1
|
Soni DK, Cabrera-Luque J, Kar S, Ahmed A, Sen C, Devaney J, Biswas R. Suppression of miR-155 Attenuates Lung Cytokine Storm Induced by SARS-CoV-2 Infection. J Interferon Cytokine Res 2025; 45:150-161. [PMID: 39950973 DOI: 10.1089/jir.2024.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a deadly human viral disease with a high rate of infection, morbidity, and mortality. Although vaccines and antiviral treatments are available, hospitalizations remain steady, and concerns about long-term consequences persist. Therefore, there is a great urgency to develop novel therapies. Here, we analyzed the role of miR-155, one of the most powerful drivers of host antiviral responses including immune and inflammatory responses, in the pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Endogenous microRNAs (miRNAs, miRs) are key molecules in preventing viral entry and replication while building an antiviral cellular defense. Our study reveals that miR-155 expression is elevated in patients with COVID-19. Using a mouse model transgenic for human angiotensin-converting enzyme receptor 2, we evaluated the potential of anti-miR-155 therapy. Treating SARS-CoV-2-infected mice with anti-miR-155 significantly reduced miR-155 expression, improved survival, and slightly increased body weight. Notably, these mice showed altered expression of cytokines in the lungs. These findings suggest anti-miR-155 could be a promising therapy to mitigate the cytokine storm and long-lasting symptoms induced by SARS-CoV-2 infection, improving public health outcomes and enhancing global pandemic preparedness.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | - Anwar Ahmed
- Department of Preventive Medicine and Biostatistics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Chaitali Sen
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Shahid M, Syed R, Ansari MA, Shafi G, John J. Blood-based microRNA profiling unveils complex molecular dynamics in breast cancer. J Appl Genet 2024; 65:549-557. [PMID: 38478327 DOI: 10.1007/s13353-024-00852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Breast cancer, a genetically intricate disease with diverse subtypes, exhibits heightened incidence globally. In this study, we aimed to investigate blood-based microRNAs (miRNAs) as potential biomarkers for breast cancer. The primary objectives were to explore the role of miRNAs in cancer-related processes, assess their differential expression between breast cancer patients and healthy individuals, and contribute to a deeper understanding of the molecular underpinnings of breast cancer. METHODS MiRNA extraction was performed on 40 breast cancer patients and adjacent normal tissues using a commercial RNA isolation kit. Total RNA quantification and quality assessment were conducted with advanced technologies. MiRNA profiling involved reverse transcription, labeling, and hybridization on Agilent human miRNA arrays (V2). Bioinformatics analysis utilized the DIANA system for target gene prediction and the DIANA-mirPath tool for pathway enrichment analysis. Selected miRNAs underwent validation through quantitative real-time PCR. RESULTS Principal component analysis revealed overlapping miRNA expression patterns in primary and malignant breast tumors, underscoring the genetic complexity involved. Statistical analysis identified 54 downregulated miRNAs in malignant tumors and 38 in primary tumors compared to controls. Bioinformatics analysis implicated several pathways, including Wnt, TGF-b, ErbB, and MAPK signaling. Validation through qRT-PCR confirmed altered expression of hsa-miR-130a, hsa-miR-21, hsa-miR-223, and hsa-let-7c key miRNAs, highlighting their significance in breast cancer. The results from microarray were further validated by qPCR and the expression of which are downregulated in breast cancer was detected. CONCLUSION This study provides significant insights into distinct miRNA expression patterns in normal and malignant breast tissues. The overlapping miRNA profiles in primary and malignant tumors underscore the complexity of genetic regulation in breast cancer. The identification of deregulated miRNAs and affected pathways contributes to our understanding of breast cancer pathogenesis. The validated miRNAs hold potential as diagnostic and prognostic markers, offering avenues for further clinical exploration in breast cancer research.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia.
| | - M A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Gowher Shafi
- Department of Translational Research & Computational Medicine, iNDEX Technology, Cupertino, USA
| | - James John
- Department of Medical Laboratory Technology, School of Allied Health Science, Sathyabama Institute of Science and Technology, Chennai, India.
| |
Collapse
|
3
|
Hu X, Ye Q, Lu H, Wu Z, Chen S, Zheng R. Estrogen-mediated DNMT1 and DNMT3A recruitment by EZH2 silences miR-570-3p that contributes to papillary thyroid malignancy through DPP4. Clin Epigenetics 2024; 16:81. [PMID: 38890707 PMCID: PMC11184720 DOI: 10.1186/s13148-024-01685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is a common endocrine malignancy. Studies have indicated that estrogen can regulate the expression of miRNAs in numerous malignancies. MiR-570-3p has been shown to have a regulatory function in various cancers. However, studies of the regulatory function of miR-570-3p and a direct link between estrogen (especially estradiol E2) and miR-570-3p in PTC have not been done. METHODS Expression of miR-570-3p and its downstream target DPP4 in PTC tissues and cells was predicted using bioinformatics and validated by qRT-PCR and western blot assays. We then performed a series of gain-and-loss experiments to assess the functional significance of miR-570-3p/DPP4 axis in PTC progression in vitro and in vivo. Additionally, the methylation of the miR-570-3p promoter region was examined via bioinformatics analysis and MSP. Finally, the effects of E2 on PTC progression and the correlation between DNMT1/DNMT3A and EZH2 were predicted by bioinformatic tools and proved by luciferase reporter, ChIP, and co-IP assays. RESULTS In PTC tumor tissues and cell lines, there was a lower expression level and a higher methylation level of miR-570-3p compared to normal tissues and cell lines. DPP4 was identified as the downstream target of miR-570-3p. Overexpression of miR-570-3p reduced the proliferative, migratory, and invasive capabilities, and promoted apoptosis, while overexpression of DPP4 reversed these effects in PTC cells. It was also discovered that DNMT1 and DNMT3A increased the CpG methylation level of the miR-570-3p promoter in an EZH2-dependent manner, which led to decreased expression of miR-570-3p. Furthermore, we observed that estrogen (E2) enhanced the methylation of miR-570-3p and suppressed its expression levels, resulting in augmented tumor growth in vivo in PTC. CONCLUSION Estrogen regulates the EZH2/DNMTs/miR-570-3p/DPP4 signaling pathway to promote PTC progression.
Collapse
Affiliation(s)
- Xiarong Hu
- Department of General Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong, China
| | - Qingyao Ye
- Department of General Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong, China
| | - HuanQuan Lu
- Department of General Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong, China
| | - Zhiming Wu
- Department of General Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong, China
| | - Siyuan Chen
- Department of General Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong, China
| | - Ruinian Zheng
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, Guangdong, China.
| |
Collapse
|
4
|
Fattahi M, Shahrabi S, Saadatpour F, Rezaee D, Beyglu Z, Delavari S, Amrolahi A, Ahmadi S, Bagheri-Mohammadi S, Noori E, Majidpoor J, Nouri S, Aghaei-Zarch SM, Falahi S, Najafi S, Le BN. microRNA-382 as a tumor suppressor? Roles in tumorigenesis and clinical significance. Int J Biol Macromol 2023; 250:125863. [PMID: 37467828 DOI: 10.1016/j.ijbiomac.2023.125863] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs belonging to a class of non-coding RNAs with an average length of 18-22 nucleotides. Although not able to encode any protein, miRNAs are vastly studied and found to play role in various human physiologic as well as pathological conditions. A huge number of miRNAs have been identified in human cells whose expression is straightly regulated with crucial biological functions, while this number is constantly increasing. miRNAs are particularly studied in cancers, where they either can act with oncogenic function (oncomiRs) or tumor-suppressors role (referred as tumor-suppressor/oncorepressor miRNAs). miR-382 is a well-studied miRNA, which is revealed to play regulatory roles in physiological processes like osteogenic differentiation, hematopoietic stem cell differentiation and normal hematopoiesis, and liver progenitor cell differentiation. Notably, miR-382 deregulation is reported in pathologic conditions, such as renal fibrosis, muscular dystrophies, Rett syndrome, epidural fibrosis, atrial fibrillation, amelogenesis imperfecta, oxidative stress, human immunodeficiency virus (HIV) replication, and various types of cancers. The majority of oncogenesis studies have claimed miR-382 downregulation in cancers and suppressor impact on malignant phenotype of cancer cells in vitro and in vivo, while a few studies suggest opposite findings. Given the putative role of this miRNA in regulation of oncogenesis, assessment of miR-382 expression is suggested in a several clinical investigations as a prognostic/diagnostic biomarker for cancer patients. In this review, we have an overview to recent studies evaluated the role of miR-382 in oncogenesis as well as its clinical potential.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Zahra Beyglu
- Department of Genetics, Qom Branch, Islamic Azad University, Qom, Iran
| | - Sana Delavari
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anita Amrolahi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Effat Noori
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shadi Nouri
- Department of Radiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Binh Nguyen Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
5
|
Marchesin S, Menotti L, Giachelle F, Silvello G, Alonso O. Building a large gene expression-cancer knowledge base with limited human annotations. Database (Oxford) 2023; 2023:baad061. [PMID: 37768281 PMCID: PMC10533344 DOI: 10.1093/database/baad061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Cancer prevention is one of the most pressing challenges that public health needs to face. In this regard, data-driven research is central to assist medical solutions targeting cancer. To fully harness the power of data-driven research, it is imperative to have well-organized machine-readable facts into a knowledge base (KB). Motivated by this urgent need, we introduce the Collaborative Oriented Relation Extraction (CORE) system for building KBs with limited manual annotations. CORE is based on the combination of distant supervision and active learning paradigms and offers a seamless, transparent, modular architecture equipped for large-scale processing. We focus on precision medicine and build the largest KB on 'fine-grained' gene expression-cancer associations-a key to complement and validate experimental data for cancer research. We show the robustness of CORE and discuss the usefulness of the provided KB. Database URL https://zenodo.org/record/7577127.
Collapse
Affiliation(s)
- Stefano Marchesin
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6b, Padova 35131, Italy
| | - Laura Menotti
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6b, Padova 35131, Italy
| | - Fabio Giachelle
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6b, Padova 35131, Italy
| | - Gianmaria Silvello
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6b, Padova 35131, Italy
| | - Omar Alonso
- Applied Science, Amazon, 3075 Olcott St., Santa Clara, California 95054, USA
| |
Collapse
|
6
|
Quesnelle DC, Bendena WG, Chin-Sang ID. A Compilation of the Diverse miRNA Functions in Caenorhabditis elegans and Drosophila melanogaster Development. Int J Mol Sci 2023; 24:ijms24086963. [PMID: 37108126 PMCID: PMC10139094 DOI: 10.3390/ijms24086963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
MicroRNAs are critical regulators of post-transcriptional gene expression in a wide range of taxa, including invertebrates, mammals, and plants. Since their discovery in the nematode, Caenorhabditis elegans, miRNA research has exploded, and they are being identified in almost every facet of development. Invertebrate model organisms, particularly C. elegans, and Drosophila melanogaster, are ideal systems for studying miRNA function, and the roles of many miRNAs are known in these animals. In this review, we compiled the functions of many of the miRNAs that are involved in the development of these invertebrate model species. We examine how gene regulation by miRNAs shapes both embryonic and larval development and show that, although many different aspects of development are regulated, several trends are apparent in the nature of their regulation.
Collapse
Affiliation(s)
| | - William G Bendena
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
7
|
Shinde SS, Ahmed S, Malik JA, Hani U, Khanam A, Ashraf Bhat F, Ahmad Mir S, Ghazwani M, Wahab S, Haider N, Almehizia AA. Therapeutic Delivery of Tumor Suppressor miRNAs for Breast Cancer Treatment. BIOLOGY 2023; 12:467. [PMID: 36979159 PMCID: PMC10045434 DOI: 10.3390/biology12030467] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
The death rate from breast cancer (BC) has dropped due to early detection and sophisticated therapeutic options, yet drug resistance and relapse remain barriers to effective, systematic treatment. Multiple mechanisms underlying miRNAs appear crucial in practically every aspect of cancer progression, including carcinogenesis, metastasis, and drug resistance, as evidenced by the elucidation of drug resistance. Non-coding RNAs called microRNAs (miRNAs) attach to complementary messenger RNAs and degrade them to inhibit the expression and translation to proteins. Evidence suggests that miRNAs play a vital role in developing numerous diseases, including cancer. They affect genes critical for cellular differentiation, proliferation, apoptosis, and metabolism. Recently studies have demonstrated that miRNAs serve as valuable biomarkers for BC. The contrast in the expression of miRNAs in normal tissue cells and tumors suggest that miRNAs are involved in breast cancer. The important aspect behind cancer etiology is the deregulation of miRNAs that can specifically influence cellular physiology. The main objective of this review is to emphasize the role and therapeutic capacity of tumor suppressor miRNAs in BC and the advancement in the delivery system that can deliver miRNAs specifically to cancerous cells. Various approaches are used to deliver these miRNAs to the cancer cells with the help of carrier molecules, like nanoparticles, poly D, L-lactic-co-glycolic acid (PLGA) particles, PEI polymers, modified extracellular vesicles, dendrimers, and liposomes. Additionally, we discuss advanced strategies of TS miRNA delivery techniques such as viral delivery, self-assembled RNA-triple-helix hydrogel drug delivery systems, and hyaluronic acid/protamine sulfate inter-polyelectrolyte complexes. Subsequently, we discuss challenges and prospects on TS miRNA therapeutic delivery in BC management so that miRNAs will become a routine technique in developing individualized patient profiles.
Collapse
Affiliation(s)
- Sonali S. Shinde
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad 382355, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
- Department of Biomedical Engineering, Indian Institute of Technology, Rupnagar 140001, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Afreen Khanam
- Department of Pharmacognosy and Phytochemistry, Jamia Hamdard, New Delhi 110062, India
| | | | - Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Jammu and Kashmir, Hazratbal, Srinagar 190006, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Chadda KR, Blakey EE, Coleman N, Murray MJ. The clinical utility of dysregulated microRNA expression in paediatric solid tumours. Eur J Cancer 2022; 176:133-154. [PMID: 36215946 DOI: 10.1016/j.ejca.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.
Collapse
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ellen E Blakey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
9
|
Ebrahimi N, Faghihkhorasani F, Fakhr SS, Moghaddam PR, Yazdani E, Kheradmand Z, Rezaei-Tazangi F, Adelian S, Mobarak H, Hamblin MR, Aref AR. Tumor-derived exosomal non-coding RNAs as diagnostic biomarkers in cancer. Cell Mol Life Sci 2022; 79:572. [PMID: 36308630 PMCID: PMC11802992 DOI: 10.1007/s00018-022-04552-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
Abstract
Almost all clinical oncologists agree that the discovery of reliable, accessible, and non-invasive biomarkers is necessary to decrease cancer mortality. It is possible to employ reliable biomarkers to diagnose cancer in the early stages, predict the patient prognosis, follow up the response to treatment, and estimate the risk of disease recurrence with high sensitivity and specificity. Extracellular vesicles (EVs), especially exosomes, have been the focus of translational research to develop such biomarkers over the past decade. The abundance and distribution of exosomes in bodily fluids, including serum, saliva, and urine, as well as their ability to transport various biomolecules (nucleic acids, proteins, and lipids) derived from their parent cells, make exosomes reliable, accessible, and potent biomarkers for diagnosis and follow-up of solid and hematopoietic tumors. In addition, exosomes play a vital role in various cellular processes, including tumor progression, by participating in intercellular communication. Although these advantages underline the high potential of tumor-derived exosomes as diagnostic biomarkers, the lack of standardized effective methods for their isolation, identification, and precise characterization makes their application challenging in clinical settings. We discuss the importance of non-coding RNAs (ncRNAs) in cellular processes, and the role of tumor-derived exosomes containing ncRNAs as potential biomarkers in several types of cancer. In addition, the advantages and challenges of these studies for translation into clinical applications are covered.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | - Parichehr Roozbahani Moghaddam
- Department of Molecular Genetics, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tehran, Mazandaran, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Kheradmand
- Department of Agriculture, Islamic Azad University Maragheh Branch, Maragheh, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Halimeh Mobarak
- Clinical Pathologist, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
10
|
Shaw P, Lokhotiya K, Kumarasamy C, Sunil K, Suresh D, Shetty S, Muthukaliannan GK, Baxi S, Mani RR, Sivanandy P, Chandramoorthy HC, Gupta MM, Samiappan S, Jayaraj R. Mapping Research on miRNAs in Cancer: A Global DataAnalysis and Bibliometric Profiling Analysis. PATHOPHYSIOLOGY 2022; 29:66-80. [PMID: 35366290 PMCID: PMC8950962 DOI: 10.3390/pathophysiology29010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
miRNAs biomarkers are emerging as an essential part of clinical oncology. Their oncogenic and tumour suppressor properties playing a role in malignancy has generated interest in their potential for use in disease prognosis. While several studies on miRNA have been carried out across the globe, evaluating the clinical implications of miRNAs in cancer diagnosis and prognosis research has currently not been attempted. A study delineating the area of miRNA research, including the topics presently being focused on, the seminal papers in this field, and the direction of research interest, does not exist. This study aims to conduct a large-scale, global data analysis and bibliometric profiling analysis of studies to evaluate the research output of clinical implications of miRNAs in cancer diagnosis and prognosis listed in the SCOPUS database. A systematic search strategy was followed to identify and extract all relevant studies, subsequently analysed to generate a bibliometric map. SPSS software (version 27) was used to calculate bibliometric indicators or parameters for analysis, such as year and country of affiliation with leading authors, journals, and institutions. It is also used to analyse annual research outputs, including total citations and the number of times it has been cited with productive nations and H-index. The number of global research articles retrieved for miRNA-Cancer research over the study period 2003 to 2019 was 18,636. Between 2012 and 2019, the growth rate of global publications is six times (n = 15,959; 90.71 percent articles) that of 2003 to 2011. (2704; 9.29 per cent articles). China published the most publications in the field of miRNA in cancer (n = 7782; 41%), while the United States had the most citations (n = 327,538; 48%) during the time span. Of these journals, Oncotarget has the highest percentage of article publications. The journal Cancer Research had the most citations (n = 41,876), with 6.20 per cent (n = 41,876). This study revealed a wide variety of journals in which miRNA-Cancer research are published; these bibliometric parameters exhibit crucial clinical information on performance assessment of research productivity and quality of research output. Therefore, this study provides a helpful reference for clinical oncologists, cancer scientists, policy decision-makers and clinical data researchers.
Collapse
Affiliation(s)
- Peter Shaw
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
- Menzies School of Health Research, Darwin 0810, Australia
| | - Kartik Lokhotiya
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India; (K.L.); (G.K.M.)
| | - Chellan Kumarasamy
- School of Health and Medical Sciences, Curtin University, Perth 6102, Australia;
| | - Krishnan Sunil
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Deepa Suresh
- Division of Endocrinology, Department of Internal Medicine, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Sameep Shetty
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, A Constituent of MAHE, Manipal 576104, India;
| | | | - Siddhartha Baxi
- Genesis Care Gold Coast Radiation Oncologist, John Flynn Hospital, Tugun 4224, Australia;
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia;
| | - Palanisamy Sivanandy
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Harish C. Chandramoorthy
- Stem Cells and Regenerative Medicine Unit, Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha 56000, Saudi Arabia;
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago;
| | - Suja Samiappan
- Department of Biochemistry, Bharathiar University, Coimbatore 641046, India;
| | - Rama Jayaraj
- Northern Territory Institute of Research and Training, Tiwi 0810, Australia
- Correspondence:
| |
Collapse
|
11
|
Sun S, Wang W, Hu X, Zheng C, Xiang Q, Yang Q, Zhang J, Shen ZF, Wu ZS. A sensing system constructed by combining a structure-switchable molecular beacon with nicking-enhanced rolling circle amplification for highly sensitive miRNA detection. Analyst 2022; 147:1937-1943. [DOI: 10.1039/d1an02218k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel amplification assay strategy is developed for the highly sensitive detection of miRNA-21 based on a combination of a structure-switchable molecular beacon with nicking-enhanced rolling circle amplification.
Collapse
Affiliation(s)
- Shujuan Sun
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Wenqing Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Xuemei Hu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Cheng Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qi Xiang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qingguo Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhi-Fa Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| |
Collapse
|
12
|
The role of microRNAs in COVID-19 with a focus on miR-200c. J Circ Biomark 2022; 11:14-23. [PMID: 35356072 PMCID: PMC8939267 DOI: 10.33393/jcb.2022.2356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/22/2022] [Indexed: 12/11/2022] Open
Abstract
Objective: Epigenetics is a quickly spreading scientific field, and the study of epigenetic regulation in various diseases such as infectious diseases is emerging. The microribonucleic acids (miRNAs) as one of the types of epigenetic processes bind to their target messenger RNAs (mRNAs) and regulate their stability and/or translation. This study aims to evaluate non-coding RNAs (ncRNAs) with a focus on miR-200c in COVID-19. In this review, we first define the epigenetics and miRNAs, and then the role of miRNAs in diseases focusing on lung diseases is explained. Finally, in this study, we will investigate the role and position of miRNAs with a focus on miR-200c in viral and severe acute respiratory syndrome–related coronavirus (SARS-CoV2) infections. Methods: Systematic search of MEDLINE, PubMed, Web of Science, Embase, and Cochrane Library was conducted for all relative papers from 2000 to 2021 with the limitations of the English language. Finally, we selected 128 articles which fit the best to our objective of study, among which 5 articles focused on the impact of miR-200c. Results: Due to the therapeutic results of various drugs in different races and populations, epigenetic processes, especially miRNAs, are important. The overall results showed that different types of miRNAs can be effective on the process of various lung diseases through different target pathways and genes. It is likely that amplified levels of miR-200c may lead to decreased angiotensin-converting enzyme-2 (ACE2) expression, which in turn may increase the potential of infection, inflammation, and the complications of coronavirus disease. Conclusion: miR-200c and its correlation with ACE2 can be used as early prognostic and diagnostic markers.
Collapse
|
13
|
New insights into exosome mediated tumor-immune escape: Clinical perspectives and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2021; 1876:188624. [PMID: 34487817 DOI: 10.1016/j.bbcan.2021.188624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in extracellular vesicle biology have uncovered a substantial role in maintaining cell homeostasis in health and disease conditions by mediating intercellular communication, thus catching the scientific community's attention worldwide. Extracellular microvesicles, some called exosomes, functionally transfer biomolecules such as proteins and non-coding RNAs from one cell to another, influencing the local environment's biology. Although numerous advancements have been made in treating cancer patients with immune therapy, controlling the disease remains a challenge in the clinic due to tumor-driven interference with the immune response and inability of immune cells to clear cancer cells from the body. The present review article discusses the recent findings and knowledge gaps related to the role of exosomes derived from tumors and the tumor microenvironment cells in tumor escape from immunosurveillance. Further, we highlight examples where exosomal non-coding RNAs influence immune cells' response within the tumor microenvironment and favor tumor growth and progression. Therefore, exosomes can be used as a therapeutic target for the treatment of human cancers.
Collapse
|
14
|
Pedroza DA, Ramirez M, Rajamanickam V, Subramani R, Margolis V, Gurbuz T, Estrada A, Lakshmanaswamy R. miRNome and Functional Network Analysis of PGRMC1 Regulated miRNA Target Genes Identify Pathways and Biological Functions Associated With Triple Negative Breast Cancer. Front Oncol 2021; 11:710337. [PMID: 34350123 PMCID: PMC8327780 DOI: 10.3389/fonc.2021.710337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Increased expression of the progesterone receptor membrane component 1, a heme and progesterone binding protein, is frequently found in triple negative breast cancer tissue. The basis for the expression of PGRMC1 and its regulation on cellular signaling mechanisms remain largely unknown. Therefore, we aim to study microRNAs that target selective genes and mechanisms that are regulated by PGRMC1 in TNBCs. Methods To identify altered miRNAs, whole human miRNome profiling was performed following AG-205 treatment and PGRMC1 silencing. Network analysis identified miRNA target genes while KEGG, REACTOME and Gene ontology were used to explore altered signaling pathways, biological processes, and molecular functions. Results KEGG term pathway analysis revealed that upregulated miRNAs target specific genes that are involved in signaling pathways that play a major role in carcinogenesis. While multiple downregulated miRNAs are known oncogenes and have been previously demonstrated to be overexpressed in a variety of cancers. Overlapping miRNA target genes associated with KEGG term pathways were identified and overexpression/amplification of these genes was observed in invasive breast carcinoma tissue from TCGA. Further, the top two genes (CCND1 and YWHAZ) which are highly genetically altered are also associated with poorer overall survival. Conclusions Thus, our data demonstrates that therapeutic targeting of PGRMC1 in aggressive breast cancers leads to the activation of miRNAs that target overexpressed genes and deactivation of miRNAs that have oncogenic potential.
Collapse
Affiliation(s)
- Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Matthew Ramirez
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Venkatesh Rajamanickam
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Ramadevi Subramani
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States.,Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Victoria Margolis
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Tugba Gurbuz
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Adriana Estrada
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States.,Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
15
|
Mahmoud MM, Sanad EF, Hamdy NM. MicroRNAs' role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36984-37000. [PMID: 34046834 DOI: 10.1007/s11356-021-14550-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 05/28/2023]
Abstract
The discovery of microRNAs (miRNAs) 20 years ago has advocated a new era of "small molecular genetics." About 2000 miRNAs are present that regulate one third of the genome. MiRNA dysregulated expression arising as a response to our environment insult or stress or changes may contribute to several diseases, namely non-communicable diseases, including tumor growth. Their presence in body fluids, reflecting level alteration in various cancers, merit circulating miRNAs as the "next-generation biomarkers" for early-stage tumor diagnosis and/or prognosis. Herein, we performed a comprehensive literature search focusing on the origin, biosynthesis, and role of miRNAs and summarized the foremost studies centering on miR value as non-invasive biomarkers in different environment-related non-communicable diseases, including various cancer types. Moreover, during chemotherapy, many miRNAs were linked to multidrug resistance, via modulating numerous, environment triggered or not, biological processes and/or pathways that will be highlighted as well.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Eman F Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt.
| |
Collapse
|
16
|
The Role of miR-155 in Nutrition: Modulating Cancer-Associated Inflammation. Nutrients 2021; 13:nu13072245. [PMID: 34210046 PMCID: PMC8308226 DOI: 10.3390/nu13072245] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Nutrition plays an important role in overall human health. Although there is no direct evidence supporting the direct involvement of nutrition in curing disease, for some diseases, good nutrition contributes to disease prevention and our overall well-being, including energy level, optimum internal function, and strength of the immune system. Lately, other major, but more silent players are reported to participate in the body’s response to ingested nutrients, as they are involved in different physiological and pathological processes. Furthermore, the genetic profile of an individual is highly critical in regulating these processes and their interactions. In particular, miR-155, a non-coding microRNA, is reported to be highly correlated with such nutritional processes. In fact, miR-155 is involved in the orchestration of various biological processes such as cellular signaling, immune regulation, metabolism, nutritional responses, inflammation, and carcinogenesis. Thus, this review aims to highlight those critical aspects of the influence of dietary components on gene expression, primarily on miR-155 and its role in modulating cancer-associated processes.
Collapse
|
17
|
Cui D, Zhu Y, Yan D, Lee NPY, Han L, Law S, Tsao GSW, Cheung ALM. Dual inhibition of cMET and EGFR by microRNA-338-5p suppresses metastasis of esophageal squamous cell carcinoma. Carcinogenesis 2021; 42:995-1007. [PMID: 34089582 DOI: 10.1093/carcin/bgab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs, as a group of post-transcriptional regulators, regulate multiple pathological processes including metastasis during tumor development. Here, we demonstrated the metastasis-suppressive function of microRNA (miR)-338-5p in esophageal squamous cell carcinoma (ESCC). Overexpression of miR-338-5p had inhibitory effect on invasive ability of ESCC cells and extracellular matrix degradation, whereas silencing miR-338-5p had opposite effects. Mechanistically, miR-338-5p directly targeted the 3' untranslated regions of hepatocellular growth factor receptor cMet (cMET) and epidermal growth factor receptor (EGFR). As a result, miR-338-5p inhibited the downstream signaling cascades of cMET and EGFR and repressed cMET- and EGFR-mediated ESCC cell invasion. Re-expression of cMET or EGFR in miR-338-5p overexpressing ESCC cells was sufficient to derepress ESCC cell invasion both in vitro and in vivo. We further showed that such manipulation downregulated the expression and secretion of matrix metalloproteinases 2 and 9, which resulted in impaired extracellular matrix degradation and cell invasion. Most importantly, systemic delivery of miR-338-5p mimic significantly inhibited metastasis of ESCC cells in nude mice. Taken together, our results uncovered a previously unknown mechanism through which miR-338-5p suppresses ESCC invasion and metastasis by regulating cMET/EGFR-matrix metalloproteinase 2/9 axis and highlighted the potential significance of miR-338-5p-based therapy in treating patients with metastatic ESCC.
Collapse
Affiliation(s)
- Di Cui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Yun Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Dongdong Yan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Nikki P Y Lee
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Liang Han
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Simon Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - George S W Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Annie L M Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Circulating Exosomal miR-96 as a Novel Biomarker for Radioresistant Non-Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5893981. [PMID: 33727921 PMCID: PMC7937465 DOI: 10.1155/2021/5893981] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
Patients with non-small-cell lung cancer (NSCLC) frequently develop radioresistance, resulting in poor response to radiation and unfavourable prognosis. Early detection of radioresistance hence can guide the adjustment of treatment regimens in time. Exosomes are lipid bilayer-enclosed vesicles with sub-micrometer size that are released by various cells. Exosomes contain a tissue-specific signature wherein a variety of proteins and nucleic acids are selectively packaged. Growing evidence shows exosomes are involved in cancer pathophysiology and exosomes as the latest addition to the liquid biopsy portfolio have been used in cancer diagnosis. Compared to cell free RNA, exosomal lipid envelope can effectively protect RNA cargo against degradation. Therefore, exosomes may hold great promise for the identification of radioresistance. Here, we report six plasma exosomal miRNAs could be used to distinguish radioresistant NSCLC patients from radiosensitive NSCLC patients and to evaluate the prognosis of NSCLC. Samples were obtained from 52 NSCLC patients with or without radioresistance and 45 age-matched healthy volunteers. Exosomes in 1 ml plasma were isolated followed by extraction of small RNA. The expression levels of miRNAs were determined by quantitative real-time PCR. Potential miRNA markers were further evaluated in additional 52 NSCLC patients. We found exosomal miR-1246 and miR-96 are significantly overexpressed in NSCLC patients. Moreover, exosomal miR-96 in patients with radioresistant NSCLC is significantly higher than that of controls. Exosomal miR-96 also demonstrates a significant correlation with vascular invasion and poor overall survival. Altogether, our results indicate that exosomal miR-96 could be a non-invasive diagnostic and prognostic marker of radioresistant NSCLC.
Collapse
|
19
|
Hsa-miR-3658 down-regulates OCT4 gene expression followed by suppressing SW480 cell proliferation and migration. Biochem J 2020; 477:2281-2293. [PMID: 32478824 DOI: 10.1042/bcj20190619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023]
Abstract
The pluripotency factor, OCT4 gene is a stemness marker that is involved in the tumorigenicity of different cancer types and knowing about molecular mechanisms of its regulation is crucially important. To date, a few microRNAs (miRNAs) are known to be regulators of OCT4 gene expression. Looking for the novel miRNAs which are capable of regulating OCT4 gene expression, our bioinformatics analysis introduced hsa-miR-3658 (miR-3658) as a bona fide candidate. Then, RT-qPCR results indicated that miR-3658 expression is decreased in colorectal cancer (CRC) tumor tissues, compared with normal pairs. Furthermore, RT-qPCR and western blot analysis showed that the OCT4 gene has been down-regulated following the miR-3658 overexpression. Consistently, dual-luciferase assay supported the direct interaction of miR-3658 with the 3'-UTR sequence of OCT4 gene. Unlike in HCT116 cells, overexpression of miR-3658 in SW480 cells brought about growth inhibition, cell cycle arrest and reduced cell migration, detected by flow cytometry, and scratch test assay. Overall, these findings demonstrated that miR-3658 as a tumor suppressor miRNA exerts its effect against OCT4 gene expression, and it has the potential of being used as a prognostic marker and therapeutic target against colorectal cancer.
Collapse
|
20
|
Yao K, Wei L, Zhang J, Wang C, Wang C, Qin C, Li S. Prognostic values of GPNMB identified by mining TCGA database and STAD microenvironment. Aging (Albany NY) 2020; 12:16238-16254. [PMID: 32833670 PMCID: PMC7485698 DOI: 10.18632/aging.103646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 12/29/2022]
Abstract
The survival rate of stomach adenocarcinoma patients with immune and stromal scores and different clinicopathological features obtained from the TCGA datasets was systematically compared. A list of genes that are correlated with stomach adenocarcinoma microenvironment were extracted using the TCGA database to predict the prognosis and survival. In addition, the differentially expressed genes were extracted by comparing the immune and stromal scores of the groups. The protein-protein interaction network, and functional and pathway enrichment analyses of differentially expressed genes were performed. A total of 8 hub genes were selected from the differentially expressed genes to predict the overall survival and disease-free survival rates. GPNMB was selected from the hub genes based on the survival and prognosis analyses. A nomogram was built by including the potential risk factors based on multivariate Cox analysis. Cell function experiments and xenograft tumors were conducted in vivo to further verify the role of GPNMB in tumor progression. The predicted microRNA, miR-30b-3p, might act as upstream negative regulator and binding to 3’ UTR of GPNMB, confirming by fluorescent enzyme reporter gene experiment. In summary, immune-related scores are crucial factors in the malignant progression of stomach adenocarcinoma and GPNMB acts as a potentially useful prognostic factor for stratification and in developing the treatment strategy
Collapse
Affiliation(s)
- Kunhou Yao
- Henan University, Kaifeng 475000, Henan, P.R. China.,Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, P.R. China
| | - Lunshou Wei
- Henan University, Kaifeng 475000, Henan, P.R. China.,Department of Gastroenterology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, P.R. China
| | - Junjie Zhang
- Henan University, Kaifeng 475000, Henan, P.R. China.,Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, P.R. China
| | - Chenyu Wang
- Henan University, Kaifeng 475000, Henan, P.R. China.,Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, P.R. China
| | - Chaoyang Wang
- Henan University, Kaifeng 475000, Henan, P.R. China.,Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, P.R. China
| | - Changjiang Qin
- Henan University, Kaifeng 475000, Henan, P.R. China.,Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, P.R. China
| | - Song Li
- Henan University, Kaifeng 475000, Henan, P.R. China.,Department of Urology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, P.R. China
| |
Collapse
|
21
|
Xu C, Yuan B, He T, Ding B, Li S. Prognostic values of YTHDF1 regulated negatively by mir-3436 in Glioma. J Cell Mol Med 2020; 24:7538-7549. [PMID: 32449290 PMCID: PMC7339155 DOI: 10.1111/jcmm.15382] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
M6A methylation is likely to be closely associated with the occurrence and development of tumours. In this study, we demonstrated that the transcription levels of the m6A RNA methylation regulators are closely related to the prognosis of glioma. Univariate Cox analysis was performed on the expression levels of methylation regulators and selected three hub genes in glioma. Next, we systematically compared the expression of these m6A RNA methylation regulators in gliomas with different clinicopathological features. The overall survival (OS) curve of the hub genes was initially established based on TCGA database information. YTHDF1 was selected from the hub genes following survival and prognosis analysis. A nomogram was developed to predict the survival probability. We further performed cell function and in vivo xenograft tumour experiments to further verify its role in tumour progression. Next, based on the miRanda and miRDB databases, we predicted one microRNA, hsa-mir-346, that might regulate and bind to 3'UTR of YTHDF1, which was confirmed by our fluorescent enzyme reporter gene experiment. In summary, m6A RNA methylation regulators play a potential role in the progression of gliomas. YTHDF1 may have an essential function in glioma diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Chenyang Xu
- Henan University, Kaifeng, Henan, P.R. China.,Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Bingjian Yuan
- Henan University, Kaifeng, Henan, P.R. China.,Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Tao He
- Henan University, Kaifeng, Henan, P.R. China.,Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Bingqian Ding
- Henan University, Kaifeng, Henan, P.R. China.,Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Song Li
- Henan University, Kaifeng, Henan, P.R. China.,Department of Urology, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| |
Collapse
|
22
|
Rai N, Singh AK, Singh SK, Gaurishankar B, Kamble SC, Mishra P, Kotiya D, Barik S, Atri N, Gautam V. Recent technological advancements in stem cell research for targeted therapeutics. Drug Deliv Transl Res 2020; 10:1147-1169. [DOI: 10.1007/s13346-020-00766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Rojo Arias JE, Busskamp V. Challenges in microRNAs' targetome prediction and validation. Neural Regen Res 2019; 14:1672-1677. [PMID: 31169173 PMCID: PMC6585557 DOI: 10.4103/1673-5374.257514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/14/2019] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules with important roles in post-transcriptional regulation of gene expression. In recent years, the predicted number of miRNAs has skyrocketed, largely as a consequence of high-throughput sequencing technologies becoming ubiquitous. This dramatic increase in miRNA candidates poses multiple challenges in terms of data deposition, curation, and validation. Although multiple databases containing miRNA annotations and targets have been developed, ensuring data quality by validating miRNA-target interactions requires the efforts of the research community. In order to generate databases containing biologically active miRNAs, it is imperative to overcome a multitude of hurdles, including restricted miRNA expression patterns, distinct miRNA biogenesis machineries, and divergent miRNA-mRNA interaction dynamics. In the present review, we discuss recent advances and limitations in miRNA prediction, identification, and validation. Lastly, we focus on the most enriched neuronal miRNA, miR-124, and its gene regulatory network in human neurons, which has been revealed using a combined computational and experimental approach.
Collapse
Affiliation(s)
| | - Volker Busskamp
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Hsa-miR-346 plays a role in the development of sepsis by downregulating SMAD3 expression and is negatively regulated by lncRNA MALAT1. Mol Cell Probes 2019; 47:101444. [DOI: 10.1016/j.mcp.2019.101444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
|
25
|
Yang D, Tang S, Yang Y, Yang F, Jiang W, Liu Y, Zhang F, Fang H, Wang S, Zhang Y. Generation and Validation of miR-100 Hepatocyte-Specific Knock-Out Mice. Front Oncol 2019; 9:535. [PMID: 31293973 PMCID: PMC6606737 DOI: 10.3389/fonc.2019.00535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Inactivation of microRNA-100 (miR-100) is involved in hepatocellular carcinoma (HCC) and miR-100 behaves as a tumor suppressor. To understand miR-100 function in HCC genesis and development in vivo, we developed hepatocyte-specific miR-100 deficient mice. Methods: Mice homozygous for floxed miR-100 allele that carried the Alb-Cre transgene (miR-100flox/floxAlb -Cre+) were developed by mating miR-100flox/flox mice with Alb-Cre+/+mice. The mice tails DNA were genotyped using the primers for LoxP sites and Cre recombinase, respectively. The specific deletion of miR-100 in the livers was verified by quantitative Real-time PCR (qRT-PCR). HE-staining was performed for histology analysis. Liver function was assessed by transaminase activity. The metabolic profiles of the hepatocytes were detected using a Seahorse XFe24 extracellular flux analyzer. The direct targets of miR-100 (such as IGF1R-β, mTOR and CDC25A) and HCC related protein (SHP-2) were detected by qRT-PCR and Western blot in liver tissues. Results: The resultant homozygous knockout mice with genotype of miR-100flox/flox-Alb-Cre+ showed an 80% decrease in hepatic miR-100 expression. In adult mice, miR-100 knockout has no effect on the liver function and morphology. In aged mice, HE staining showed that miR-100 knockout caused infiltration of inflammatory cells and expansion of hepatocellular nuclei. Consistently, liver function was impaired in miR-100 knockout aged mice as indicated by increased serum AST and ALT levels. The metabolic analysis demonstrated that the miR-100 knockout hepatocytes tend to adopt glycolysis. The expressions of the miR-100 target genes, such as IGF1R-β, CDC25A and mTOR, were increased. In addition, the known HCC related protein, SHP-2 also was up-regulated in the knockout livers. Conclusions: We successfully generated a miR-100 hepatocyte-specific knock-out mouse model. The malignant transformation related to HCC were observed in aged mice. Therefore, this model is suitable for investigating the mechanism of miR-100 inactivation contributing to HCC genesis in vivo.
Collapse
Affiliation(s)
- Dong Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Sai Tang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yan Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Fan Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Wengang Jiang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Fengyun Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Haoshu Fang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Siying Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yuxia Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Khadrawy O, Gebremedhn S, Salilew-Wondim D, Taqi MO, Neuhoff C, Tholen E, Hoelker M, Schellander K, Tesfaye D. Endogenous and Exogenous Modulation of Nrf2 Mediated Oxidative Stress Response in Bovine Granulosa Cells: Potential Implication for Ovarian Function. Int J Mol Sci 2019; 20:E1635. [PMID: 30986945 PMCID: PMC6480527 DOI: 10.3390/ijms20071635] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Nrf2 is a redox sensitive transcription factor regulating the expression of antioxidant genes as defense mechanism against various stressors. The aim of this study is to investigate the potential role of noncoding miRNAs as endogenous and quercetin as exogenous regulators of Nrf2 pathway in bovine granulosa cells. For this cultured granulosa cells were used for modulation of miRNAs (miR-28, 153 and miR-708) targeting the bovine Nrf2 and supplementation of quercentin to investigate the regulatory mechanisms of the Nrf2 antioxidant system. Moreover, cultured cells were treated with hydrogen peroxide to induce oxidative stress in those cells. Our results showed that, oxidative stress activated the expression of Nrf2 as a defense mechanism, while suppressing the expression of those miRNAs. Overexpression of those miRNAs resulted in downregulation of Nrf2 expression resulted in higher ROS accumulation, reduced mitochondrial activity and cellular proliferation. Quercetin supplementation showed its protective role against oxidative stress induced by H₂O₂ by inducing the expression of antioxidant enzymes. In conclusion, this study highlighted the involvement of miR-153, miR-28 and miR-708 in regulatory network of Nrf2 mediated antioxidant system in bovine granulosa cells function. Furthermore, quercetin at a low dose played a protective role in bovine granulosa cells against oxidative stress damage.
Collapse
Affiliation(s)
- Omar Khadrawy
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
| | - Samuel Gebremedhn
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
| | - Mohamed Omar Taqi
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
| | - Christiane Neuhoff
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
| | - Ernst Tholen
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
| | - Michael Hoelker
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, 53639 Königswinter, Germany.
- Center of Integrated Dairy Research, University of Bonn, 53175 Bonn, Germany.
| | - Karl Schellander
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
- Center of Integrated Dairy Research, University of Bonn, 53175 Bonn, Germany.
| | - Dawit Tesfaye
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany.
- Center of Integrated Dairy Research, University of Bonn, 53175 Bonn, Germany.
| |
Collapse
|
27
|
Gao C, Fu Q, Yang N, Song L, Tan F, Zhu J, Li C. Identification and expression profiling analysis of microRNAs in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:333-345. [PMID: 30648624 DOI: 10.1016/j.fsi.2019.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) play vital regulatory roles in various biological processes, including in immune responses. Nile tilapia (Oreochromis niloticus) is an important commercial fish species in China. To identify immune-related miRNAs of O. niloticus, 4 libraries from liver during S. agalactiae infection (0 h, 5 h, 50 h, and 7 d) were sequenced by high-throughput sequencing technology in tilapia. We obtained 10,703,531, 11,507,163, 11,180,179 and 13,408,414 clean reads per library, respectively. In our results, a total of 482 miRNAs were identified through bioinformatic analysis, including 220 conserved miRNAs and 262 putative novel miRNAs. Moreover, 21 (4.36%), 50 (10.37%), and 46 (9.54%) miRNAs were significantly differentially expressed at 5 h, 50 h and 7 d, respectively. In addition, 6939 target genes regulated by these differentially expressed miRNAs were predicted, and their functional annotations were predicted by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, which revealed that a majority of differentially expressed miRNAs were involved in apoptotic process, metabolic process, and immune responses. Finally, Real-time quantitative PCR experiments were performed for 7 miRNAs by stem-loop RT-PCR, and a general agreement was confirmed between the sequencing and RT-qPCR data. To our understanding, this is the first report of comprehensive identification of O. niloticus miRNAs being differentially regulated in liver related to S. agalactiae infection. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in O. niloticus host-pathogen interactions, and genetic resources for molecular assistant selection for disease resistant breeding program.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Qiang Fu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ning Yang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266011, China
| | - Fenghua Tan
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jiajie Zhu
- Guangxi Academy of Fishery Sciences, Guangxi, 530021, China.
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
28
|
Abstract
MicroRNAs (miRNAs) are naturally occurring, highly conserved families of transcripts (∼22 nucleotides in length) that are processed from larger hairpin precursors. miRNAs primarily regulate gene expression by promoting messenger RNA (mRNA) degradation or repressing mRNA translation. miRNAs have been shown to be important regulators of a variety of cellular processes involving development, differentiation, and signaling. Moreover, various human diseases, including cancer and immune dysfunction, are associated with aberrant expression of miRNAs. This review will focus on how the multifunctional miRNA, miR-155, regulates inflammatory diseases, including cancer and pulmonary disorders, and also how miR-155 expression and biogenesis are regulated. We will also provide examples of miR-155-regulated networks in coordination with other noncoding RNAs, including long noncoding RNAs as well as coding mRNAs acting as competing endogenous RNAs.
Collapse
Affiliation(s)
- Guruswamy Mahesh
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
29
|
Tan A, Luo R, Ruan P. miR-495 promotes apoptosis and inhibits proliferation in endometrial cells via targeting PIK3R1. Pathol Res Pract 2019; 215:594-599. [PMID: 30691859 DOI: 10.1016/j.prp.2019.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 12/20/2022]
Abstract
Endometrial cancer (EC) is a huge threat to women's health. The aims of this study were to investigate the role of microRNA (miR)-495 in the proliferation and apoptosis of EC cells in vitro. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to detect the mRNA levels. In addition, dual-luciferase reporter assay was used to verified that PIK3R1 was a target of miR-495. After transfection with miR-495 mimics, Cell Counting Kit 8 (CCK-8) assay was performed to evaluate the cell viability of EC cells. The protein expression of PIK3R1, vascular endothelial growth factor (VEGF), Bcl-2, Bax, caspase 3 after transfection was analyzed using western blotting. Furthermore, cell apoptosis rate of EC cells was evaluated by flow cytometry. These results showed that miR-495 was significantly down-regulated in tumor tissues compared with the adjacent normal tissues, while PIK3R1 was up-regulated. The proliferation of the EC cells that were transfected with miR-495 mimics was markedly inhibited, and apoptosis was significantly promoted. In addition, downregulated expression of PIK3R1, Bcl-2, VEGF expression and upregulated expression of Bax and caspase 3 expression were observed after transfected with miR-495 mimic. Together these findings indicated that miR-495 acts as a tumor suppressor gene by directly targeting PIK3R1 at the post-transcriptional level in EC cells in vitro.
Collapse
Affiliation(s)
- Aili Tan
- Department of Obstetrics & Gynecology, Wuhan Univ, Renmin Hospital, Wuhan, 430060, China
| | - Ruoyu Luo
- Department of Obstetrics & Gynecology, Wuhan Univ, Renmin Hospital, Wuhan, 430060, China
| | - Peng Ruan
- Department of Oncology, Wuhan Univ, Renmin Hospital, Wuhan, 430060, China.
| |
Collapse
|
30
|
Yang H, Li X, Ji J, Yuan C, Gao X, Zhang Y, Lu C, Li F, Zhang X. Changes of microRNAs expression profiles from red swamp crayfish (Procambarus clarkia) hemolymph exosomes in response to WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2019; 84:169-177. [PMID: 30291984 DOI: 10.1016/j.fsi.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) as short noncoding RNAs play important regulatory roles in diverse biological processes by degrading the target mRNAs, and could be delivered by exosomes. WSSV is a highly pathogenic and prevalent virus, and has brought high mortality of P. clarkia. Till present, no studies focus on the miRNAs changes in exosomes during WSSV infection. To understand the different virulence of WSSV on miRNAs expression in P. clarkia hemolymph exosome, the deep sequencing was performed to compare the small RNA libraries from the hemolymph exosome of P. clarkia individuals with or without WSSV infections. From the TEM observations, NTA and Western Blot analysis, the extracted exosomes were well identified with classic characteristics. The 209 conserved miRNAs and 250 novel miRNAs were identified from the small RNA libraries. In response to WSSV infection, there were about 98 miRNAs significantly up-regulated and 59 miRNAs significantly down-regulated. The target genes prediction, GO and KEGG enrichment analysis revealed that some target genes of P. clarkia miRNAs were grouped mainly into the categories of biological regulation, immune system process, signal pathway and other more functions. This is the first report of comprehensive identification of P. clarkia hemolymph exosome miRNAs being differentially regulated in response to WSSV infection. These results will help to understand the hemolymph exosome miRNAs response to different virulence WSSV infection.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jiaojun Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chunyou Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Cheng Lu
- Aquaculture Technical Guidance Station, Taizhou, 225300, China
| | - Fenggang Li
- Yellow River Fisheries Research Institute, Chinese Academy of Fishery Science, Xi'an, Shaanxi, 710086, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
31
|
Zhao P, Ma W, Hu Z, Zhang Y, Zhang S, Wang Y. Up-regulation of miR-340-5p promotes progression of thyroid cancer by inhibiting BMP4. J Endocrinol Invest 2018; 41:1165-1172. [PMID: 29441462 DOI: 10.1007/s40618-018-0848-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/04/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE The incidence of thyroid cancer is increasing and the proliferation of thyroid cancer cells is incompletely understood. microRNAs may play key roles in thyroid cancer progression. METHODS We analyzed miR-340-5p in thyroid cancer tissue and normal tissue, and using informatics to predict its target. Cell lines and a mouse model were used to study the role of miR-340-5p in cancer proliferation. RESULTS Overexpression of miR-340-5p was found in thyroid cancer specimens. Tumors with higher pathological grade had higher levels of miR-340-5p. Overexpression of miR-340-5p significantly enhanced cell viability and colony formation. Treatment of anti-miR-340-5p, however, showed opposite alterations. We predicted that bone morphogenetic protein 4 (BMP4) is a possible target, and found a negative correlation between miR-340-5p and BMP4 levels in thyroid cancer tissue. miR-340-5p reduced BMP4 expression. BMP4 overexpression attenuated the effects of miR-340-5p in cell viability and colony formation. In addition, using a xenograft mouse model we proved that anti-miR-340-5p was able to inhibit tumor growth. CONCLUSIONS miR-340-5p promotes thyroid cancer proliferation by inhibiting BMP4. Anti-miR-340-5p can be a promising strategy to control thyroid cancer.
Collapse
Affiliation(s)
- P Zhao
- The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050017, Hebei, China
| | - W Ma
- The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050017, Hebei, China
| | - Z Hu
- The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050017, Hebei, China
| | - Y Zhang
- The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050017, Hebei, China
| | - S Zhang
- Xingtai People's Hospital of Hebei Province, No. 16 Hongxing Street, Xingtai, 054031, Hebei, China
| | - Y Wang
- The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
32
|
Zhou L, Pan X, Li Z, Chen P, Quan J, Lin C, Lai Y, Xu J, Xu W, Guan X, Li H, Gui Y, Lai Y. Oncogenic miR-663a is associated with cellular function and poor prognosis in renal cell carcinoma. Biomed Pharmacother 2018; 105:1155-1163. [PMID: 30021352 DOI: 10.1016/j.biopha.2018.05.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND MicroRNA(miRNA) plays a key regulatory role in various stages of tumorigenesis, including cell growth, cell cycle control, apoptosis avoidance, tissue invasion, and metastasis. Several microRNAs are involved in the development of renal cell carcinoma (RCC) and the malignant transformation process. However, the effects of miR-663a on RCC have rarely been reported. METHODS In the present study, the expression of miR-663a was examined in RCC using matched normal kidney tissues and four cell lines (786-O, Caki-1, ACHN and HK-2). MicroRNA mimics were transiently transfected into RCC cells and the effects of over expression on proliferation, migration, invasion, and apoptosis was observed. In addition, the relationship between miR-663a expression in 42 formalin-fixed paraffin-embedded (FFPE) clear cell renal carcinoma (ccRCC) samples and clinical pathological variables and overall survival was investigated. We evaluated the prognostic value of miR-663a expression in ccRCC by experimental results. RESULTS The results showed that the expression of miR-663a was up-regulated in RCC cells and tissues and miR-663a was associated with proliferation, migration, invasion, and apoptosis of RCC. Cox proportional hazard regression analysis showed that a high expression of miR-663a patients had a significantly shorter overall survival in univariate and multivariate analysis. Kaplan-Meier survival curves showed that a high expression of miR-663a patients had a significantly shorter overall survival. CONCLUSIONS These results indicate that miR-663a can be used as an independent marker for the poor prognosis of ccRCC, and may also play an important role as a tumor oncogene in the occurrence and development of RCC.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Xiang Pan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Anhui Medical University, Hefei, Anhui 230032, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Zuwei Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Shantou University Medical College, Shantou, Guangdong 515041, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Peijie Chen
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Shantou University Medical College, Shantou, Guangdong 515041, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Jing Quan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Anhui Medical University, Hefei, Anhui 230032, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Canbin Lin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Shantou University Medical College, Shantou, Guangdong 515041, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Yulin Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Jinling Xu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Weijie Xu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Xin Guan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Hang Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China
| | - Yaoting Gui
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China
| | - Yongqin Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, PR China; The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, PR China.
| |
Collapse
|
33
|
A Noninvasive Test for MicroRNA Expression in Oral Squamous Cell Carcinoma. Int J Mol Sci 2018; 19:ijms19061789. [PMID: 29914173 PMCID: PMC6032413 DOI: 10.3390/ijms19061789] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs have recently been proposed as non-invasive biomarkers in Oral Squamous Cell Carcinoma (OSCC). The aim of this study was to analyze the expression of a panel of miRNAs in epithelial cells collected by oral brushing from OSCCs from regenerative areas after OSCC surgical resection and from their respective normal distant mucosa. Oral brushing specimens were collected from 24 healthy donors, 14 OSCC patients with specimens from tumour and normal distant mucosa, and from 13 patients who had OSCC resection, with samples from regenerative areas after OSCC resection and normal distant mucosa. Expression levels of eight targets (miR-21, miR-375, miR-345, miR-181b, miR-146a, miR-649, miR-518b, and miR-191) were evaluated by real-time Polymerase Chain Reaction (PCR). A highly significant between-group difference was found for miR-21 (F = 6.58, p < 0.001), miR-146a (F = 6.974, p < 0.001), and miR-191 (F = 17.07, p < 0.001). The major difference was observed between samples from healthy donors and from OSCC brushing, whereas no significant differences were observed between areas infiltrated by OSCC and their respective normal distant mucosa. Furthermore, altered expression of miR-146a and miR-191 was also observed in regenerative areas after OSCC resection. CONCLUSIONS Oral brushing could be proposed as a noninvasive method to study microRNA expression in oral mucosa in OSCC patients.
Collapse
|
34
|
Exosomal miRNAs species in the blood of small cell and non-small cell lung cancer patients. Oncotarget 2018; 9:19793-19806. [PMID: 29731983 PMCID: PMC5929426 DOI: 10.18632/oncotarget.24857] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is a devastating disease with overall bleak prognosis. Current methods to diagnose lung cancer are rather invasive and are inadequate to detect the disease at an early stage when treatment is likely to be most effective. In this study, a shotgun sequencing approach was used to study the microRNA (miRNA) cargo of serum-derived exosomes of small cell lung cancer (SCLC) (n=9) and non-small cell lung cancer (NSCLC) (n=11) patients, and healthy controls (n=10). The study has identified 17 miRNA species that are differentially expressed in cancer patients and control subjects. Furthermore, within the patient groups, a set of miRNAs were differentially expressed in exosomal samples obtained before and after chemotherapy treatment. This manuscript demonstrates the potential of exosomal miRNAs for developing noninvasive tests for disease differentiation and treatment monitoring in lung cancer patients.
Collapse
|
35
|
Huang R, Gu W, Sun B, Gao L. Identification of COL4A1 as a potential gene conferring trastuzumab resistance in gastric cancer based on bioinformatics analysis. Mol Med Rep 2018; 17:6387-6396. [PMID: 29512712 PMCID: PMC5928613 DOI: 10.3892/mmr.2018.8664] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/27/2018] [Indexed: 02/06/2023] Open
Abstract
Trastuzumab, the first targeted antibody against human epidermal growth factor receptor 2 (HER2), has been used to treat gastric cancer patients with HER2 overexpression. However, trastuzumab resistance often occurs following an initial period of benefits, and the underlying mechanisms remain largely unclear. The present study revealed that collagen type IV α1 chain (COL4A1), whose expression is upregulated in gastric cancer tissues and trastuzumab-resistant gastric cancer cells, may potentially confer trastuzumab resistance in gastric cancer. By performing bioinformatics analysis of 2 microarray datasets, the present study initially identified COL4A1, overexpressed in gastric cancer tissues and trastuzumab-resistant gastric cancer cells, as a potential candidate for inducing trastuzumab resistance. The drug resistance function of COL4A1 in gastric cancer was then validated by performing protein/gene interactions and biological process annotation analyses, and further validated by analyzing the functionality of microRNAs that target COL4A1 mRNA. Collectively, these data indicated that COL4A1 may confer trastuzumab resistance in gastric cancer.
Collapse
Affiliation(s)
- Ru Huang
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Wenchao Gu
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Bin Sun
- Department of Pharmacy, No. 210 Hospital of PLA, Dalian, Liaoning 116000, P.R. China
| | - Lei Gao
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
36
|
Gupta S, Dingerdissen H, Ross KE, Hu Y, Wu CH, Mazumder R, Vijay-Shanker K. DEXTER: Disease-Expression Relation Extraction from Text. Database (Oxford) 2018; 2018:5025486. [PMID: 29860481 PMCID: PMC6007211 DOI: 10.1093/database/bay045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/02/2018] [Accepted: 04/19/2018] [Indexed: 01/23/2023]
Abstract
Gene expression levels affect biological processes and play a key role in many diseases. Characterizing expression profiles is useful for clinical research, and diagnostics and prognostics of diseases. There are currently several high-quality databases that capture gene expression information, obtained mostly from large-scale studies, such as microarray and next-generation sequencing technologies, in the context of disease. The scientific literature is another rich source of information on gene expression-disease relationships that not only have been captured from large-scale studies but have also been observed in thousands of small-scale studies. Expression information obtained from literature through manual curation can extend expression databases. While many of the existing databases include information from literature, they are limited by the time-consuming nature of manual curation and have difficulty keeping up with the explosion of publications in the biomedical field. In this work, we describe an automated text-mining tool, Disease-Expression Relation Extraction from Text (DEXTER) to extract information from literature on gene and microRNA expression in the context of disease. One of the motivations in developing DEXTER was to extend the BioXpress database, a cancer-focused gene expression database that includes data derived from large-scale experiments and manual curation of publications. The literature-based portion of BioXpress lags behind significantly compared to expression information obtained from large-scale studies and can benefit from our text-mined results. We have conducted two different evaluations to measure the accuracy of our text-mining tool and achieved average F-scores of 88.51 and 81.81% for the two evaluations, respectively. Also, to demonstrate the ability to extract rich expression information in different disease-related scenarios, we used DEXTER to extract information on differential expression information for 2024 genes in lung cancer, 115 glycosyltransferases in 62 cancers and 826 microRNA in 171 cancers. All extractions using DEXTER are integrated in the literature-based portion of BioXpress.Database URL: http://biotm.cis.udel.edu/DEXTER.
Collapse
Affiliation(s)
- Samir Gupta
- Department of Computer and Information Sciences, University of Delaware, 18 Amstel Avenue, Newark, DE 19716, USA
| | - Hayley Dingerdissen
- Department of Biochemistry and Molecular Medicine, The George Washington University, Ross Hall, 2300 Eye Street N.W., Washington, DC 20037, USA
| | - Karen E Ross
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, 3300 Whitehaven St. NW, Suite 1200 Washington, DC 20007, USA
| | - Yu Hu
- Department of Biochemistry and Molecular Medicine, The George Washington University, Ross Hall, 2300 Eye Street N.W., Washington, DC 20037, USA
| | - Cathy H Wu
- Department of Computer and Information Sciences, University of Delaware, 18 Amstel Avenue, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, 15 Innovation Way, Suite 205 Newark, DE 19711, USA
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, The George Washington University, Ross Hall, 2300 Eye Street N.W., Washington, DC 20037, USA
| | - K Vijay-Shanker
- Department of Computer and Information Sciences, University of Delaware, 18 Amstel Avenue, Newark, DE 19716, USA
| |
Collapse
|
37
|
Lu Z, Nian Z, Jingjing Z, Tao L, Quan L. MicroRNA-424/E2F6 feedback loop modulates cell invasion, migration and EMT in endometrial carcinoma. Oncotarget 2017; 8:114281-114291. [PMID: 29371986 PMCID: PMC5768403 DOI: 10.18632/oncotarget.23218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/28/2017] [Indexed: 01/03/2023] Open
Abstract
Our previous study explored the roles of microRNA-424 (miR-424) in the development of endometrial carcinoma (EC) and analyzed the miR-424/E2F7 axis in EC cell growth. In this study, we investigated the status of miR-424 in human endometrial cancer tissues, which were collected from a cohort of Zunyi patients. We found that the expression level of miR-424 was associated with clinical tumor stage, cell differentiation, lymph node metastasis and cell migration ability. Cell function experiments demonstrated that miR-424 overexpression suppressed the invasion and migration abilities of endometrial carcinoma cells in vitro. Bioinformatic predictions and dual-luciferase reporter assays suggested E2F6 as a possible target of miR-424. RT-PCR and western blot assays demonstrated that miR-424 transfection reduced the expression level of E2F6, while inhibiting miR-424 with ASO-miR-424 (antisense oligonucleotides of miR-424) increased the expression level of E2F6. Cell function experiments indicated that E2F6 transfection rescued the EC cell phenotype induced by miR-424. In addition, we also found that E2F6 negatively regulated miR-424 expression in EC cells. In summary, our results demonstrated that the miR-424/E2F6 feedback loop modulates cell invasion, migration and EMT in EC and that the miR-424/E2Fs regulation network may serve as a new and potentially important therapeutic target in EC.
Collapse
Affiliation(s)
- Zheng Lu
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Zhou Nian
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Zhang Jingjing
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Luo Tao
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Li Quan
- Department of Gynaecology, The First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
38
|
Ye Q, Lei L, Shao L, Shi J, Jia J, Tong X. MicroRNA‑141 inhibits epithelial‑mesenchymal transition, and ovarian cancer cell migration and invasion. Mol Med Rep 2017; 16:6743-6749. [PMID: 28901523 PMCID: PMC5865830 DOI: 10.3892/mmr.2017.7482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/13/2017] [Indexed: 12/17/2022] Open
Abstract
The effects of microRNA-141 (miR-141) on epithelial-mesenchymal transition (EMT), and ovarian cancer cell migration and invasion were investigated. SKOV3 cells were transfected with the miR-141 mimic (mimic group), inhibitor (inhibitor group) and nonspecific sequences (NC group), and left untransfected group (blank group). The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-141 in SKOV3 cell lines. Then, mRNA levels and protein expression of EMT markers were determined by RT-qPCR and western blotting, respectively. Cell proliferation was assessed using an MTT assay, followed by analysis of cell invasion and migration. SPSS software was used for statistical analysis. The results demonstrated that miR-141 expression in the mimic group was increased compared with the NC or blank group. Compared with the NC or blank group, upregulation of epithelial-cadherin (E-cadherin) and integrin-β, and downregulation of zinc finger E-box-binding homeobox (ZEB) was observed in the mimic group. The rate of cell proliferation decreased in the mimic group and increased in the inhibitor group when compared with the NC group (P<0.05). The number of invasive cells significantly increased in the inhibitor group and decreased in the mimic group when compared with the NC group (P<0.01). Compared with the NC group, the migratory rate was decreased in the mimic group, and increased in the inhibitor group at 24 and 48 h (all P<0.01). In conclusion, overexpression of miR-141 caused upregulation of E-cadherin, inhibited cell proliferation and EMT, and decreased cell invasion and migration in the SKOV3 cell line.
Collapse
Affiliation(s)
- Qinghua Ye
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Lei Lei
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Lingyun Shao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jing Shi
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jun Jia
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
39
|
孙 瑞, 龚 建, 邹 海, 张 林, 高 林. miR-17-92基因簇在肿瘤发生发展中作用的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1840-1853. [DOI: 10.11569/wcjd.v25.i20.1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
肿瘤是威胁全世界人类健康和影响社会经济的重要因素. 近年来, 随着经济的发展, 肿瘤的发病率呈明显上升趋势, 但是其病因尚未完全阐明. 越来越多的证据显示肿瘤的发生和遗传因素有关, 随着病理生理学和遗传学的发展, 许多学者认为生物标志物可以预测癌症甚至指导临床治疗. 微小RNA(microRNA, miRNA)是非编码小分子RNA, 在发育、生理、病理过程以及肿瘤发生等环节中起着重要的调节作用. miR-17-92基因簇是研究较为深入、最有特点的miRNA, 被认为是原癌基因miRNA的代表, 在多种肿瘤的发生发展中起着至关重要的作用. 本文就miR-17-92基因簇在肿瘤发生发展中的作用及功能进行综述.
Collapse
|
40
|
Jin X, Chen Y, Chen H, Fei S, Chen D, Cai X, Liu L, Lin B, Su H, Zhao L, Su M, Pan H, Shen L, Xie D, Xie C. Evaluation of Tumor-Derived Exosomal miRNA as Potential Diagnostic Biomarkers for Early-Stage Non-Small Cell Lung Cancer Using Next-Generation Sequencing. Clin Cancer Res 2017; 23:5311-5319. [PMID: 28606918 DOI: 10.1158/1078-0432.ccr-17-0577] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/10/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022]
Abstract
Purpose: To identify tumor-derived exosomal biomarkers that are able to discriminate between adenocarcinoma and squamous cell carcinoma (SCC) as a noninvasive method in the early diagnosis of non-small cell lung cancer (NSCLC).Experimental Design: Tumor-derived exosomes from the plasma of early-stage NSCLC patients were isolated. Exosomal miRNA profiling of 46 stage I NSCLC patients and 42 healthy individuals was performed using miRNA-seq to identify and validate adenocarcinoma- and SCC-specific miRNAs. The diagnostic accuracy of select miRNAs was tested further with an additional 60 individuals.Results: There were 11 and 6 miRNAs expressed at remarkably higher levels, 13 and 8 miRNAs expressed at lower levels in adenocarcinoma and SCC patients, respectively, compared with healthy volunteers. Distinct adenocarcinoma- and SCC-specific exosomal miRNAs were validated. The reliability of miRNA-seq data was verified with several demonstrated diagnostic potential miRNAs for NSCLC and other carcinomas, as reported in previous studies, such as let-7, miR-21, miR-24, and miR-486. The results indicated that miR-181-5p, miR-30a-3p, miR-30e-3p, and miR-361-5p were adenocarcinoma-specific, and miR-10b-5p, miR-15b-5p, and miR-320b were SCC-specific. The diagnostic accuracy of three combination miRNA panels was evaluated using an AUC value of 0.899, 0.936, and 0.911 for detecting NSCLC, adenocarcinoma, and SCC, respectively.Conclusions: Tumor-derived exosomal miRNAs, adenocarcinoma-specific miR-181-5p, miR-30a-3p, miR-30e-3p and miR-361-5p, and SCC-specific miR-10b-5p, miR-15b-5p, and miR-320b were observed by next-generation sequencing, and their diagnostic accuracy were verified. These miRNAs may be promising and effective candidates in the development of highly sensitive, noninvasive biomarkers for early NSCLC diagnosis. Clin Cancer Res; 23(17); 5311-9. ©2017 AACR.
Collapse
Affiliation(s)
- Xiance Jin
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanfan Chen
- Department of Respiratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbin Chen
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaoran Fei
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Didi Chen
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaona Cai
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linger Liu
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Baochai Lin
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huafang Su
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lihao Zhao
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meng Su
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huanle Pan
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lanxiao Shen
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Deyao Xie
- Department of Thoracic Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Congying Xie
- Department of Radiotherapy and Chemotherapy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
41
|
Abstract
The accuracy and efficiency of tumor treatment depends mainly on early and precise diagnosis. Although histopathology is always the gold standard for cancer diagnosis, noninvasive biomarkers represent an opportunity for early detection and molecular staging of cancer. Besides the classical tumor markers, noncoding RNAs (ncRNAs) emerge to be a novel category of biomarker for cancer diagnosis since the dysregulation of ncRNAs is closely associated with the development and progression of human cancers such as liver, lung, breast, gastric, and other kinds of cancers. In this chapter, we will summarize the different types of ncRNAs in the diagnosis of major human cancers. In addition, we will introduce the recent advances in the detection and applications of circulating serum or plasma ncRNAs and non-blood fluid ncRNAs because the noninvasive body fluid-based assays are easy to examine for cancer diagnosis and monitoring.
Collapse
|
42
|
Nalluri JJ, Barh D, Azevedo V, Ghosh P. miRsig: a consensus-based network inference methodology to identify pan-cancer miRNA-miRNA interaction signatures. Sci Rep 2017; 7:39684. [PMID: 28045122 PMCID: PMC5206712 DOI: 10.1038/srep39684] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/25/2016] [Indexed: 01/17/2023] Open
Abstract
Decoding the patterns of miRNA regulation in diseases are important to properly realize its potential in diagnostic, prog- nostic, and therapeutic applications. Only a handful of studies computationally predict possible miRNA-miRNA interactions; hence, such interactions require a thorough investigation to understand their role in disease progression. In this paper, we design a novel computational pipeline to predict the common signature/core sets of miRNA-miRNA interactions for different diseases using network inference algorithms on the miRNA-disease expression profiles; the individual predictions of these algorithms were then merged using a consensus-based approach to predict miRNA-miRNA associations. We next selected the miRNA-miRNA associations across particular diseases to generate the corresponding disease-specific miRNA-interaction networks. Next, graph intersection analysis was performed on these networks for multiple diseases to identify the common signature/core sets of miRNA interactions. We applied this pipeline to identify the common signature of miRNA-miRNA inter- actions for cancers. The identified signatures when validated using a manual literature search from PubMed Central and the PhenomiR database, show strong relevance with the respective cancers, providing an indirect proof of the high accuracy of our methodology. We developed miRsig, an online tool for analysis and visualization of the disease-specific signature/core miRNA-miRNA interactions, available at: http://bnet.egr.vcu.edu/miRsig.
Collapse
Affiliation(s)
- Joseph J Nalluri
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia,USA
| | - Debmalya Barh
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, West Bengal, India.,Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil.,Xcode Life Sciences, 3D Eldorado, 112 Nungambakkam High Road, Nungambakkam, Chennai, Tamil Nadu-600034, India
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Preetam Ghosh
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia,USA
| |
Collapse
|
43
|
Akbayır S, Muşlu N, Erden S, Bozlu M. Diagnostic value of microRNAs in prostate cancer patients with prostate specific antigen (PSA) levels between 2, and 10 ng/mL. Turk J Urol 2016; 42:247-255. [PMID: 27909617 DOI: 10.5152/tud.2016.52463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Prostate specific antigen (PSA), used for the early diagnosis of prostate cancer (PCa), is one of the best tumour markers known so far. However, in situations when PSA is between 2-10 ng/mL, which is named as grey zone, PSA falls short of distinguishing benign prostate diseases from PCa. On the other hand, it was demonstrated in many previous studies that microRNA (miRNA) could be a marker for cancer. Therefore, in this study, it was aimed to enhance the diagnostic power of PSA, especially with grey zone patients, by the use of miRNA. MATERIAL AND METHODS Ninety-four patients included in the study were divided into three groups as "control group" (n=44, PSA=2-10 ng/mL and benign), "PCa 1 group" (n=37, PSA=2-10 ng/mL), and "PCa 2 group" (n=13, PSA >10 ng/mL), according to their pathological results and PSA levels. Free PSA (fPSA) and total PSA (T-PSA) levels were measured with chemiluminometric sandwich immunoassay method. Expressions of miRNAs were analyzed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) method. The most appropriate specificity, sensitivity and prediction values were found by drawing the receiver operating characteristic (ROC) curves of total PSA, free/total PSA (f/T PSA) ratio, and miRNAs, and the diagnostic powers were compared with each other. RESULTS Diagnostic powers of the f/T PSA ratio and miRNA were compared in PCa 1 and the control groups to determine the marker with higher area under the curve (AUC). It was shown that the diagnostic power of the combination of miR-16-5p and f/T PSA was higher than that obtained when they were used separately. CONCLUSION As a result, while making the the discrimination between benign and malignant prostate in patients with grey zone, it was determined that the combination of miR-16-5p and f/T PSA was more valuable than T-PSA or f/T PSA alone. It was thought that diagnostic role of miRNAs in the early diagnosis of the different stages of PCa needed to be examined in further studies with larger groups.
Collapse
Affiliation(s)
- Serin Akbayır
- Karaman State Hospital, Biochemistry Laboratory, Karaman, Turkey
| | - Necati Muşlu
- Department of Biochemistry, Mersin University School of Medicine, Mersin, Turkey
| | - Sema Erden
- Mersin University, Vocational School of Health Services, Mersin, Turkey
| | - Murat Bozlu
- Department of Urology, Mersin University School of Medicine, Mersin, Turkey
| |
Collapse
|
44
|
Biswas R, Kumar P, Pollard HB. Regulation of mRNA turnover in cystic fibrosis lung disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27863009 DOI: 10.1002/wrna.1408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 01/07/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, F508del-CFTR being the most frequent mutation. The CF lung is characterized by a hyperinflammatory phenotype and is regulated by multiple factors that coordinate its pathophysiology. In CF the expression of CFTR as well as proinflammatory genes are regulated at the level of messenger RNA (mRNA) stability, which subsequently affect translation. These mechanisms are mediated by inflammatory RNA-binding proteins as well as small endogenous noncoding microRNAs, in coordination with cellular signaling pathways. These regulatory factors exhibit altered expression and function in vivo in the CF lung, and play a key role in the pathophysiology of CF lung disease. In this review, we have described the role of mRNA stability and associated regulatory mechanisms in CF lung disease. WIREs RNA 2017, 8:e1408. doi: 10.1002/wrna.1408 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Parameet Kumar
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
45
|
Shen S, Pan J, Lu X, Chi P. Role of miR-196 and its target gene HoxB8 in the development and proliferation of human colorectal cancer and the impact of neoadjuvant chemotherapy with FOLFOX4 on their expression. Oncol Lett 2016; 12:4041-4047. [PMID: 27895768 DOI: 10.3892/ol.2016.5210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/03/2016] [Indexed: 01/20/2023] Open
Abstract
The present study aimed to investigate the interaction between miR-196 and its target gene homeobox B8 (HoxB8) in colorectal cancer (CRC) cells, and the sensitivity of miR-196 and HoxB8 to fluorouracil, leucovorin and oxaliplatin (FOLFOX4) chemotherapy (1,200 mg/m2 fluorouracil, 200 mg/m2 leucovorin and 85 mg/m2 oxaliplatin). In total, 80 tissue samples were collected in the present study. In total, 50 patients undergoing preoperative chemotherapy completed at least 3 cycles (2 weeks per cycle) of 85 mg/m2 oxaliplatin (day 1) combined with a 2 h injection of 200 mg/m2 leucovorin (days 1 and 2), a bolus injection of 400 mg/m2 and 44 h continuous intravenous infusion of 1,200 mg/m2 fluorouracil. Complete response and partial response were included in the chemotherapy sensitive group (25 patients), and stable disease and progressive disease were included in the chemotherapy resistant group (25 patients). In addition, 30 patients without preoperative chemotherapy were examined for mRNA and protein expression of miR-196 and HoxB8. The expression of the mRNA and protein of miR-196 and HoxB8 was analyzed in 30 CRC and normal mucosa tissue samples. In addition, the expression of the mRNA and protein of miR-196 and HoxB8 was measured in 50 tissue samples obtained from patients that had received FOLFOX4 neoadjuvant chemotherapy. The expression levels of miR-196 and HoxB8 mRNA in CRC tissues were significantly increased compared with the corresponding normal mucosa tissue (P<0.05). The miR-196 mRNA was significantly correlated with lymph node metastasis, tumor stage and distant metastasis (P<0.05). miR-196 was indicated to be negatively correlated with HoxB8 mRNA expression (r=-0.458; P<0.05). The relative amount of miR-196 in the chemotherapy-sensitive group of patients was 0.949±0.691, which was increased compared with the chemotherapy-resistant group (0.345±0.536; P<0.01). The relative level of HoxB8 mRNA in the chemotherapy-sensitive group was 0.490±0.372, which was decreaesd compared with the chemotherapy-resistant group (0.725±0.438; P<0.05). HoxB8 protein expression level in the chemotherapy-sensitive group was decreased compared with the chemotherapy-resistant group (Z=-2.396; P=0.017). Overall, miR-196 was correlated with metastasis and prognosis, and HoxB8 was highly expressed in CRC tissues. The difference in the gene expression of miR-196 and HoxB8 may be associated with the sensitivity to FOLFOX4 for CRC patients. In addition, the highly expressed miR-196 increased the sensitivity of CRC cells to chemotherapy with FOLFOX4 by inhibiting HoxB8.
Collapse
Affiliation(s)
- Songfei Shen
- Department of Medical Oncology, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China; Fujian Medical University Stem Cell Research Institute, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China; Fujian Key Laboratory of Translational Cancer Medicine, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jie Pan
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xingrong Lu
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
46
|
Novel bead-based platform for direct detection of unlabelled nucleic acids through Single Nucleobase Labelling. Talanta 2016; 161:489-496. [PMID: 27769437 DOI: 10.1016/j.talanta.2016.08.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/19/2016] [Accepted: 08/28/2016] [Indexed: 01/02/2023]
Abstract
Over the last decade, circulating microRNAs have received attention as diagnostic and prognostic biomarkers. In particular, microRNA122 has been demonstrated to be an early and more sensitive indicator of drug-induced liver injury than the widely used biomarkers such as alanine aminotransferase and aspartate aminotransferase. Recently, microRNA122 has been used in vitro to assess the cellular toxicity of new drugs and as a biomarker for the development of a rapid test for drug overdose/liver damage. In this proof-of-concept study, we report a PCR-free and label-free detection method that has a limit of detection (3 standard deviations) of 15 fmoles of microRNA122, by integrating a dynamic chemical approach for "Single Nucleobase Labelling" with a bead-based platform (Luminex®) thereby, in principle, demonstrating the exciting prospect of rapid and accurate profiling of any microRNAs related to diseases and toxicology.
Collapse
|
47
|
Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM. Oncogene Knockdown via Active Loading of Small RNAs into Extracellular Vesicles by Sonication. Cell Mol Bioeng 2016; 9:315-324. [PMID: 27800035 DOI: 10.1007/s12195-016-0457-4] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as promising drug delivery vehicles for small RNAs (siRNA and miRNA) due to their natural role in intercellular RNA transport. However, the application of EVs for therapeutic RNA delivery may be limited by loading approaches that can induce cargo aggregation or degradation. Here, we report the use of sonication as a means to actively load functional small RNAs into EVs. Conditions under which EVs could be loaded with small RNAs with minimal detectable aggregation were identified, and EVs loaded with therapeutic siRNA via sonication were observed to be taken up by recipient cells and capable of target mRNA knockdown leading to reduced protein expression. This system was ultimately applied to reduce expression of HER2, an oncogenic receptor tyrosine kinase that critically mediates breast cancer development and progression, and could be extended to other therapeutic targets. These results define important parameters informing the application of sonication as a small RNA loading method for EVs and demonstrate the potential utility of this approach for versatile cancer therapy.
Collapse
Affiliation(s)
- Tek N Lamichhane
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Anjana Jeyaram
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Divya B Patel
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Babita Parajuli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Natalie K Livingston
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Navein Arumugasaamy
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - John S Schardt
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 USA; Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, College Park, MD 20742 USA; Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
48
|
Qian F, Feng Y, Zheng Y, Ogundiran TO, Ojengbede O, Zheng W, Blot W, Ambrosone CB, John EM, Bernstein L, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Press MF, Nathanson KL, Hennis A, Nemesure B, Ambs S, Kolonel LN, Olopade OI, Haiman CA, Huo D. Genetic variants in microRNA and microRNA biogenesis pathway genes and breast cancer risk among women of African ancestry. Hum Genet 2016; 135:1145-59. [PMID: 27380242 DOI: 10.1007/s00439-016-1707-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/25/2016] [Indexed: 10/21/2022]
Abstract
MicroRNAs (miRNA) regulate breast biology by binding to specific RNA sequences, leading to RNA degradation and inhibition of translation of their target genes. While germline genetic variations may disrupt some of these interactions between miRNAs and their targets, studies assessing the relationship between genetic variations in the miRNA network and breast cancer risk are still limited, particularly among women of African ancestry. We systematically put together a list of 822 and 10,468 genetic variants among primary miRNA sequences and 38 genes in the miRNA biogenesis pathway, respectively; and examined their association with breast cancer risk in the ROOT consortium which includes women of African ancestry. Findings were replicated in an independent consortium. Logistic regression was used to estimate the odds ratio (OR) and 95 % confidence intervals (CI). For overall breast cancer risk, three single-nucleotide polymorphisms (SNPs) in miRNA biogenesis genes DROSHA rs78393591 (OR = 0.69, 95 % CI: 0.55-0.88, P = 0.003), ESR1 rs523736 (OR = 0.88, 95 % CI: 0.82-0.95, P = 3.99 × 10(-4)), and ZCCHC11 rs114101502 (OR = 1.33, 95 % CI: 1.11-1.59, P = 0.002), and one SNP in primary miRNA sequence (rs116159732 in miR-6826, OR = 0.74, 95 % CI: 0.63-0.89, P = 0.001) were found to have significant associations in both discovery and validation phases. In a subgroup analysis, two SNPs were associated with risk of estrogen receptor (ER)-negative breast cancer, and three SNPs were associated with risk of ER-positive breast cancer. Several variants in miRNA and miRNA biogenesis pathway genes were associated with breast cancer risk. Risk associations varied by ER status, suggesting potential new mechanisms in etiology.
Collapse
Affiliation(s)
- Frank Qian
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Ye Feng
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Yonglan Zheng
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Temidayo O Ogundiran
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oladosu Ojengbede
- Center for Population and Reproductive Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | | | - Esther M John
- Cancer Prevention Institute of California, Fremont, CA, USA.,Department of Health Research and Policy (Epidemiology) and Stanford Cancer Institute, Stanford University School of Medicine Stanford, Stanford, CA, USA
| | - Leslie Bernstein
- Division of Cancer Etiology, Department of Population Science, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jennifer J Hu
- Sylvester Comprehensive Cancer Center and Department of Epidemiology and Public Health, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina G Ziegler
- Epidemiology and Biostatistics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, DC, USA
| | - Sarah Nyante
- Department of Epidemiology, Gillings School of Global Public Health and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Elisa V Bandera
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Sue A Ingles
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Michael F Press
- Department of Pathology, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | - Anselm Hennis
- Chronic Disease Research Centre and Tropical Medicine Research Institute, University of the West Indies, Bridgetown, Barbados
| | - Barbara Nemesure
- Department of Preventive Medicine, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Laurence N Kolonel
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, 5841 S. Maryland Ave., MC 2007, Chicago, IL, 60637, USA.
| |
Collapse
|
49
|
Wang B, Gan Z, Cai S, Wang Z, Yu D, Lin Z, Lu Y, Wu Z, Jian J. Comprehensive identification and profiling of Nile tilapia (Oreochromis niloticus) microRNAs response to Streptococcus agalactiae infection through high-throughput sequencing. FISH & SHELLFISH IMMUNOLOGY 2016; 54:93-106. [PMID: 27050313 DOI: 10.1016/j.fsi.2016.03.159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/22/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
MicroRNAs are a kind of small non-coding RNAs that participate in various biological processes. Deregulated microRNA expression is associated with several types of diseases. Tilapia (Oreochromis niloticus) is an important commercial fish species in China. To identify miRNAs and investigate immune-related miRNAs of O. niloticus, we applied high-throughput sequencing technology to identify and analyze miRNAs from tilapia infected with Streptococcus agalactiae at a timescale of 72 h divided into six different time points. The results showed that a total of 3009 tilapia miRNAs were identified, including in 1121 miRNAs which have homologues in the currently available databases and 1878 novel miRNAs. The expression levels of 218 tilapia miRNAs were significantly altered at 6 h-72 h post-bacterial infection (pi), and these miRNAs were therefore classified as differentially expressed tilapia miRNAs. For the 1121 differentially expressed tilapia miRNAs target 41961 genes. GO and KEGG enrichment analysis revealed that some target genes of tilapia miRNAs were grouped mainly into the categories of apoptotic process, signal pathway, and immune response. This is the first report of comprehensive identification of O. niloticus miRNAs being differentially regulated in spleen in normal conditions relating to S. agalactiae infection. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in O. niloticus host-pathogen interactions.
Collapse
Affiliation(s)
- Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Zhen Gan
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shuanghu Cai
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Zhongliang Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Dapeng Yu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Ziwei Lin
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China.
| |
Collapse
|
50
|
Yu X, Zhou B, Zhang Z, Lan Z, Chen P, Duan R, Zhang L, Xi M. Insertion/deletion polymorphism in IL1A
3′-UTR is associated with susceptibility to endometrial cancer in Chinese Han women. J Obstet Gynaecol Res 2016; 42:983-9. [PMID: 27136893 DOI: 10.1111/jog.12989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/28/2015] [Accepted: 02/07/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Xiuzhang Yu
- Department of Obstetrics and Gynecology; West China Second Hospital, Sichuan University; Chengdu China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health; West China Second University Hospital, Sichuan University; Chengdu China
| | - Zhu Zhang
- Department of Obstetrics and Gynecology; West China Second Hospital, Sichuan University; Chengdu China
| | - Zhu Lan
- Department of Obstetrics and Gynecology; West China Second Hospital, Sichuan University; Chengdu China
| | - Peng Chen
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine; Sichuan University; Chengdu China
| | - Ruiqi Duan
- Department of Obstetrics and Gynecology; West China Second Hospital, Sichuan University; Chengdu China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health; West China Second University Hospital, Sichuan University; Chengdu China
| | - Mingrong Xi
- Department of Obstetrics and Gynecology; West China Second Hospital, Sichuan University; Chengdu China
| |
Collapse
|