomedical Research, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
16
|
Amir S, Vakonaki E, Tsiminikaki K, Tzatzarakis M, Michopoulou V, Flamourakis M, Kalliantasi K, Karzi V, Fragkiadaki P, Renieri E, Tsoukalas D, Thanasoula M, Sarandi E, Sakellaris G, Makrigiannakis A, Nepka C, Spandidos D, Tsatsakis A. Sperm telomere length: Diagnostic and prognostic biomarker in male infertility (Review). ACTA ACUST UNITED AC 2020. [DOI: 10.3892/wasj.2020.31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Saira Amir
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Islamabad, Islamabad Capital Territory 45550, Pakistan
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Manolis Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vasiliki Michopoulou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Katerina Kalliantasi
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vasiliki Karzi
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Elisavet Renieri
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Maria Thanasoula
- Venizeleio General Hospital, Department of Surgery, 71409 Heraklion, Greece
| | - Evangelia Sarandi
- Venizeleio General Hospital, Department of Surgery, 71409 Heraklion, Greece
| | - George Sakellaris
- Department of Pediatric Surgery, University Hospital of Heraklion, 71003 Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynecology, School of Medicine, University Hospital of Heraklion, University of Crete, 71003 Heraklion, Greece
| | - Charitini Nepka
- Department of Cytopathology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Demetrios Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
17
|
Agarwal A, Panner Selvam MK, Samanta L, Vij SC, Parekh N, Sabanegh E, Tadros NN, Arafa M, Sharma R. Effect of Antioxidant Supplementation on the Sperm Proteome of Idiopathic Infertile Men. Antioxidants (Basel) 2019; 8:E488. [PMID: 31623114 PMCID: PMC6827009 DOI: 10.3390/antiox8100488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Antioxidant supplementation in idiopathic male infertility has a beneficial effect on semen parameters. However, the molecular mechanism behind this effect has not been reported. The objective of this study was to evaluate the sperm proteome of idiopathic infertile men pre- and post-antioxidant supplementation. Idiopathic infertile men were provided with oral antioxidant supplementation once daily for a period of 6 months. Of the 379 differentially expressed proteins (DEPs) between pre- and post-antioxidant treatment patients, the majority of the proteins (n = 274) were overexpressed following antioxidant treatment. Bioinformatic analysis revealed the activation of oxidative phosphorylation pathway and upregulation of key proteins involved in spermatogenesis, sperm maturation, binding of sperm, fertilization and normal reproductive function. In addition, the transcriptional factors associated with antioxidant defense system (PPARGC1A) and free radical scavenging (NFE2L2) were predicted to be functionally activated post-treatment. Key DEPs, namely, NDUFS1, CCT3, PRKARA1 and SPA17 validated by Western blot showed significant overexpression post-treatment. Our novel proteomic findings suggest that antioxidant supplementation in idiopathic infertile men improves sperm function at the molecular level by modulating proteins involved in CREM signaling, mitochondrial function and protein oxidation. Further, activation of TRiC complex helped in nuclear compaction, maintenance of telomere length, flagella function, and expression of zona pellucida receptors for sperm-oocyte interaction.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Manesh Kumar Panner Selvam
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Luna Samanta
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Redox Biology Laboratory, Department of Zoology, Ravenshaw University, Cuttack 753003, India.
| | - Sarah C Vij
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Neel Parekh
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Edmund Sabanegh
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Nicholas N Tadros
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL 62769, USA.
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha 00974, Qatar.
| | - Rakesh Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
18
|
Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25:518-540. [DOI: 10.1093/humupd/dmz017] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
BACKGROUND
A defining feature of sexual reproduction is the transmission of genomic information from both parents to the offspring. There is now compelling evidence that the inheritance of such genetic information is accompanied by additional epigenetic marks, or stable heritable information that is not accounted for by variations in DNA sequence. The reversible nature of epigenetic marks coupled with multiple rounds of epigenetic reprogramming that erase the majority of existing patterns have made the investigation of this phenomenon challenging. However, continual advances in molecular methods are allowing closer examination of the dynamic alterations to histone composition and DNA methylation patterns that accompany development and, in particular, how these modifications can occur in an individual’s germline and be transmitted to the following generation. While the underlying mechanisms that permit this form of transgenerational inheritance remain unclear, it is increasingly apparent that a combination of genetic and epigenetic modifications plays major roles in determining the phenotypes of individuals and their offspring.
OBJECTIVE AND RATIONALE
Information pertaining to transgenerational inheritance was systematically reviewed focusing primarily on mammalian cells to the exclusion of inheritance in plants, due to inherent differences in the means by which information is transmitted between generations. The effects of environmental factors and biological processes on both epigenetic and genetic information were reviewed to determine their contribution to modulating inheritable phenotypes.
SEARCH METHODS
Articles indexed in PubMed were searched using keywords related to transgenerational inheritance, epigenetic modifications, paternal and maternal inheritable traits and environmental and biological factors influencing transgenerational modifications. We sought to clarify the role of epigenetic reprogramming events during the life cycle of mammals and provide a comprehensive review of how the genomic and epigenomic make-up of progenitors may determine the phenotype of its descendants.
OUTCOMES
We found strong evidence supporting the role of DNA methylation patterns, histone modifications and even non-protein-coding RNA in altering the epigenetic composition of individuals and producing stable epigenetic effects that were transmitted from parents to offspring, in both humans and rodent species. Multiple genomic domains and several histone modification sites were found to resist demethylation and endure genome-wide reprogramming events. Epigenetic modifications integrated into the genome of individuals were shown to modulate gene expression and activity at enhancer and promoter domains, while genetic mutations were shown to alter sequence availability for methylation and histone binding. Fundamentally, alterations to the nuclear composition of the germline in response to environmental factors, ageing, diet and toxicant exposure have the potential to become hereditably transmitted.
WIDER IMPLICATIONS
The environment influences the health and well-being of progeny by working through the germline to introduce spontaneous genetic mutations as well as a variety of epigenetic changes, including alterations in DNA methylation status and the post-translational modification of histones. In evolutionary terms, these changes create the phenotypic diversity that fuels the fires of natural selection. However, rather than being adaptive, such variation may also generate a plethora of pathological disease states ranging from dominant genetic disorders to neurological conditions, including spontaneous schizophrenia and autism.
Collapse
Affiliation(s)
- Miguel João Xavier
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaun D Roman
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
19
|
Fice HE, Robaire B. Telomere Dynamics Throughout Spermatogenesis. Genes (Basel) 2019; 10:genes10070525. [PMID: 31336906 PMCID: PMC6678359 DOI: 10.3390/genes10070525] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Telomeres are repeat regions of DNA that cap either end of each chromosome, thereby providing stability and protection from the degradation of gene-rich regions. Each cell replication causes the loss of telomeric repeats due to incomplete DNA replication, though it is well-established that progressive telomere shortening is evaded in male germ cells by the maintenance of active telomerase. However, germ cell telomeres are still susceptible to disruption or insult by oxidative stress, toxicant exposure, and aging. Our aim was to examine the relative telomere length (rTL) in an outbred Sprague Dawley (SD) and an inbred Brown Norway (BN) rat model for paternal aging. No significant differences were found when comparing pachytene spermatocytes (PS), round spermatids (RS), and sperm obtained from the caput and cauda of the epididymis of young and aged SD rats; this is likely due to the high variance observed among individuals. A significant age-dependent decrease in rTL was observed from 115.6 (±6.5) to 93.3 (±6.3) in caput sperm and from 142.4 (±14.6) to 105.3 (±2.5) in cauda sperm from BN rats. Additionally, an increase in rTL during epididymal maturation was observed in both strains, most strikingly from 115.6 (±6.5) to 142 (±14.6) in young BN rats. These results confirm the decrease in rTL in rodents, but only when an inbred strain is used, and represent the first demonstration that rTL changes as sperm transit through the epididymis.
Collapse
Affiliation(s)
- Heather E Fice
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
- Departments of Obstetrics and Gynecology, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
20
|
Ramos-Ibeas P, Pericuesta E, Peral-Sanchez I, Heras S, Laguna-Barraza R, Pérez-Cerezales S, Gutiérrez-Adán A. Longitudinal analysis of somatic and germ-cell telomere dynamics in outbred mice. Mol Reprod Dev 2019; 86:1033-1043. [PMID: 31209959 DOI: 10.1002/mrd.23218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/10/2022]
Abstract
Although telomere length (TL) shortens with age in most tissues, an age-related increase in length has been described in sperm through a mechanism that is not yet fully understood. Changes in TL with age in the same individual have not been explored. This longitudinal study examines TL dynamics in somatic tissue and gametes during an entire lifespan in an outbred mouse population (from 8 to up to 114 weeks of age). Our findings indicate a reduced life expectancy in males compared to females (84.75 ± 9.23 vs. 113.16 ± 0.20 weeks) and significant variability in TL dynamics between individuals. While with aging, a clear reduction in TL was produced in somatic cells and oocytes, telomeres in sperm cells significantly lengthened. Finally, we found evidence indicating that telomere elongation in sperm during aging may be dependent on different mechanisms, such as the survival of spermatogonia with longer telomeres and the alternative lengthening of telomeres mechanism in meiotic and postmeiotic spermatogenic cells.
Collapse
Affiliation(s)
| | - Eva Pericuesta
- Departamento de Reproducción Animal, INIA, Madrid, Spain
| | | | - Sonia Heras
- Departamento de Reproducción Animal, INIA, Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
22
|
Vasilopoulos E, Fragkiadaki P, Kalliora C, Fragou D, Docea AO, Vakonaki E, Tsoukalas D, Calina D, Buga AM, Georgiadis G, Mamoulakis C, Makrigiannakis A, Spandidos DA, Tsatsakis A. The association of female and male infertility with telomere length (Review). Int J Mol Med 2019; 44:375-389. [PMID: 31173155 PMCID: PMC6605974 DOI: 10.3892/ijmm.2019.4225] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/24/2019] [Indexed: 12/28/2022] Open
Abstract
Telomere length (TL) has long been associated with aging, as telomeres serve as protective caps of chromosomes, and are thus deeply involved in the preservation of genome integrity and are vital to cellular functions. Traditionally, a strong link connects aging and infertility in both sexes, with an earlier onset in females. Over the past decade, telomeres have attracted increasing attention due to the role they play in fertility. In this review, we investigated the potential positive or negative association between relative TL and different factors of female and male infertility. A systematic search of the PubMed database was conducted. Out of the 206 studies identified, 45 were reviewed as they fulfilled the criteria of validity and relevance. Following an analysis and a comparison of the study outcomes, several clear trends were observed. The majority of female infertility factors were associated with a shorter TL, with the exception of endometriosis, premature ovarian failure and clear cell carcinoma that were associated with a longer TL and polycystic ovary syndrome (PCOS), which revealed conflicting results among several studies, leading to ambiguous conclusions. Male infertility factors were associated with a shorter TL. Although this review can provide an outline of general trends in the association of TL with infertility factors, further epidemiological and original research studies are required to focus on investigating the basis of these varying lengths of telomeres.
Collapse
Affiliation(s)
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Charikleia Kalliora
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Domniki Fragou
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dimitris Tsoukalas
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - George Georgiadis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynecology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
23
|
Turner K, Lynch C, Rouse H, Vasu V, Griffin DK. Direct Single-Cell Analysis of Human Polar Bodies and Cleavage-Stage Embryos Reveals No Evidence of the Telomere Theory of Reproductive Ageing in Relation to Aneuploidy Generation. Cells 2019; 8:E163. [PMID: 30781491 PMCID: PMC6406255 DOI: 10.3390/cells8020163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 01/18/2023] Open
Abstract
Reproductive ageing in women, particularly after the age of 35, is associated with an exponential increase in the proportion of chromosomally abnormal oocytes produced. Several hypotheses have attempted to explain this observation, including the 'limited oocyte pool' hypothesis and the 'two-hit' hypothesis, the latter explaining that a depletion in oocyte quality with age results from the multiple opportune stages for errors to occur in meiosis. Recently however, the telomere theory of reproductive ageing in women has been proposed. This suggests that shortened telomeres in oocytes of women of advanced maternal age render oocytes unable to support fertilization and embryogenesis. Despite a credible rationale for the telomere theory of reproductive ageing in women, very few studies have assessed telomere length directly in human oocytes or preimplantation embryos. Therefore, we directly assessed relative telomere length in first polar bodies and blastomeres from cleavage stage (day 3) embryos. In both cell types we tested the hypothesis that (1) older women have shorter telomeres and (2) chromosomally abnormal (aneuploid) gametes/embryos have shorter telomeres. In all cases, we found no evidence of altered telomere length associated with age-related aneuploidy.
Collapse
Affiliation(s)
- Kara Turner
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NJ, UK.
| | - Colleen Lynch
- Cooper Genomics Nottingham, Medicity, D6 Building, Thane Road, Nottingham NG90 6BH, UK.
| | - Hannah Rouse
- Cooper Genomics Nottingham, Medicity, D6 Building, Thane Road, Nottingham NG90 6BH, UK.
| | - Vimal Vasu
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NJ, UK.
- Department of Child Health, East Kent Hospitals University Foundation NHS Trust, William Harvey Hospital, Ashford TN24 0LZ, UK.
| | - Darren K Griffin
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NJ, UK.
| |
Collapse
|
24
|
Hwang IP, Mailliet P, Hossard V, Riou JF, Bugaut A, Roger L. Investigating the Effect of Mono- and Dimeric 360A G-Quadruplex Ligands on Telomere Stability by Single Telomere Length Analysis (STELA). Molecules 2019; 24:molecules24030577. [PMID: 30736276 PMCID: PMC6384687 DOI: 10.3390/molecules24030577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 11/16/2022] Open
Abstract
Telomeres are nucleoprotein structures that cap and protect the natural ends of chromosomes. Telomeric DNA G-rich strands can form G-quadruplex (or G4) structures. Ligands that bind to and stabilize G4 structures can lead to telomere dysfunctions by displacing shelterin proteins and/or by interfering with the replication of telomeres. We previously reported that two pyridine dicarboxamide G4 ligands, 360A and its dimeric analogue (360A)2A, were able to displace in vitro hRPA (a single-stranded DNA-binding protein of the replication machinery) from telomeric DNA by stabilizing the G4 structures. In this paper, we perform for the first time single telomere length analysis (STELA) to investigate the effect of G4 ligands on telomere length and stability. We used the unique ability of STELA to reveal the full spectrum of telomere lengths at a chromosome terminus in cancer cells treated with 360A and (360A)2A. Upon treatment with these ligands, we readily detected an increase of ultrashort telomeres, whose lengths are significantly shorter than the mean telomere length, and that could not have been detected by other methods.
Collapse
Affiliation(s)
- In Pyo Hwang
- "Structure and Instability of Genomes" Laboratory, Muséum National d'Histoire Naturelle (MNHN), Inserm U1154, CNRS UMR 7196, 43 rue Cuvier, 75005 Paris, France.
| | - Patrick Mailliet
- "Structure and Instability of Genomes" Laboratory, Muséum National d'Histoire Naturelle (MNHN), Inserm U1154, CNRS UMR 7196, 43 rue Cuvier, 75005 Paris, France.
| | - Virginie Hossard
- "Structure and Instability of Genomes" Laboratory, Muséum National d'Histoire Naturelle (MNHN), Inserm U1154, CNRS UMR 7196, 43 rue Cuvier, 75005 Paris, France.
| | - Jean-Francois Riou
- "Structure and Instability of Genomes" Laboratory, Muséum National d'Histoire Naturelle (MNHN), Inserm U1154, CNRS UMR 7196, 43 rue Cuvier, 75005 Paris, France.
| | - Anthony Bugaut
- "Structure and Instability of Genomes" Laboratory, Muséum National d'Histoire Naturelle (MNHN), Inserm U1154, CNRS UMR 7196, 43 rue Cuvier, 75005 Paris, France.
| | - Lauréline Roger
- "Structure and Instability of Genomes" Laboratory, Muséum National d'Histoire Naturelle (MNHN), Inserm U1154, CNRS UMR 7196, 43 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
25
|
Aviv A, Shay JW. Reflections on telomere dynamics and ageing-related diseases in humans. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0436. [PMID: 29335375 PMCID: PMC5784057 DOI: 10.1098/rstb.2016.0436] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have principally relied on measurements of telomere length (TL) in leucocytes, which reflects TL in other somatic cells. Leucocyte TL (LTL) displays vast variation across individuals—a phenomenon already observed in newborns. It is highly heritable, longer in females than males and in individuals of African ancestry than European ancestry. LTL is also longer in offspring conceived by older men. The traditional view regards LTL as a passive biomarker of human ageing. However, new evidence suggests that a dynamic interplay between selective evolutionary forces and TL might result in trade-offs for specific health outcomes. From a biological perspective, an active role of TL in ageing-related human diseases could occur because short telomeres increase the risk of a category of diseases related to restricted cell proliferation and tissue degeneration, including cardiovascular disease, whereas long telomeres increase the risk of another category of diseases related to increased proliferative growth, including major cancers. To understand the role of telomere biology in ageing-related diseases, it is essential to expand telomere research to newborns and children and seek further insight into the underlying causes of the variation in TL due to ancestry and geographical location. This article is part of the theme issue ‘Understanding diversity in telomere dynamics’.
Collapse
Affiliation(s)
- Abraham Aviv
- The Center of Human Development and Aging, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Lopes AC, Oliveira PF, Sousa M. Shedding light into the relevance of telomeres in human reproduction and male factor infertility†. Biol Reprod 2018; 100:318-330. [DOI: 10.1093/biolre/ioy215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/05/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ana Catarina Lopes
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, New University of Lisbon (FCT-UNL), Campus Caparica, Caparica, Portugal
| | - Pedro F Oliveira
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S- Institute of Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
| |
Collapse
|
27
|
Abstract
In recent years, male infertility has become a growing social problem. Standard diagnostic procedures, based on assessing seminological parameters, are often insufficient to explain the causes of male infertility. Because of this, new markers with better clinical application are being sought. One of the promising markers seems to be an assessment of telomere length of sperm. Sperm telomeres, in contrast to somatic cells, are elongated as men age. The results of some studies suggest that telomere length may be relevant in the case of fertilization and normal embryo development. Literature reports indicate that there is a correlation between telomere length of sperm and abnormal sperm parameters. The measurement of telomere length using the method of quantitative PCR could become a new marker of spermatogenesis, which can be useful for evaluating male reproductive age.
Collapse
Affiliation(s)
- Ewa Boniewska-Bernacka
- a Department of Biotechnology and Molecular Biology , University of Opole , Opole , Poland
| | - Anna Pańczyszyn
- a Department of Biotechnology and Molecular Biology , University of Opole , Opole , Poland
| | - Natalia Cybulska
- b GMW - Center for Gynecological and Obstetric Diagnosis , Opole , Poland
| |
Collapse
|
28
|
Abstract
The terminal regions of eukaryotic chromosomes, composed of telomere repeat sequences and sub-telomeric sequences, represent some of the most variable and rapidly evolving regions of the genome. The sub-telomeric regions are characterized by segmentally duplicated repetitive DNA elements, interstitial telomere repeat sequences and families of variable genes. Sub-telomeric repeat sequence families are shared among multiple chromosome ends, often rendering detailed sequence characterization difficult. These regions are composed of constitutive heterochromatin and are subjected to high levels of meiotic recombination. Dysfunction within telomere repeat arrays, either due to disruption in the chromatin structure or because of telomere shortening, can lead to chromosomal fusion and the generation of large-scale genomic rearrangements across the genome. The dynamic nature of telomeric regions, therefore, provides functionally useful variation to create genetic diversity, but also provides a mechanism for rapid genomic evolution that can lead to reproductive isolation and speciation. This article is part of the theme issue 'Understanding diversity in telomere dynamics'.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
29
|
Kurjanowicz P, Moskovtsev S, Librach C. Genomic fragmentation and extrachromosomal telomeric repeats impact assessment of telomere length in human spermatozoa: quantitative experiments and systematic review. Hum Reprod 2017; 32:2170-2177. [PMID: 29040510 DOI: 10.1093/humrep/dex288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Indexed: 11/02/2023] Open
Abstract
STUDY QUESTION Can differences in DNA isolation alter assessment of sperm telomere length (spTL) and do they account for conflicting results in the literature on spTL and male fertility? SUMMARY ANSWER DNA isolation methods preferentially include or exclude short, extrachromosomal (EC) telomere-specific sequences that alter spTL measurements, and are responsible for a proportion of the disparity observed between investigations. WHAT IS KNOWN ALREADY The relationship between spTL and male fertility has become an active area of research. The results across investigations, however, have been discordant, generating a need to critically evaluate the existing body of knowledge to guide future investigations. STUDY DESIGN, SIZE, DURATION Quantitative experiments determined the effect of DNA isolation on the integrity of sperm DNA and measures of spTL, while a systematic analysis of the current literature evaluated the effect of DNA isolation and study design on experimental outcomes. PARTICIPANTS/MATERIALS, SETTING, METHODS Two DNA isolation methods were compared: Genomic Tips which isolate 'High Molecular Weight' (HMW) DNA exclusively, and QIAamp® DNA Mini which isolates 'Total' genomic DNA irrespective of size. DNA quality was assessed via field inversion gel electrophoresis (FIGE) and spTL was measured via terminal restriction fragment analysis. In addition, major databases in medicine, health and the life sciences were subject to a targeted search, and results were independently screened according to defined exclusion/inclusion criterion. Findings from primary articles were analyzed for concordance and study designs were compared across six moderator variables (sample size, participant age, fertility status, semen fraction, telomere population and type of analysis). MAIN RESULTS AND THE ROLE OF CHANCE HMW DNA spTL was significantly longer than spTL measured from total DNA (P < 0.01), indicating that Total DNA contained short, EC telomeric repeats that shifted downstream assessment towards shorter spTL. HMW DNA spTL reflected the length of intact, chromosomal telomeres. Major findings on spTL showed the greatest concordance amongst studies that implemented HMW DNA isolation prior to spTL assessment. Studies that utilized Total DNA varied in concordance, but outcomes were similar if (i) a comparative analysis was applied or (ii) a sample size threshold of 81 was achieved for correlative analysis. LIMITATIONS, REASONS FOR CAUTION Chromosomal and EC telomeric DNA were distinguished based on outcomes of HMW DNA isolation and size. Further experiments are required to determine the nature and function of these two types of telomeric sequences. WIDER IMPLICATIONS OF THE FINDINGS This study reveals a dramatic impact of upstream DNA processing and study design on measurements of spTL, which accounts for conflicting results in the literature. Future assessments of spTL should incorporate independent detection of chromosomal and EC telomeric DNA and specific experimental planning. STUDY FUNDING/COMPETING INTERESTS This study was funded by CReATe Fertility Centre, Toronto, Ontario, Canada. The authors have declared no conflict of interest. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- P Kurjanowicz
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
- CReATe Fertility Centre, 790 Bay St., Suite 1100, Toronto, Ontario, Canada M5G 1N8
| | - S Moskovtsev
- CReATe Fertility Centre, 790 Bay St., Suite 1100, Toronto, Ontario, Canada M5G 1N8
- Department of Obstetrics and Gynaecology, University of Toronto, 123 Edward St. Suite 1200, Toronto, Ontario, Canada M5G 1E2
| | - C Librach
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
- CReATe Fertility Centre, 790 Bay St., Suite 1100, Toronto, Ontario, Canada M5G 1N8
- Department of Obstetrics and Gynaecology, University of Toronto, 123 Edward St. Suite 1200, Toronto, Ontario, Canada M5G 1E2
| |
Collapse
|
30
|
Biron-Shental T, Wiser A, Hershko-Klement A, Markovitch O, Amiel A, Berkovitch A. Sub-fertile sperm cells exemplify telomere dysfunction. J Assist Reprod Genet 2017; 35:143-148. [PMID: 28900814 DOI: 10.1007/s10815-017-1029-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/22/2017] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate telomere homeostasis in sub-fertile compared to fertile human sperm. METHODS This observational, comparative study included 16 sub-fertile men who required intracytoplasmic sperm injection and 10 fertile men. At least 100 sperm cells from each participant were assessed. Main outcome measures were telomere length and telomere aggregates. Telomerase RNA component (TERC) copy number and telomere capture were assessed using fluorescence in situ hybridization technique and human telomerase reverse transcriptase (hTERT) using immunohistochemistry. RESULTS Clinical backgrounds were similar. The percentage of sperm cells with shorter telomeres was higher among the sub-fertile compared to the fertile participants (3.3 ± 3.1 vs. 0.6 ± 1.2%, respectively; P < 0.005). The percentage of cells with telomere aggregates was significantly higher in the sub-fertile group (15.12 ± 3.73 vs. 4.73 ± 3.73%; P < 0.005). TERC gene copy number was similar between groups. The percentage of cells that were positive for hTERT was lower in the sub-fertile group (3.81 ± 1.27 vs. 8.42 ± 1.80%; P < 0.005). Telomere capture rates were higher among the sub-fertile sperm cells (P < 0.005). CONCLUSIONS Sub-fertile sperm cells have short telomeres that are elongated by the alternative pathway of telomere capture. Dysfunctional telomeres may affect sperm fertilizability.
Collapse
Affiliation(s)
- Tal Biron-Shental
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Amir Wiser
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Hershko-Klement
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Meir Medical Center, Genetics Institute, Kfar Saba, Israel
| | - Ofer Markovitch
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Aliza Amiel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Meir Medical Center, Genetics Institute, Kfar Saba, Israel
| | - Arie Berkovitch
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Burraco P, Valdés AE, Johansson F, Gomez-Mestre I. Physiological mechanisms of adaptive developmental plasticity in Rana temporaria island populations. BMC Evol Biol 2017; 17:164. [PMID: 28683754 PMCID: PMC5501514 DOI: 10.1186/s12862-017-1004-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adaptive plasticity is essential for many species to cope with environmental heterogeneity. In particular, developmental plasticity allows organisms with complex life cycles to adaptively adjust the timing of ontogenetic switch points. Size at and time to metamorphosis are reliable fitness indicators in organisms with complex cycles. The physiological machinery of developmental plasticity commonly involves the activation of alternative neuroendocrine pathways, causing metabolic alterations. Nevertheless, we have still incomplete knowledge about how these mechanisms evolve under environments that select for differences in adaptive plasticity. In this study, we investigate the physiological mechanisms underlying divergent degrees of developmental plasticity across Rana temporaria island populations inhabiting different types of pools in northern Sweden. METHODS In a laboratory experiment we estimated developmental plasticity of amphibian larvae from six populations coming from three different island habitats: islands with only permanent pools, islands with only ephemeral pools, and islands with a mixture of both types of pools. We exposed larvae of each population to either constant water level or simulated pool drying, and estimated their physiological responses in terms of corticosterone levels, oxidative stress, and telomere length. RESULTS We found that populations from islands with only temporary pools had a higher degree of developmental plasticity than those from the other two types of habitats. All populations increased their corticosterone levels to a similar extent when subjected to simulated pool drying, and therefore variation in secretion of this hormone does not explain the observed differences among populations. However, tadpoles from islands with temporary pools showed lower constitutive activities of catalase and glutathione reductase, and also showed overall shorter telomeres. CONCLUSIONS The observed differences are indicative of physiological costs of increased developmental plasticity, suggesting that the potential for plasticity is constrained by its costs. Thus, high levels of responsiveness in the developmental rate of tadpoles have evolved in islands with pools at high but variable risk of desiccation. Moreover, the physiological alterations observed may have important consequences for both short-term odds of survival and long term effects on lifespan.
Collapse
Affiliation(s)
- Pablo Burraco
- Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, E-41092, Seville, Spain
| | - Ana Elisa Valdés
- Department of Organismal Biology, Physiological Botany, Uppsala University, SE-75651, Uppsala, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-10691, Stockholm, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-10691, Stockholm, Sweden
| | - Frank Johansson
- Department of Ecology and Genetics, Uppsala University, SE-75236, Uppsala, Sweden
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, E-41092, Seville, Spain.
| |
Collapse
|
32
|
Eisenberg DT, Tackney J, Cawthon RM, Cloutier CT, Hawkes K. Paternal and grandpaternal ages at conception and descendant telomere lengths in chimpanzees and humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162:201-207. [PMID: 27731903 PMCID: PMC5250553 DOI: 10.1002/ajpa.23109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/17/2016] [Accepted: 09/16/2016] [Indexed: 12/27/2022]
Abstract
Telomeres are repeating DNA at chromosome ends. Telomere length (TL) declines with age in most human tissues, and shorter TL is thought to accelerate senescence. In contrast, older men have sperm with longer TL; correspondingly, older paternal age at conception (PAC) predicts longer TL in offspring. This PAC-effect could be a unique form of transgenerational genetic plasticity that modifies somatic maintenance in response to cues of recent ancestral experience. The PAC-effect has not been examined in any non-human mammals. OBJECTIVES Here, we examine the PAC-effect in chimpanzees (Pan troglodytes). The PAC-effect on TL is thought to be driven by continual production of sperm-the same process that drives increased de novo mutations with PAC. As chimpanzees have both greater sperm production and greater sperm mutation rates with PAC than humans, we predict that the PAC-effect on TL will be more pronounced in chimpanzees. Additionally we examine whether PAC predicts TL of grandchildren. MATERIALS AND METHODS TL were measured using qPCR from DNA from blood samples from 40 captive chimpanzees and 144 humans. RESULTS Analyses showed increasing TL with PAC in chimpanzees (p = .009) with a slope six times that in humans (p = .026). No associations between TL and grandpaternal ages were found in humans or chimpanzees-although statistical power was low. DISCUSSION These results suggest that sperm production rates across species may be a determinant of the PAC-effect on offspring TL. This raises the possibility that sperm production rates within species may influence the TL passed on to offspring.
Collapse
Affiliation(s)
- Dan T.A. Eisenberg
- Department of Anthropology, University of Washington
- Center for Studies in Demography and Ecology, University of Washington
| | | | | | | | | |
Collapse
|
33
|
Tiegs AW, Sachdev NM, Grifo JA, McCulloh DH, Licciardi F. Paternal Age Is Not Associated With Pregnancy Outcomes After Single Thawed Euploid Blastocyst Transfer. Reprod Sci 2017; 24:1319-1324. [DOI: 10.1177/1933719116687660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ashley W. Tiegs
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY, USA
| | - Nidhee M. Sachdev
- Department of Reproductive Endocrinology and Infertility, New York University Fertility Center, New York, NY, USA
| | - Jamie A. Grifo
- Department of Reproductive Endocrinology and Infertility, New York University Fertility Center, New York, NY, USA
- Department of Obstetrics and Gynecology, New York University Fertility Center, New York, NY, USA
| | - David H. McCulloh
- Department of New York University Fertility Center, New York, NY, USA
| | - Frederick Licciardi
- Department of Obstetrics and Gynecology, New York University Fertility Center, New York, NY, USA
- Department of Oocyte Donation Program, New York University Fertility Center, New York, NY, USA
| |
Collapse
|
34
|
Zhao F, Yang Q, Shi S, Luo X, Sun Y. Semen preparation methods and sperm telomere length: density gradient centrifugation versus the swim up procedure. Sci Rep 2016; 6:39051. [PMID: 27958357 PMCID: PMC5153621 DOI: 10.1038/srep39051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 11/09/2022] Open
Abstract
Previous studies have shown that both density gradient centrifugation (DGC) and swim up (SU) procedures can select spermatozoa with longer telomeres for assisted reproduction techniques (ART). However, it is unknown which approach is more effective. The aim of the present study was to compare the effects of these two methods on sperm telomere length (STL). A total of 150 normozoospermic subjects were recruited. STL, DNA fragmentation index (DFI), reactive oxygen species (ROS) content and progressive motility of semen samples were detected before and after the procedures of DGC and SU. When compared to raw semen, the average length of sperm telomeres was significantly longer after the two sperm preparation methods. However, no significant difference was found between the DGC and SU procedures. We also found that semen prepared by the two methods had lower DNA fragmentation, ROS content and sperm progressive motility. However, no significant difference was found in those parameters between the two procedures. This is the first study that compares the effects of the DGC and SU procedures on STL, and the results show that both methods can recover a sperm population with longer STL and better DNA integrity for ART.
Collapse
Affiliation(s)
- Feifei Zhao
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, China
| | - Qingling Yang
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, China
| | - Senlin Shi
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, China
| | - Xiaoyan Luo
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, China
| | - Yingpu Sun
- Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, China
| |
Collapse
|
35
|
Abstract
Post-zygotic variation refers to genetic changes that arise in the soma of an individual and that are not usually inherited by the next generation. Although there is a paucity of research on such variation, emerging studies show that it is common: individuals are complex mosaics of genetically distinct cells, to such an extent that no two somatic cells are likely to have the exact same genome. Although most types of mutation can be involved in post-zygotic variation, structural genetic variants are likely to leave the largest genomic footprint. Somatic variation has diverse physiological roles and pathological consequences, particularly when acquired variants influence the clonal trajectories of the affected cells. Post-zygotic variation is an important confounder in medical genetic testing and a promising avenue for research: future studies could involve analyses of sorted and single cells from multiple tissue types to fully explore its potential.
Collapse
|
36
|
Abstract
Telomerase activity is responsible for the maintenance of chromosome end structures (telomeres) and cancer cell immortality in most human malignancies, making telomerase an attractive therapeutic target. The rationale for targeting components of the telomerase holoenzyme has been strengthened by accumulating evidence indicating that these molecules have extra-telomeric functions in tumour cell survival and proliferation. This Review discusses current knowledge of the biogenesis, structure and multiple functions of telomerase-associated molecules intertwined with recent advances in drug discovery approaches. We also describe the fertile ground available for the pursuit of next-generation small-molecule inhibitors of telomerase.
Collapse
Affiliation(s)
- Greg M Arndt
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Karen L MacKenzie
- Personalised Medicine Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| |
Collapse
|
37
|
Rocca M, Speltra E, Menegazzo M, Garolla A, Foresta C, Ferlin A. Sperm telomere length as a parameter of sperm quality in normozoospermic men. Hum Reprod 2016; 31:1158-63. [DOI: 10.1093/humrep/dew061] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/01/2016] [Indexed: 01/15/2023] Open
|
38
|
Testicular biopsy and cryopreservation for fertility preservation of prepubertal boys with Klinefelter syndrome: a pro/con debate. Fertil Steril 2015; 105:249-55. [PMID: 26748226 DOI: 10.1016/j.fertnstert.2015.12.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022]
Abstract
In about one-half of adult Klinefelter syndrome (KS) patients, spermatozoa can be retrieved by means of testicular biopsy (TESE). Given the expected increase in the number of diagnosed KS patients owing to the use of noninvasive prenatal testing, the probable questions of young KS patients and their parents regarding future fertility, and the fact that widespread apoptosis of spermatogonia occurs at onset of puberty, an attempt to increase the retrieval rates at TESE above those found in adult KS men by undertaking preservation techniques peripubertally has been initiated. To date, however, only a limited number of KS adolescents have been examined, demonstrating no increases in the chances of finding sperm. Furthermore, spermatogonial stem cell and testicular tissue freezing techniques, as well as in vitro maturation strategies, require further validation. Given these controversies, banking testicular tissue from prepubertal KS boys should be performed only in a research framework.
Collapse
|
39
|
Telomere homeostasis in mammalian germ cells: a review. Chromosoma 2015; 125:337-51. [DOI: 10.1007/s00412-015-0555-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/03/2023]
|
40
|
Antunes DMF, Kalmbach KH, Wang F, Dracxler RC, Seth-Smith ML, Kramer Y, Buldo-Licciardi J, Kohlrausch FB, Keefe DL. A single-cell assay for telomere DNA content shows increasing telomere length heterogeneity, as well as increasing mean telomere length in human spermatozoa with advancing age. J Assist Reprod Genet 2015; 32:1685-90. [PMID: 26411311 DOI: 10.1007/s10815-015-0574-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/07/2015] [Indexed: 11/28/2022] Open
Abstract
PURPOSE The effect of age on telomere length heterogeneity in men has not been studied previously. Our aims were to determine the relationship between variation in sperm telomere length (STL), men's age, and semen parameters in spermatozoa from men undergoing in vitro fertilization (IVF) treatment. METHODS To perform this prospective cross-sectional pilot study, telomere length was estimated in 200 individual spermatozoa from men undergoing IVF treatment at the NYU Fertility Center. A novel single-cell telomere content assay (SCT-pqPCR) measured telomere length in individual spermatozoa. RESULTS Telomere length among individual spermatozoa within an ejaculate varies markedly and increases with age. Older men not only have longer STL but also have more variable STL compared to younger men. STL from samples with normal semen parameters was significantly longer than that from samples with abnormal parameters, but STL did not differ between spermatozoa with normal versus abnormal morphology. CONCLUSION The marked increase in STL heterogeneity as men age is consistent with a role for ALT during spermatogenesis. No data have yet reported the effect of age on STL heterogeneity. Based on these results, future studies should expand this modest sample size to search for molecular evidence of ALT in human testes during spermatogenesis.
Collapse
Affiliation(s)
- Danielle M F Antunes
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA.,Graduation Program in Pathology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil, 24033
| | - Keri H Kalmbach
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA
| | - Roberta C Dracxler
- Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | - Michelle L Seth-Smith
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA
| | - Yael Kramer
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA
| | - Julia Buldo-Licciardi
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA
| | - Fabiana B Kohlrausch
- Graduation Program in Pathology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil, 24033
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA. .,Department of Obstetrics and Gynecology, NYU School of Medicine, Laboratory of Reproductive Medicine, 180 Varick Street, New York, NY, 10014, USA.
| |
Collapse
|
41
|
Asghar M, Bensch S, Tarka M, Hansson B, Hasselquist D. Maternal and genetic factors determine early life telomere length. Proc Biol Sci 2015; 282:20142263. [PMID: 25621325 DOI: 10.1098/rspb.2014.2263] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In a broad range of species--including humans--it has been demonstrated that telomere length declines throughout life and that it may be involved in cell and organismal senescence. This potential link to ageing and thus to fitness has triggered recent interest in understanding how variation in telomere length is inherited and maintained. However, previous studies suffer from two main drawbacks that limit the possibility of understanding the relative importance of genetic, parental and environmental influences on telomere length variation. These studies have been based on (i) telomere lengths measured at different time points in different individuals, despite the fact that telomere length changes over life, and (ii) parent-offspring regression techniques, which do not enable differentiation between genetic and parental components of inheritance. To overcome these drawbacks, in our study of a songbird, the great reed warbler, we have analysed telomere length measured early in life in both parents and offspring and applied statistical models (so-called 'animal models') that are based on long-term pedigree data. Our results showed a significant heritability of telomere length on the maternal but not on the paternal side, and that the mother's age was positively correlated with their offspring's telomere length. Furthermore, the pedigree-based analyses revealed a significant heritability and an equally large maternal effect. Our study demonstrates strong maternal influence on telomere length and future studies now need to elucidate possible underlying factors, including which types of maternal effects are involved.
Collapse
|
42
|
Hjelmborg JB, Dalgård C, Mangino M, Spector TD, Halekoh U, Möller S, Kimura M, Horvath K, Kark JD, Christensen K, Kyvik KO, Aviv A. Paternal age and telomere length in twins: the germ stem cell selection paradigm. Aging Cell 2015; 14:701-3. [PMID: 25865872 PMCID: PMC4531084 DOI: 10.1111/acel.12334] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2015] [Indexed: 12/31/2022] Open
Abstract
Telomere length, a highly heritable trait, is longer in offspring of older fathers. This perplexing feature has been attributed to the longer telomeres in sperm of older men and it might be an ‘epigenetic’ mechanism through which paternal age plays a role in telomere length regulation in humans. Based on two independent (discovery and replication) twin studies, comprising 889 twin pairs, we show an increase in the resemblance of leukocyte telomere length between dizygotic twins of older fathers, which is not seen in monozygotic twins. This phenomenon might result from a paternal age-dependent germ stem cell selection process, whereby the selected stem cells have longer telomeres, are more homogenous with respect to telomere length, and share resistance to aging.
Collapse
Affiliation(s)
- Jacob B. Hjelmborg
- Department of Epidemiology, Biostatistics and Biodemography Institute of Public Health University of Southern Denmark Odense 5000 Denmark
- The Danish Twin Registry University of Southern Denmark Odense 5000 Denmark
| | - Christine Dalgård
- Department of Environmental Medicine Institute of Public Health University of Southern Denmark Odense 5000 Denmark
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology King's College London London UK
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology King's College London London UK
| | - Ulrich Halekoh
- Department of Epidemiology, Biostatistics and Biodemography Institute of Public Health University of Southern Denmark Odense 5000 Denmark
| | - Sören Möller
- Department of Epidemiology, Biostatistics and Biodemography Institute of Public Health University of Southern Denmark Odense 5000 Denmark
| | - Masayuki Kimura
- Center of Human Development and Aging Rutgers, The State University of New Jersey New Jersey Medical School Newark NJ 07103 USA
| | - Kent Horvath
- Center of Human Development and Aging Rutgers, The State University of New Jersey New Jersey Medical School Newark NJ 07103 USA
| | - Jeremy D. Kark
- Epidemiology Unit Hebrew University‐Hadassah School of Public Health and Community Medicine Jerusalem 91120 Israel
| | - Kaare Christensen
- Department of Epidemiology, Biostatistics and Biodemography Institute of Public Health University of Southern Denmark Odense 5000 Denmark
- The Danish Twin Registry University of Southern Denmark Odense 5000 Denmark
| | - Kirsten O. Kyvik
- Institute of Regional Health Services Research University of Southern Denmark and Odense Patient data Explorative Network (OPEN) Odense University Hospital Odense Denmark
| | - Abraham Aviv
- Center of Human Development and Aging Rutgers, The State University of New Jersey New Jersey Medical School Newark NJ 07103 USA
| |
Collapse
|
43
|
Yang Q, Zhang N, Zhao F, Zhao W, Dai S, Liu J, Bukhari I, Xin H, Niu W, Sun Y. Processing of semen by density gradient centrifugation selects spermatozoa with longer telomeres for assisted reproduction techniques. Reprod Biomed Online 2015; 31:44-50. [DOI: 10.1016/j.rbmo.2015.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 02/11/2015] [Accepted: 02/24/2015] [Indexed: 11/17/2022]
|
44
|
Gies I, De Schepper J, Tournaye H. Progress and prospects for fertility preservation in prepubertal boys with cancer. Curr Opin Endocrinol Diabetes Obes 2015; 22:203-8. [PMID: 25871958 DOI: 10.1097/med.0000000000000162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW In the past few years, options for fertility preservation in prepubescent boys have enlarged tremendously. RECENT FINDINGS After a long period of studies on spermatogonial stem cell (SSC) transplantation in mice, recently successful use of rhesus monkey SSCs for autologous and allogeneic transplantation was demonstrated. Furthermore, newer protocols on transplantation of SSCs back into the testes and on how to mimic the niche environment have been described. Very importantly, a new multiparametric sorting strategy to eliminate cancer contamination from human testis cell suspension has been clarified. SUMMARY While awaiting for more data on safety issues, retrieval and cryopreservation of testicular tissue prior to cancer therapy should be offered, within an experimental context, to prepubertal boys with cancer who are at high risk of fertility loss.
Collapse
Affiliation(s)
- Inge Gies
- aDivision of Pediatric Endocrinology, Department of Pediatrics bCentre for Reproductive Medicine, UZ Brussel cResearch Group Biology of the Testis, Department of Embryology and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | |
Collapse
|
45
|
Sharma R, Agarwal A, Rohra VK, Assidi M, Abu-Elmagd M, Turki RF. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod Biol Endocrinol 2015; 13:35. [PMID: 25928123 PMCID: PMC4455614 DOI: 10.1186/s12958-015-0028-x] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/09/2015] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, there has been a significant increase in average paternal age when the first child is conceived, either due to increased life expectancy, widespread use of contraception, late marriages and other factors. While the effect of maternal ageing on fertilization and reproduction is well known and several studies have shown that women over 35 years have a higher risk of infertility, pregnancy complications, spontaneous abortion, congenital anomalies, and perinatal complications. The effect of paternal age on semen quality and reproductive function is controversial for several reasons. First, there is no universal definition for advanced paternal ageing. Secondly, the literature is full of studies with conflicting results, especially for the most common parameters tested. Advancing paternal age also has been associated with increased risk of genetic disease. Our exhaustive literature review has demonstrated negative effects on sperm quality and testicular functions with increasing paternal age. Epigenetics changes, DNA mutations along with chromosomal aneuploidies have been associated with increasing paternal age. In addition to increased risk of male infertility, paternal age has also been demonstrated to impact reproductive and fertility outcomes including a decrease in IVF/ICSI success rate and increasing rate of preterm birth. Increasing paternal age has shown to increase the incidence of different types of disorders like autism, schizophrenia, bipolar disorders, and childhood leukemia in the progeny. It is thereby essential to educate the infertile couples on the disturbing links between increased paternal age and rising disorders in their offspring, to better counsel them during their reproductive years.
Collapse
Affiliation(s)
- Rakesh Sharma
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Vikram K Rohra
- Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, Saudi Arabia.
- KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia.
| | - Muhammad Abu-Elmagd
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, Saudi Arabia.
- KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia.
| | - Rola F Turki
- KACST Technology Innovation Center in Personalized Medicine at King AbdulAziz University, Jeddah, Saudi Arabia.
- Obstetrics and Gynecology Department, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.
| |
Collapse
|
46
|
Characterization of Skin Aging-Associated Secreted Proteins (SAASP) Produced by Dermal Fibroblasts Isolated from Intrinsically Aged Human Skin. J Invest Dermatol 2015; 135:1954-1968. [PMID: 25815425 DOI: 10.1038/jid.2015.120] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 12/16/2022]
Abstract
Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited more frequently nuclear foci positive for p53 binding protein 1 and promyelocytic leukemia protein reminiscent of 'DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS)'. Formation of such foci was neither accompanied by increased DNA double strand breaks, nor decreased cell viability, nor telomere shortening. However, it was associated with the development of a secretory phenotype, indicating incipient cell senescence. By quantitative analysis of the entire secretome present in conditioned cell culture supernatant, combined with a multiplex cytokine determination, we identified 998 proteins secreted by intrinsically aged NHDFs in culture. Seventy of these proteins exhibited an age-dependent secretion pattern and were accordingly denoted 'skin aging-associated secreted proteins (SAASP)'. Systematic comparison of SAASP with the classical senescence-associated secretory phenotype (SASP) revealed that matrix degradation as well as proinflammatory processes are common aspects of both conditions. However, secretion of 27 proteins involved in the biological processes of 'metabolism' and 'adherens junction interactions' was unique for NHDFs isolated from intrinsically aged skin. In conclusion, fibroblasts isolated from intrinsically aged skin exhibit some, but not all, molecular hallmarks of cellular senescence. Most importantly, they secrete a unique pattern of proteins that is distinct from the canonical SASP and might reflect specific processes of skin aging.
Collapse
|
47
|
|
48
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight the most important advances in the field of genetics of male infertility, with particular attention to primary articles dealing with the identification of new genetic and epigenetic markers that could be translated into clinical practice in the near future. RECENT FINDINGS Copy number variations (CNVs) of the Y chromosome (gr/gr) deletions could already be included in the diagnostic workup of infertile men, although confirming studies are needed for CNVs on the X chromosome, as well for polymorphisms in some autosomal genes and telomere length in sperm. Methods need to be further standardized before sperm DNA analysis could be included in clinical practice, although they can help in defining some forms of idiopathic infertility. Epigenetic biomarkers are potentially important in elucidating the cause of idiopathic male infertility. Polymorphisms in FSHB/FSHR could be used in clinical practice to diagnose some forms of male infertility and as a pharmacogenetic marker for FSH treatment. SUMMARY New genetic causes and genetic risk factors have been identified in recent years and new technologies for genomic and postgenomic analyses (arrays, next-generation sequencing, proteomics, metabolomics, global methylome analysis and so on) are promising research fields. It is presumed that some of these genetic and epigenetic tests will be introduced in clinical practice in the near future.
Collapse
|
49
|
Reig-Viader R, Capilla L, Vila-Cejudo M, Garcia F, Anguita B, Garcia-Caldés M, Ruiz-Herrera A. Telomere homeostasis is compromised in spermatocytes from patients with idiopathic infertility. Fertil Steril 2014; 102:728-738.e1. [DOI: 10.1016/j.fertnstert.2014.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 01/06/2023]
|
50
|
Abstract
Most organisms, including ourselves, are exposed to environmental stressors at various points during life, and responses to such stressors have been optimised by evolution to give the best fitness outcomes. It is expected that environmental change will substantially increase long-term stress exposure in many animal groups in the coming decades. A major challenge for biologists is to understand and predict how this will influence individuals, populations and ecosystems, and over what time scale such effects will occur. This requires a multi-disciplinary approach, combining studies of mechanisms with studies of fitness consequences for individuals and their descendants. In this review, I discuss the positive and negative fitness consequences of responses to stressful environments, particularly during early life, and with an emphasis on studies in birds. As many of the mechanisms underlying stress responses are highly conserved across the vertebrate groups, the findings from these studies have general applicability when interpreted in a life history context. One important route that has recently been identified whereby chronic stress exposure can affect health and longevity over long time frames is via effects on telomere dynamics. Much of this work has so far been done on humans, and is correlational in nature, but studies on other taxa, and experimental work, are increasing. I summarise the relevant aspects of vertebrate telomere biology and critically appraise our current knowledge with a view to pointing out important future research directions for our understanding of how stress exposure influences life histories.
Collapse
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|