1
|
Ernst M, Mercier R, Zwicker D. Interference length reveals regularity of crossover placement across species. Nat Commun 2024; 15:8973. [PMID: 39419967 PMCID: PMC11487058 DOI: 10.1038/s41467-024-53054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Crossover interference is a phenomenon that affects the number and positioning of crossovers in meiosis and thus affects genetic diversity and chromosome segregation. Yet, the underlying mechanism is not fully understood, partly because quantification is difficult. To overcome this challenge, we introduce the interference length Lint that quantifies changes in crossover patterning due to interference. We show that it faithfully captures known aspects of crossover interference and provides superior statistical power over previous measures such as the interference distance and the gamma shape parameter. We apply our analysis to empirical data and unveil a similar behavior of Lint across species, which hints at a common mechanism. A recently proposed coarsening model generally captures these aspects, providing a unified view of crossover interference. Consequently, Lint facilitates model refinements and general comparisons between alternative models of crossover interference.
Collapse
Affiliation(s)
- Marcel Ernst
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany.
- University of Göttingen, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Fan C, Yang X, Nie H, Wang S, Zhang L. Per-nucleus crossover covariation is regulated by chromosome organization. iScience 2022; 25:104115. [PMID: 35391833 PMCID: PMC8980760 DOI: 10.1016/j.isci.2022.104115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/15/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022] Open
Abstract
Meiotic crossover (CO) recombination between homologous chromosomes regulates chromosome segregation and promotes genetic diversity. Human females have different CO patterns than males, and some of these features contribute to the high frequency of chromosome segregation errors. In this study, we show that CO covariation is transmitted to progenies without detectable selection in both human males and females. Further investigations show that chromosome pairs with longer axes tend to have stronger axis length covariation and a stronger correlation between axis length and CO number, and the consequence of these two effects would be the stronger CO covariation as observed in females. These findings reveal a previously unsuspected feature for chromosome organization: long chromosome axes are more coordinately regulated than short ones. Additionally, the stronger CO covariation may work with human female-specific CO maturation inefficiency to confer female germlines the ability to adapt to changing environments on evolution.
Collapse
Affiliation(s)
- Cunxian Fan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014 China
| | - Xiao Yang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Nie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014 China
| | - Shunxin Wang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Liangran Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014 China.,Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Shang Y, Tan T, Fan C, Nie H, Wang Y, Yang X, Zhai B, Wang S, Zhang L. Meiotic chromosome organization and crossover patterns. Biol Reprod 2022; 107:275-288. [PMID: 35191959 DOI: 10.1093/biolre/ioac040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Meiosis is the foundation of sexual reproduction, and crossover recombination is one hallmark of meiosis. Crossovers establish the physical connections between homolog chromosomes (homologs) for their proper segregation and exchange DNA between homologs to promote genetic diversity in gametes and thus progenies. Aberrant crossover patterns, e.g. absence of the obligatory crossover, are the leading cause of infertility, miscarriage, and congenital disease. Therefore, crossover patterns have to be tightly controlled. During meiosis, loop/axis organized chromosomes provide the structural basis and regulatory machinery for crossover patterning. Accumulating evidence shows that chromosome axis length regulates not only the numbers but also the positions of crossovers. In addition, recent studies suggest that alterations in axis length and the resultant alterations in crossover frequency may contribute to evolutionary adaptation. Here, current advances regarding these issues are reviewed, the possible mechanisms for axis length regulating crossover frequency are discussed, and important issues that need further investigations are suggested.
Collapse
Affiliation(s)
- Yongliang Shang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Taicong Tan
- State Key Laboratory of Microbial Technology, Shandong University, China
| | - Cunxian Fan
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Hui Nie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Ying Wang
- State Key Laboratory of Microbial Technology, Shandong University, China
| | - Xiao Yang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China.,Center for Reproductive Medicine, Shandong University
| | - Binyuan Zhai
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Shandong University.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China.,Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
4
|
Veller C, Edelman NB, Muralidhar P, Nowak MA. Variation in Genetic Relatedness Is Determined by the Aggregate Recombination Process. Genetics 2020; 216:985-994. [PMID: 33109528 PMCID: PMC7768252 DOI: 10.1534/genetics.120.303680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022] Open
Abstract
The genomic proportion that two relatives share identically by descent-their genetic relatedness-can vary depending on the history of recombination and segregation in their pedigree. Previous calculations of the variance of genetic relatedness have defined genetic relatedness as the proportion of total genetic map length (cM) shared by relatives, and have neglected crossover interference and sex differences in recombination. Here, we consider genetic relatedness as the proportion of the total physical genome (bp) shared by relatives, and calculate its variance for general pedigree relationships, making no assumptions about the recombination process. For the relationships of grandparent-grandoffspring and siblings, the variance of genetic relatedness is a simple decreasing function of [Formula: see text], the average proportion of locus pairs that recombine in meiosis. For general pedigree relationships, the variance of genetic relatedness is a function of metrics analogous to [Formula: see text] Therefore, features of the aggregate recombination process that affect [Formula: see text] and analogs also affect variance in genetic relatedness. Such features include the number of chromosomes and heterogeneity in their size, the number of crossovers and their spatial organization along chromosomes, and sex differences in recombination. Our calculations help to explain several recent observations about variance in genetic relatedness, including that it is reduced by crossover interference (which is known to increase [Formula: see text]). Our methods further allow us to calculate the neutral variance of ancestry among F2s in a hybrid cross, enabling precise statistical inference in F2-based tests for various kinds of selection.
Collapse
Affiliation(s)
- Carl Veller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Nathaniel B Edelman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Pavitra Muralidhar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Martin A Nowak
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
- Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
5
|
Wang P, Jiang L, Ye M, Zhu X, Wu R. The Genomic Landscape of Crossover Interference in the Desert Tree Populus euphratica. Front Genet 2019; 10:440. [PMID: 31156703 PMCID: PMC6530421 DOI: 10.3389/fgene.2019.00440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Crossover (CO) interference is a universal phenomenon by which the occurrence of one CO event inhibits the simultaneous occurrence of other COs along a chromosome. Because of its critical role in the evolution of genome structure and organization, the cytological and molecular mechanisms underlying CO interference have been extensively investigated. However, the genome-wide distribution of CO interference and its interplay with sex-, stress-, and age-induced differentiation remain poorly understood. Multi-point linkage analysis has proven to be a powerful tool for landscaping CO interference, especially within species for which CO mutants are rarely available. We implemented four-point linkage analysis to landscape a detailed picture of how CO interference is distributed through the entire genome of Populus euphratica, the only forest tree that can survive and grow in saline desert. We identified an extensive occurrence of CO interference, and found that its strength depends on the length of chromosomes and the genomic locations within the chromosome. We detected high-order CO interference, possibly suggesting a highly complex mechanism crucial for P. euphratica to grow, reproduce, and evolve in its harsh environment.
Collapse
Affiliation(s)
- Ping Wang
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Libo Jiang
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
6
|
Wang S, Veller C, Sun F, Ruiz-Herrera A, Shang Y, Liu H, Zickler D, Chen Z, Kleckner N, Zhang L. Per-Nucleus Crossover Covariation and Implications for Evolution. Cell 2019; 177:326-338.e16. [PMID: 30879787 PMCID: PMC6472931 DOI: 10.1016/j.cell.2019.02.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 12/25/2022]
Abstract
Crossing over is a nearly universal feature of sexual reproduction. Here, analysis of crossover numbers on a per-chromosome and per-nucleus basis reveals a fundamental, evolutionarily conserved feature of meiosis: within individual nuclei, crossover frequencies covary across different chromosomes. This effect results from per-nucleus covariation of chromosome axis lengths. Crossovers can promote evolutionary adaptation. However, the benefit of creating favorable new allelic combinations must outweigh the cost of disrupting existing favorable combinations. Covariation concomitantly increases the frequencies of gametes with especially high, or especially low, numbers of crossovers, and thus might concomitantly enhance the benefits of crossing over while reducing its costs. A four-locus population genetic model suggests that such an effect can pertain in situations where the environment fluctuates: hyper-crossover gametes are advantageous when the environment changes while hypo-crossover gametes are advantageous in periods of environmental stasis. These findings reveal a new feature of the basic meiotic program and suggest a possible adaptive advantage.
Collapse
Affiliation(s)
- Shunxin Wang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China.
| | - Carl Veller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | - Fei Sun
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu, China
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Yongliang Shang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex 91198, France
| | - Zijiang Chen
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Liangran Zhang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Veller C, Kleckner N, Nowak MA. A rigorous measure of genome-wide genetic shuffling that takes into account crossover positions and Mendel's second law. Proc Natl Acad Sci U S A 2019; 116:1659-1668. [PMID: 30635424 PMCID: PMC6358705 DOI: 10.1073/pnas.1817482116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative studies in evolutionary genetics rely critically on evaluation of the total amount of genetic shuffling that occurs during gamete production. Such studies have been hampered by the absence of a direct measure of this quantity. Existing measures consider crossing-over by simply counting the average number of crossovers per meiosis. This is qualitatively inadequate, because the positions of crossovers along a chromosome are also critical: a crossover toward the middle of a chromosome causes more shuffling than a crossover toward the tip. Moreover, traditional measures fail to consider shuffling from independent assortment of homologous chromosomes (Mendel's second law). Here, we present a rigorous measure of genome-wide shuffling that does not suffer from these limitations. We define the parameter [Formula: see text] as the probability that the alleles at two randomly chosen loci are shuffled during gamete production. This measure can be decomposed into separate contributions from crossover number and position and from independent assortment. Intrinsic implications of this metric include the fact that [Formula: see text] is larger when crossovers are more evenly spaced, which suggests a selective advantage of crossover interference. Utilization of [Formula: see text] is enabled by powerful emergent methods for determining crossover positions either cytologically or by DNA sequencing. Application of our analysis to such data from human male and female reveals that (i) [Formula: see text] in humans is close to its maximum possible value of 1/2 and that (ii) this high level of shuffling is due almost entirely to independent assortment, the contribution of which is ∼30 times greater than that of crossovers.
Collapse
Affiliation(s)
- Carl Veller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138;
| | - Martin A Nowak
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138
- Department of Mathematics, Harvard University, Cambridge, MA 02138
| |
Collapse
|
8
|
Wang J, Sun L, Jiang L, Sang M, Ye M, Cheng T, Zhang Q, Wu R. A high-dimensional linkage analysis model for characterizing crossover interference. Brief Bioinform 2017; 18:382-393. [PMID: 27113727 DOI: 10.1093/bib/bbw033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 12/19/2022] Open
Abstract
Linkage analysis has played an important role in understanding genome structure and evolution. However, two-point linkage analysis widely used for genetic map construction can rarely chart a detailed picture of genome organization because it fails to identify the dependence of crossovers distributed along the length of a chromosome, a phenomenon known as crossover interference. Multi-point analysis, proven to be more advantageous in gene ordering and genetic distance estimation for dominant markers than two-point analysis, is equipped with a capacity to discern and quantify crossover interference. Here, we review a statistical model for four-point analysis, which, beyond three-point analysis, can characterize crossover interference that takes place not only between two adjacent chromosomal intervals, but also over multiple successive intervals. This procedure provides an analytical tool to elucidate the detailed landscape of crossover interference over the genome and further infer the evolution of genome structure and organization.
Collapse
|
9
|
Rouiss H, Cuenca J, Navarro L, Ollitrault P, Aleza P. Unreduced Megagametophyte Production in Lemon Occurs via Three Meiotic Mechanisms, Predominantly Second-Division Restitution. FRONTIERS IN PLANT SCIENCE 2017; 8:1211. [PMID: 28747921 PMCID: PMC5506204 DOI: 10.3389/fpls.2017.01211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/27/2017] [Indexed: 05/23/2023]
Abstract
Unreduced (2n) gametes have played a pivotal role in polyploid plant evolution and are useful for sexual polyploid breeding in various species, particularly for developing new seedless citrus varieties. The underlying mechanisms of 2n gamete formation were recently revealed for Citrus reticulata but remain poorly understood for other citrus species, including lemon (C. limon [L.] Burm. f.). Here, we investigated the frequency and causal meiotic mechanisms of 2n megagametophyte production in lemon. We genotyped 48progeny plants of two lemon genotypes, "Eureka Frost" and "Fino", using 16 Simple Sequence Repeat (SSR) and 18 Single Nucleotide Polymorphism (SNP) markers to determine the genetic origin of the progenies and the underlying mechanisms for 2n gamete formation. We utilized a maximum-likelihood method based on parental heterozygosity restitution (PHR) of centromeric markers and analysis of PHR patterns along the chromosome. The frequency of 2n gamete production was 4.9% for "Eureka Frost" and 8.3% for "Fino", with three meiotic mechanisms leading to 2n gamete formation. We performed the maximum-likelihood method at the individual level via centromeric marker analysis, finding that 88% of the hybrids arose from second-division restitution (SDR), 7% from first-division restitution (FDR) or pre-meiotic doubling (PRD), and 5% from post-meiotic genome doubling (PMD). The pattern of PHR along LG1 confirmed that SDR is the main mechanism for 2n gamete production. Recombination analysis between markers in this LG revealed partial chiasma interference on both arms. We discuss the implications of these restitution mechanisms for citrus breeding and lemon genetics.
Collapse
Affiliation(s)
- Houssem Rouiss
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Station de RoujolPetit-Bourg, Guadeloupe, France
| | - José Cuenca
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | - Luis Navarro
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | - Patrick Ollitrault
- Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes (UMR Agap), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Station de RoujolPetit-Bourg, Guadeloupe, France
| | - Pablo Aleza
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| |
Collapse
|
10
|
Wang Z, Shen B, Jiang J, Li J, Ma L. Effect of sex, age and genetics on crossover interference in cattle. Sci Rep 2016; 6:37698. [PMID: 27892966 PMCID: PMC5125268 DOI: 10.1038/srep37698] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/02/2016] [Indexed: 12/29/2022] Open
Abstract
Crossovers generated by homologous recombination ensure proper chromosome segregation during meiosis. Crossover interference results in chiasmata being more evenly distributed along chromosomes, but the mechanism underlying crossover interference remains elusive. Based on large pedigrees of Holstein and Jersey cattle with genotype data, we extracted three-generation families, including 147,327 male and 71,687 female meioses in Holstein, and 108,163 male and 37,008 female meioses in Jersey, respectively. We identified crossovers in these meioses and fitted the Housworth-Stahl "interference-escape" model to study crossover interference patterns in the cattle genome. Our result reveals that the degree of crossover interference is stronger in females than in males. We found evidence for inter-chromosomal variation in the level of crossover interference, with smaller chromosomes exhibiting stronger interference. In addition, crossover interference levels decreased with maternal age. Finally, sex-specific GWAS analyses identified one locus near the NEK9 gene on chromosome 10 to have a significant effect on crossover interference levels. This locus has been previously associated with recombination rate in cattle. Collectively, this large-scale analysis provided a comprehensive description of crossover interference across chromosome, sex and age groups, identified associated candidate genes, and produced useful insights into the mechanism of crossover interference.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Botong Shen
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Jicai Jiang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
11
|
Matveevsky S, Bakloushinskaya I, Kolomiets O. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation? Sci Rep 2016; 6:29949. [PMID: 27425629 PMCID: PMC4947958 DOI: 10.1038/srep29949] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/27/2016] [Indexed: 01/09/2023] Open
Abstract
Most mammalian species have heteromorphic sex chromosomes in males, except for a few enigmatic groups such as the mole voles Ellobius, which do not have the Y chromosome and Sry gene. The Ellobius (XX ♀♂) system of sex chromosomes has no analogues among other animals. The structure and meiotic behaviour of the two X chromosomes were investigated for males of the sibling species Ellobius talpinus and Ellobius tancrei. Their sex chromosomes, despite their identical G-structure, demonstrate short synaptic fragments and crossover-associated MLH1 foci in both telomeric regions only. The chromatin undergoes modifications in the meiotic sex chromosomes. SUMO-1 marks a small nucleolus-like body of the meiotic XX. ATR and ubiH2A are localized in the asynaptic area and the histone γH2AFX covers the entire XX bivalent. The distribution of some markers of chromatin inactivation differentiates sex chromosomes of mole voles from those of other mammals. Sex chromosomes of both studied species have identical recombination and meiotic inactivation patterns. In Ellobius, similar chromosome morphology masks the functional heteromorphism of the male sex chromosomes, which can be seen at meiosis.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Cytogenetics Laboratory, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Irina Bakloushinskaya
- Evolutionary and Developmental Genetics Laboratory, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oxana Kolomiets
- Cytogenetics Laboratory, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
12
|
Loidl J, Lorenz A. DNA double-strand break formation and repair in Tetrahymena meiosis. Semin Cell Dev Biol 2016; 54:126-34. [PMID: 26899715 DOI: 10.1016/j.semcdb.2016.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/12/2016] [Indexed: 11/18/2022]
Abstract
The molecular details of meiotic recombination have been determined for a small number of model organisms. From these studies, a general picture has emerged that shows that most, if not all, recombination is initiated by a DNA double-strand break (DSB) that is repaired in a recombinogenic process using a homologous DNA strand as a template. However, the details of recombination vary between organisms, and it is unknown which variant is representative of evolutionarily primordial meiosis or most prevalent among eukaryotes. To answer these questions and to obtain a better understanding of the range of recombination processes among eukaryotes, it is important to study a variety of different organisms. Here, the ciliate Tetrahymena thermophila is introduced as a versatile meiotic model system, which has the additional bonus of having the largest phylogenetic distance to all of the eukaryotes studied to date. Studying this organism can contribute to our understanding of the conservation and diversification of meiotic recombination processes.
Collapse
Affiliation(s)
- Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
13
|
Limborg MT, McKinney GJ, Seeb LW, Seeb JE. Recombination patterns reveal information about centromere location on linkage maps. Mol Ecol Resour 2015; 16:655-61. [PMID: 26561199 DOI: 10.1111/1755-0998.12484] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
Linkage mapping is often used to identify genes associated with phenotypic traits and for aiding genome assemblies. Still, many emerging maps do not locate centromeres - an essential component of the genomic landscape. Here, we demonstrate that for genomes with strong chiasma interference, approximate centromere placement is possible by phasing the same data used to generate linkage maps. Assuming one obligate crossover per chromosome arm, information about centromere location can be revealed by tracking the accumulated recombination frequency along linkage groups, similar to half-tetrad analyses. We validate the method on a linkage map for sockeye salmon (Oncorhynchus nerka) with known centromeric regions. Further tests suggest that the method will work well in other salmonids and other eukaryotes. However, the method performed weakly when applied to a male linkage map (rainbow trout; O. mykiss) characterized by low and unevenly distributed recombination - a general feature of male meiosis in many species. Further, a high frequency of double crossovers along chromosome arms in barley reduced resolution for locating centromeric regions on most linkage groups. Despite these limitations, our method should work well for high-density maps in species with strong recombination interference and will enrich many existing and future mapping resources.
Collapse
Affiliation(s)
- Morten T Limborg
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195, USA.,National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Garrett J McKinney
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195, USA
| | - Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195, USA
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195, USA
| |
Collapse
|
14
|
Fröhlich J, Vozdova M, Kubickova S, Cernohorska H, Sebestova H, Rubes J. Variation of Meiotic Recombination Rates and MLH1 Foci Distribution in Spermatocytes of Cattle, Sheep and Goats. Cytogenet Genome Res 2015; 146:211-21. [PMID: 26406935 DOI: 10.1159/000439452] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Despite similar genome sizes, a great variability in recombination rates is observed in mammals. We used antibodies against SYCP3, MLH1 and centromeres to compare crossover frequency, position along chromosome arms and the effect of crossover interference in spermatocytes of 4 species from the family Bovidae (Bos taurus, 2n = 60, tribe Bovini; Ovis aries, 2n = 54, Capra hircus, 2n = 60 and Ammotragus lervia, 2n = 58, tribe Caprini). Despite significant individual variability, our results also show significant differences in both recombination rates and the total length of autosomal synaptonemal complexes (SC) between cattle (47.53 MLH1 foci/cell, 244.59 µm) and members of the tribe Caprini (61.83 MLH1 foci, 296.19 µm) which can be explained by the length of time that has passed since their evolutionary divergence. Sheep displayed the highest number of MLH1 foci per cell and recombination density, although they have a lower diploid chromosome number caused by centric fusions corresponding to cattle chromosomes 1;3, 2;8 and 5;11. However, the proportion of MLH1 foci observed on the fused chromosomes in sheep (26.14%) was significantly lower than on the orthologous acrocentrics in cattle (27.6%) and goats (28.2%), and their distribution along the SC arms differed significantly. The reduced recombination rate in metacentrics is probably caused by interference acting across the centromere.
Collapse
Affiliation(s)
- Jan Fröhlich
- Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
15
|
Sebestova H, Vozdova M, Kubickova S, Cernohorska H, Kotrba R, Rubes J. Effect of species-specific differences in chromosome morphology on chromatin compaction and the frequency and distribution of RAD51 and MLH1 foci in two bovid species: cattle (Bos taurus) and the common eland (Taurotragus oryx). Chromosoma 2015; 125:137-49. [PMID: 26194101 DOI: 10.1007/s00412-015-0533-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
Meiotic recombination between homologous chromosomes is crucial for their correct segregation into gametes and for generating diversity. We compared the frequency and distribution of MLH1 foci and RAD51 foci, synaptonemal complex (SC) length and DNA loop size in two related Bovidae species that share chromosome arm homology but show an extreme difference in their diploid chromosome number: cattle (Bos taurus, 2n = 60) and the common eland (Taurotragus oryx, 2nmale = 31). Compared to cattle, significantly fewer MLH1 foci per cell were observed in the common eland, which can be attributed to the lower number of initial double-strand breaks (DSBs) detected as RAD51 foci in leptonema. Despite the significantly shorter total autosomal SC length and longer DNA loop size of the common eland bi-armed chromosomes compared to those of bovine acrocentrics, the overall crossover density in the common eland was still lower than in cattle, probably due to the reduction in the number of MLH1 foci in the proximal regions of the bi-armed chromosomes. The formation of centric fusions during karyotype evolution of the common eland accompanied by meiotic chromatin compaction has greater implications in the reduction in the number of DSBs in leptonema than in the decrease of MLH1 foci number in pachynema.
Collapse
Affiliation(s)
- Hana Sebestova
- Central European Institute of Technology-Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Miluse Vozdova
- Central European Institute of Technology-Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Svatava Kubickova
- Central European Institute of Technology-Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Halina Cernohorska
- Central European Institute of Technology-Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Radim Kotrba
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Prague, Czech Republic
| | - Jiri Rubes
- Central European Institute of Technology-Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| |
Collapse
|
16
|
Aleza P, Cuenca J, Hernández M, Juárez J, Navarro L, Ollitrault P. Genetic mapping of centromeres in the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes. BMC PLANT BIOLOGY 2015; 15:80. [PMID: 25848689 PMCID: PMC4367916 DOI: 10.1186/s12870-015-0464-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/20/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Mapping centromere locations in plant species provides essential information for the analysis of genetic structures and population dynamics. The centromere's position affects the distribution of crossovers along a chromosome and the parental heterozygosity restitution by 2n gametes is a direct function of the genetic distance to the centromere. Sexual polyploidisation is relatively frequent in Citrus species and is widely used to develop new seedless triploid cultivars. The study's objectives were to (i) map the positions of the centromeres of the nine Citrus clementina chromosomes; (ii) analyse the crossover interference in unreduced gametes; and (iii) establish the pattern of genetic recombination in haploid clementine gametes along each chromosome and its relationship with the centromere location and distribution of genic sequences. RESULTS Triploid progenies were derived from unreduced megagametophytes produced by second-division restitution. Centromere positions were mapped genetically for all linkage groups using half-tetrad analysis. Inference of the physical locations of centromeres revealed one acrocentric, four metacentric and four submetacentric chromosomes. Crossover interference was observed in unreduced gametes, with variation seen between chromosome arms. For haploid gametes, a strong decrease in the recombination rate occurred in centromeric and pericentromeric regions, which contained a low density of genic sequences. In chromosomes VIII and IX, these low recombination rates extended beyond the pericentromeric regions. The genomic region corresponding to a genetic distance < 5cM from a centromere represented 47% of the genome and 23% of the genic sequences. CONCLUSIONS The centromere positions of the nine citrus chromosomes were genetically mapped. Their physical locations, inferred from the genetic ones, were consistent with the sequence constitution and recombination pattern along each chromosome. However, regions with low recombination rates extended beyond the pericentromeric regions of some chromosomes into areas richer in genic sequences. The persistence of strong linkage disequilibrium between large numbers of genes promotes the stability of epistatic interactions and multilocus-controlled traits over successive generations but also maintains multi-trait associations. Identification of the centromere positions will allow the development of simple methods to analyse unreduced gamete formation mechanisms in a large range of genotypes and further modelling of genetic inheritance in sexual polyploidisation breeding schemes.
Collapse
Affiliation(s)
- Pablo Aleza
- />Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia Spain
| | - José Cuenca
- />Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia Spain
| | - María Hernández
- />Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia Spain
| | - José Juárez
- />Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia Spain
| | - Luis Navarro
- />Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia Spain
| | - Patrick Ollitrault
- />Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia Spain
- />CIRAD, UMR AGAP, Avenue Agropolis - TA A-75/02 F‐34398, Montpellier, France
| |
Collapse
|
17
|
Shodhan A, Lukaszewicz A, Novatchkova M, Loidl J. Msh4 and Msh5 function in SC-independent chiasma formation during the streamlined meiosis of Tetrahymena. Genetics 2014; 198:983-93. [PMID: 25217051 PMCID: PMC4224184 DOI: 10.1534/genetics.114.169698] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/06/2014] [Indexed: 11/25/2022] Open
Abstract
ZMM proteins have been defined in budding yeast as factors that are collectively involved in the formation of interfering crossovers (COs) and synaptonemal complexes (SCs), and they are a hallmark of the predominant meiotic recombination pathway of most organisms. In addition to this so-called class I CO pathway, a minority of crossovers are formed by a class II pathway, which involves the Mus81-Mms4 endonuclease complex. This is the only CO pathway in the SC-less meiosis of the fission yeast. ZMM proteins (including SC components) were always found to be co-occurring and hence have been regarded as functionally linked. Like the fission yeast, the protist Tetrahymena thermophila does not possess a SC, and its COs are dependent on Mus81-Mms4. Here we show that the ZMM proteins Msh4 and Msh5 are required for normal chiasma formation, and we propose that they have a pro-CO function outside a canonical class I pathway in Tetrahymena. Thus, the two-pathway model is not tenable as a general rule.
Collapse
Affiliation(s)
- Anura Shodhan
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| | - Agnieszka Lukaszewicz
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology, A-130 Vienna, Austria IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, A-1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
18
|
Mary N, Barasc H, Ferchaud S, Billon Y, Meslier F, Robelin D, Calgaro A, Loustau-Dudez AM, Bonnet N, Yerle M, Acloque H, Ducos A, Pinton A. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica). PLoS One 2014; 9:e99123. [PMID: 24919066 PMCID: PMC4053413 DOI: 10.1371/journal.pone.0099123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/09/2014] [Indexed: 01/05/2023] Open
Abstract
For the first time in the domestic pig, meiotic recombination along the 18 porcine autosomes was directly studied by immunolocalization of MLH1 protein. In total, 7,848 synaptonemal complexes from 436 spermatocytes were analyzed, and 13,969 recombination sites were mapped. Individual chromosomes for 113 of the 436 cells (representing 2,034 synaptonemal complexes) were identified by immunostaining and fluorescence in situ hybridization (FISH). The average total length of autosomal synaptonemal complexes per cell was 190.3 µm, with 32.0 recombination sites (crossovers), on average, per cell. The number of crossovers and the lengths of the autosomal synaptonemal complexes showed significant intra- (i.e. between cells) and inter-individual variations. The distributions of recombination sites within each chromosomal category were similar: crossovers in metacentric and submetacentric chromosomes were concentrated in the telomeric regions of the p- and q-arms, whereas two hotspots were located near the centromere and in the telomeric region of acrocentrics. Lack of MLH1 foci was mainly observed in the smaller chromosomes, particularly chromosome 18 (SSC18) and the sex chromosomes. All autosomes displayed positive interference, with a large variability between the chromosomes.
Collapse
Affiliation(s)
- Nicolas Mary
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Harmonie Barasc
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Stéphane Ferchaud
- UE1372 GenESI Génétique, Expérimentation et Système Innovants, Surgères, France
| | - Yvon Billon
- UE1372 GenESI Génétique, Expérimentation et Système Innovants, Surgères, France
| | - Frédéric Meslier
- UE1372 GenESI Génétique, Expérimentation et Système Innovants, Surgères, France
| | - David Robelin
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Anne Calgaro
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Anne-Marie Loustau-Dudez
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Nathalie Bonnet
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Martine Yerle
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Hervé Acloque
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Alain Ducos
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Alain Pinton
- INRA, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENSAT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| |
Collapse
|
19
|
Weng ZQ, Saatchi M, Schnabel RD, Taylor JF, Garrick DJ. Recombination locations and rates in beef cattle assessed from parent-offspring pairs. Genet Sel Evol 2014; 46:34. [PMID: 24885305 PMCID: PMC4071795 DOI: 10.1186/1297-9686-46-34] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/16/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Recombination events tend to occur in hotspots and vary in number among individuals. The presence of recombination influences the accuracy of haplotype phasing and the imputation of missing genotypes. Genes that influence genome-wide recombination rate have been discovered in mammals, yeast, and plants. Our aim was to investigate the influence of recombination on haplotype phasing, locate recombination hotspots, scan the genome for Quantitative Trait Loci (QTL) and identify candidate genes that influence recombination, and quantify the impact of recombination on the accuracy of genotype imputation in beef cattle. METHODS 2775 Angus and 1485 Limousin parent-verified sire/offspring pairs were genotyped with the Illumina BovineSNP50 chip. Haplotype phasing was performed with DAGPHASE and BEAGLE using UMD3.1 assembly SNP (single nucleotide polymorphism) coordinates. Recombination events were detected by comparing the two reconstructed chromosomal haplotypes inherited by each offspring with those of their sires. Expected crossover probabilities were estimated assuming no interference and a binomial distribution for the frequency of crossovers. The BayesB approach for genome-wide association analysis implemented in the GenSel software was used to identify genomic regions harboring QTL with large effects on recombination. BEAGLE was used to impute Angus genotypes from a 7K subset to the 50K chip. RESULTS DAGPHASE was superior to BEAGLE in haplotype phasing, which indicates that linkage information from relatives can improve its accuracy. The estimated genetic length of the 29 bovine autosomes was 3097 cM, with a genome-wide recombination distance averaging 1.23 cM/Mb. 427 and 348 windows containing recombination hotspots were detected in Angus and Limousin, respectively, of which 166 were in common. Several significant SNPs and candidate genes, which influence genome-wide recombination were localized in QTL regions detected in the two breeds. High-recombination rates hinder the accuracy of haplotype phasing and genotype imputation. CONCLUSIONS Small population sizes, inadequate half-sib family sizes, recombination, gene conversion, genotyping errors, and map errors reduce the accuracy of haplotype phasing and genotype imputation. Candidate regions associated with recombination were identified in both breeds. Recombination analysis may improve the accuracy of haplotype phasing and genotype imputation from low- to high-density SNP panels.
Collapse
Affiliation(s)
- Zi-Qing Weng
- Department of Animal Science, Iowa State University, Ames, IA 50010, USA
| | - Mahdi Saatchi
- Department of Animal Science, Iowa State University, Ames, IA 50010, USA
| | - Robert D Schnabel
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy F Taylor
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - Dorian J Garrick
- Department of Animal Science, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
20
|
Zhang L, Liang Z, Hutchinson J, Kleckner N. Crossover patterning by the beam-film model: analysis and implications. PLoS Genet 2014; 10:e1004042. [PMID: 24497834 PMCID: PMC3907302 DOI: 10.1371/journal.pgen.1004042] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 11/05/2013] [Indexed: 11/25/2022] Open
Abstract
Crossing-over is a central feature of meiosis. Meiotic crossover (CO) sites are spatially patterned along chromosomes. CO-designation at one position disfavors subsequent CO-designation(s) nearby, as described by the classical phenomenon of CO interference. If multiple designations occur, COs tend to be evenly spaced. We have previously proposed a mechanical model by which CO patterning could occur. The central feature of a mechanical mechanism is that communication along the chromosomes, as required for CO interference, can occur by redistribution of mechanical stress. Here we further explore the nature of the beam-film model, its ability to quantitatively explain CO patterns in detail in several organisms, and its implications for three important patterning-related phenomena: CO homeostasis, the fact that the level of zero-CO bivalents can be low (the “obligatory CO”), and the occurrence of non-interfering COs. Relationships to other models are discussed. Spatial patterning is a common feature of biological systems at all length scales, from molecular to multi-organismic. Meiosis is the specialized cellular program in which a diploid cell gives rise to haploid gametes for sexual reproduction. Crossing-over between homologous maternal and paternal chromosomes (homologs) is a central feature of this program, playing a role not only for increasing genetic diversity but also for ensuring regular segregation of homologs at the first meiotic division. The distribution of crossovers (COs) along meiotic chromosomes is a paradigmatic example of spatial patterning. Crossovers occur at different positions in different meiotic nuclei but, nonetheless, tend to be evenly spaced along the chromosomes. We previously-described a mechanical “stress and stress relief” model for CO patterning with an accompanying mathematical description (the “beam-film model”). In this paper we explore the roles of mathematical parameters in this model; show that it can very accurately describe experimental data sets from several organisms, in considerably quantitative depth; and discuss implications of the model for several phenomena that are directly related to crossover patterning, including the features which can ensure that every chromosome always acquires at least one crossover.
Collapse
Affiliation(s)
- Liangran Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Zhangyi Liang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - John Hutchinson
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Vozdova M, Sebestova H, Kubickova S, Cernohorska H, Awadova T, Vahala J, Rubes J. Impact of Robertsonian translocation on meiosis and reproduction: an impala (Aepyceros melampus) model. J Appl Genet 2014; 55:249-58. [DOI: 10.1007/s13353-014-0193-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 11/27/2022]
|
22
|
Vozdova M, Sebestova H, Kubickova S, Cernohorska H, Vahala J, Rubes J. A comparative study of meiotic recombination in cattle (Bos taurus) and three wildebeest species (Connochaetes gnou, C. taurinus taurinus and C. t. albojubatus). Cytogenet Genome Res 2013; 140:36-45. [PMID: 23594414 DOI: 10.1159/000350444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 11/19/2022] Open
Abstract
The karyotypic evolution in the family Bovidae is based on centric fusions of ancestral acrocentric chromosomes. Here, the frequency and distribution of meiotic recombination was analyzed in pachytene spermatocytes from Bos taurus (2n = 60) and 3 wildebeest species (Connochaetes gnou, C. taurinus taurinus and C. t. albojubatus) (2n = 58) using immunofluorescence and fluorescence in situ hybridization. Significant differences in mean numbers of recombination events per cell were observed between B. taurus and members of the genus Connochaetes (47.2 vs. 43.7, p < 0.001). The number of MLH1 foci was significantly correlated with the length of the autosomal synaptonemal complexes. The average interfocus distance was influenced by interference. The male recombination maps of bovine chromosomes 2 and 25 and of their fused homologues in wildebeests were constructed. A significant reduction of recombination in the fused chromosome BTA25 was observed in wildebeests (p = 0.005). This was probably caused by interference acting across the centromere, which was significantly stronger than the intra-arm interference. This comparative meiotic study showed significant differences among the species from the family Bovidae with the same fundamental number of autosomal arms (FNa = 29) which differ by a single centric fusion.
Collapse
Affiliation(s)
- M Vozdova
- Veterinary Research Institute, Brno, CZ–621 00 Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Sandor C, Li W, Coppieters W, Druet T, Charlier C, Georges M. Genetic variants in REC8, RNF212, and PRDM9 influence male recombination in cattle. PLoS Genet 2012; 8:e1002854. [PMID: 22844258 PMCID: PMC3406008 DOI: 10.1371/journal.pgen.1002854] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 06/07/2012] [Indexed: 01/01/2023] Open
Abstract
We use >250,000 cross-over events identified in >10,000 bovine sperm cells to perform an extensive characterization of meiotic recombination in male cattle. We map Quantitative Trait Loci (QTL) influencing genome-wide recombination rate, genome-wide hotspot usage, and locus-specific recombination rate. We fine-map three QTL and present strong evidence that genetic variants in REC8 and RNF212 influence genome-wide recombination rate, while genetic variants in PRDM9 influence genome-wide hotspot usage. Homologous recombination is an essential cellular process that determines proper chromosome segregation during meiosis, affects fertility, and influences evolvability. Nevertheless, the components of the recombination apparatus remain incompletely characterized in mammals. One approach to identify such components is to identify the genes that underlie inherited variation in recombination phenotypes. In addition to providing mechanistic insights, this would allow the study of the evolutionary forces that shape the recombination process. In this paper, we take advantage of genotypes for 50,000 genome-wide SNP markers to measure four recombination phenotypes (genome-wide recombination rate, genome-wide hotspot usage, locus-specific recombination rate, genome-wide cross-over interference) for >750 bulls on the basis of >250,000 cross-overs detected in sperm cells transmitted to >10,000 sons. We quantify the heritability and scan the genome for Quantitative Trait Loci (QTL) influencing each one of these recombination phenotypes. We perform a detailed genetic analysis of three such QTL, thereby providing evidence that genetic variants in REC8 and RNF212 influence genome-wide recombination rate, while genetic variants in an X-linked PRDM9 paralogue influence genome-wide hotspot usage.
Collapse
Affiliation(s)
| | | | | | | | | | - Michel Georges
- Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
24
|
Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv 'Fortune'. Heredity (Edinb) 2011; 107:462-70. [PMID: 21587302 DOI: 10.1038/hdy.2011.33] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The genetic structure of 2n gametes and, particularly, the parental heterozygosity restitution at each locus depends on the meiotic process by which they originated, with first-division restitution and second-division restitution (SDR) being the two major mechanisms. The origin of 2n gametes in citrus is still controversial, although sexual polyploidisation is widely used for triploid seedless cultivar development. In this study, we report the analysis of 2n gametes of mandarin cv 'Fortune' by genotyping 171 triploid hybrids with 35 simple sequence repeat markers. The microsatellite DNA allele counting-peak ratios method for allele-dosage evaluation proved highly efficient in segregating triploid progenies and allowed half-tetrad analysis (HTA) by inferring the 2n gamete allelic configuration. All 2n gametes arose from the female genitor. The observed maternal heterozygosity restitution varied between 10 and 82%, depending on the locus, thus SDR appears to be the mechanism underlying 2n gamete production in mandarin cv 'Fortune'. A new method to locate the centromere, based on the best fit between observed heterozygosity restitution within a linkage group and theoretical functions under either partial or no chiasmata interference hypotheses was successfully applied to linkage group II. The maximum value of heterozygosity restitution and the pattern of restitution along this linkage group would suggest there is partial chiasma interference. The implications of such a restitution mechanism for citrus breeding are discussed.
Collapse
|
25
|
Hultén MA. On the origin of crossover interference: A chromosome oscillatory movement (COM) model. Mol Cytogenet 2011; 4:10. [PMID: 21477316 PMCID: PMC3103480 DOI: 10.1186/1755-8166-4-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/08/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND It is now nearly a century since it was first discovered that crossovers between homologous parental chromosomes, originating at the Prophase stage of Meiosis I, are not randomly placed. In fact, the number and distribution of crossovers are strictly regulated with crossovers/chiasmata formed in optimal positions along the length of individual chromosomes, facilitating regular chromosome segregation at the first meiotic division. In spite of much research addressing this question, the underlying mechanism(s) for the phenomenon called crossover/chiasma interference is/are still unknown; and this constitutes an outstanding biological enigma. RESULTS The Chromosome Oscillatory Movement (COM) model for crossover/chiasma interference implies that, during Prophase of Meiosis I, oscillatory movements of the telomeres (attached to the nuclear membrane) and the kinetochores (within the centromeres) create waves along the length of chromosome pairs (bivalents) so that crossing-over and chiasma formation is facilitated by the proximity of parental homologs induced at the nodal regions of the waves thus created. This model adequately explains the salient features of crossover/chiasma interference, where (1) there is normally at least one crossover/chiasma per bivalent, (2) the number is correlated to bivalent length, (3) the positions are dependent on the number per bivalent, (4) interference distances are on average longer over the centromere than along chromosome arms, and (5) there are significant changes in carriers of structural chromosome rearrangements. CONCLUSIONS The crossover/chiasma frequency distribution in humans and mice with normal karyotypes as well as in carriers of structural chromosome rearrangements are those expected on the COM model. Further studies are underway to analyze mechanical/mathematical aspects of this model for the origin of crossover/chiasma interference, using string replicas of the homologous chromosomes at the Prophase stage of Meiosis I. The parameters to vary in this type of experiment will include: (1) the mitotic karyotype, i.e. ranked length and centromere index of the chromosomes involved, (2) the specific bivalent/multivalent length and flexibility, dependent on the way this structure is positioned within the nucleus and the size of the respective meiocyte nuclei, (3) the frequency characteristics of the oscillatory movements at respectively the telomeres and the kinetochores.
Collapse
Affiliation(s)
- Maj A Hultén
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, CMM L8:02, Karolinska Institutet, Karolinska University Hospital, Solna, S-17 1 76 Stockholm, Sweden.
| |
Collapse
|
26
|
Cheng EY, Hunt PA, Naluai-Cecchini TA, Fligner CL, Fujimoto VY, Pasternack TL, Schwartz JM, Steinauer JE, Woodruff TJ, Cherry SM, Hansen TA, Vallente RU, Broman KW, Hassold TJ. Meiotic recombination in human oocytes. PLoS Genet 2009; 5:e1000661. [PMID: 19763179 PMCID: PMC2735652 DOI: 10.1371/journal.pgen.1000661] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 08/24/2009] [Indexed: 11/19/2022] Open
Abstract
Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g., MLH1) in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and, more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for the presence of "vulnerable" crossover configurations in the fetal oocyte, consistent with the idea that these are subsequently translated into nondisjunctional events in the adult oocyte.
Collapse
Affiliation(s)
- Edith Y. Cheng
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Patricia A. Hunt
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Theresa A. Naluai-Cecchini
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Corrine L. Fligner
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Victor Y. Fujimoto
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Tanya L. Pasternack
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Jackie M. Schwartz
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Jody E. Steinauer
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Tracey J. Woodruff
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Sheila M. Cherry
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Terah A. Hansen
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Rhea U. Vallente
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Karl W. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Terry J. Hassold
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
27
|
Housworth EA, Stahl FW. Is there variation in crossover interference levels among chromosomes from human males? Genetics 2009; 183:403-5. [PMID: 19581450 PMCID: PMC2746164 DOI: 10.1534/genetics.109.103853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/28/2009] [Indexed: 11/18/2022] Open
Abstract
We demonstrate that recent data from human males are consistent with constant interference levels among chromosomes under the two-pathway model, whereas inappropriately fitting shape parameters of Gamma distributions to immunofluorescent interfoci distances observed on finite chromosomes generates false interpretations of higher levels of interference on shorter chromosomes. We provide appropriate statistical methodology.
Collapse
Affiliation(s)
- E A Housworth
- Mathematics, Biology, and Statistics Departments, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
28
|
Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 2008; 181:393-403. [PMID: 19064706 DOI: 10.1534/genetics.108.097469] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In wheat (Triticum aestivum L.), the crossover (CO) frequency increases gradually from the centromeres to the telomeres. However, little is known about the factors affecting both the distribution and the intensity of recombination along this gradient. To investigate this, we studied in detail the pattern of CO along chromosome 3B of bread wheat. A dense reference genetic map comprising 102 markers homogeneously distributed along the chromosome was compared to a physical deletion map. Most of the COs (90%) occurred in the distal subtelomeric regions that represent 40% of the chromosome. About 27% of the proximal regions surrounding the centromere showed a very weak CO frequency with only three COs found in the 752 gametes studied. Moreover, we observed a clear decrease of CO frequency on the distal region of the short arm. Finally, the intensity of interference was assessed for the first time in wheat using a Gamma model. The results showed m values of 1.2 for male recombination and 3.5 for female recombination, suggesting positive interference along wheat chromosome 3B.
Collapse
|