1
|
Joumaa V, Syed F, Howard JJ, Thomas GK, Omerkhil L, Dabgotra S, Obrigewitsch I, Liu S, Holash RJ, Leonard TR, Herzog W. Maximal active force in skinned muscle fibres from children with cerebral palsy. J Biomech 2025; 186:112710. [PMID: 40318424 DOI: 10.1016/j.jbiomech.2025.112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/09/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
The aim of this study was to gain insight into the origins of muscle weakness in children with cerebral palsy (CP) by investigating active force in single muscle fibres isolated from the adductor longus (AL) of children with CP. Single skinned muscle fibres (n = 43, from 11 children with CP) were isolated and tested for their maximal active stress, instantaneous stiffness, and the ratio of active stress to stiffness at a sarcomere length (SL) of 2.4 µm, and passive stress at SLs of 2.4, 2.6, 2.8, 3.0, 3.2, and 3.4 µm. The muscle biopsies were tested for their total myofibrillar protein content using a BCA assay, and myosin heavy chain, actin, titin and nebulin content using gel electrophoresis. Muscle biopsies from the vastus lateralis of healthy adults (HA; n = 19 fibres from 4 subjects) were used for comparison. The maximal active stress and the instantaneous stiffness, expressed as active elastic modulus, were lower in the CP fibres compared to the HA fibres (79 ± 4 vs. 170 ± 11 kPa, and 5479 ± 381 vs. 8943 ± 402 kPa, respectively). The maximal active stress to stiffness ratio was not different between CP and HA fibres (0.016 ± 0.001 vs. 0.020 ± 0.002). Actin, titin and nebulin content was reduced in the CP compared to the HA samples. Passive stress was also reduced in the CP fibres at SLs of 2.8, 3.0, 3.2 and 3.6 µm. These results suggest that the contractile ability of muscles from children with CP is compromised at the fibre level and this is likely the result of a decrease in sarcomeric proteins such as actin, titin and nebulin.
Collapse
Affiliation(s)
- Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - Faizan Syed
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - Jason J Howard
- Department of Orthopedic Surgery, Nemours Children's Hospital, Wilmington, DE, USA.
| | - Gavin K Thomas
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - Latif Omerkhil
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - Sach Dabgotra
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - Isaac Obrigewitsch
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - Shuyue Liu
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - Robert J Holash
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - Timothy R Leonard
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Coulson Z, Kolb J, Sabha N, Karimi E, Hourani Z, Ottenheijm C, Granzier H, Dowling JJ. Generation of a novel mouse model of nemaline myopathy due to recurrent NEB exon 55 deletion. Skelet Muscle 2025; 15:8. [PMID: 40108735 PMCID: PMC11924678 DOI: 10.1186/s13395-025-00378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Biallelic pathogenic variants in the nebulin (NEB) gene lead to the congenital muscle disease nemaline myopathy. In-frame deletion of exon 55 (ΔExon55) is the most common disease-causing variant in NEB. Previously, a mouse model of NebΔExon55 was developed; however, it presented an uncharacteristically severe phenotype with a near complete reduction in Neb transcript expression that is not observed in NEB exon 55 patients. We identified by RNA sequencing that the cause of this unexpectedly severe presentation in mice is the generation of a pseudoexon containing two premature termination codons (and promoting nonsense mediated decay) at the Neb exon 55 deletion site. To prove that this is the cause of the loss of Neb transcript, and to generate a more faithful model of the human disease, we used CRISPR gene editing to remove the pseudoexon sequence and replace it with human intron 54 sequence containing a validated cas9 gRNA protospacer. The resulting "hmz" mice have a significant reduction in pseudoexon formation (93.6% reduction), and a re-introduction of stable Neb transcript expression. This new model has the characteristic features of nemaline myopathy at the physiological, histological, and molecular levels. Importantly, unlike the existing exon 55 deletion mice (which die by age 7 days), it survives beyond the first months and exhibits obvious signs of neuromuscular dysfunction. It thus provides a new, robust model for studying pathomechanisms and developing therapies for NEB related nemaline myopathy.
Collapse
Affiliation(s)
- Zachary Coulson
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Justin Kolb
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Esmat Karimi
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Zaynab Hourani
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Coen Ottenheijm
- Department of Physiology, Amsterdam UMC, Amsterdam, North-Holland, Netherlands
| | - Henk Granzier
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Coulson Z, Kolb J, Sabha N, Karimi E, Hourani Z, Ottenheijm C, Granzier H, Dowling JJ. Generation of a novel mouse model of nemaline myopathy due to recurrent NEB exon 55 deletion. RESEARCH SQUARE 2024:rs.3.rs-5456324. [PMID: 39764134 PMCID: PMC11702780 DOI: 10.21203/rs.3.rs-5456324/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Biallelic pathogenic variants in the nebulin (NEB) gene lead to the congenital muscle disease nemaline myopathy. In-frame deletion of exon 55 (ΔExon55) is the most common disease-causing variant in NEB. Previously, a mouse model of Neb ΔExon55 was developed; however, it presented an uncharacteristically severe phenotype with a near complete reduction in Neb transcript expression that is not observed in NEB exon 55 patients. We identified by RNA sequencing that the cause of this unexpectedly severe presentation in mice is the generation of a pseudoexon containing two premature termination codons (and promoting nonsense mediated decay) at the Neb exon 55 deletion site. To prove that this is the cause of the loss of Neb transcript, and to generate a more faithful model of the human disease, we used CRISPR gene editing to remove the pseudoexon sequence and replace it with human intron 54 sequence containing a validated cas9 gRNA protospacer. The resulting "hmz" mice have a significant reduction in pseudoexon formation (93.6% reduction), and a re-introduction of stable Neb transcript expression. This new model has the characteristic features of nemaline myopathy at the physiological, histological, and molecular levels. Importantly, unlike the existing exon 55 deletion mice (which die by age 7 days), it survives beyond the first months and exhibits obvious signs of neuromuscular dysfunction. It thus provides a new, robust model for studying pathomechanisms and developing therapies for NEB related nemaline myopathy.
Collapse
Affiliation(s)
- Zachary Coulson
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, CAN
- Department of Molecular Genetics, University of Toronto, Toronto, ON, CAN
| | - Justin Kolb
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, CAN
| | - Esmat Karimi
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| | - Zaynab Hourani
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| | - Coen Ottenheijm
- Department of Physiology, Amsterdam UMC, Amsterdam, North-Holland, NL
| | - Henk Granzier
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, CAN
- Department of Molecular Genetics, University of Toronto, Toronto, ON, CAN
| |
Collapse
|
4
|
Noonan AM, Malakoutian M, Dehghan-Hamani I, Lewis S, Street J, Oxland TR, Brown SHM. Paraspinal muscle fibre structural and contractile characteristics demonstrate distinct irregularities in patients with spinal degeneration and deformity. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4605-4618. [PMID: 39397176 DOI: 10.1007/s00586-024-08509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Paraspinal and spinopelvic muscular dysfunction are hypothesized to be a causative factor for spinal degeneration and deformity; however, our fundamental understanding of paraspinal muscle (dys)function remains limited. METHODS Twelve surgical patients with spinal degeneration were recruited and categorized into group DEG (four patients) with no sagittal imbalance and no usage of compensatory mechanisms; group DEG-COMP (four patients) with no sagittal imbalance through use of compensatory mechanisms; and group DEG-COMP-UNBAL (four patients) with sagittal imbalance despite use of compensatory mechanisms. From each patient, four biopsies were collected from right and left multifidus (MULT) and longissimus (LONG) for single fibre contractile and structural measurements. RESULTS Eight of 48 (17%) biopsies did not exhibit any contractile properties. Specific force was not different between groups for the MULT (p = 0.47) but was greater in group DEG compared to group DEG-COMP-UNBAL for the LONG (p = 0.02). Force sarcomere-length properties were unusually variable both within and amongst patients in all groups. Thin filament (actin) lengths were in general shorter and more variable than published norms for human muscle. CONCLUSION This study is the first to show a heightened intrinsic contractile muscle disorder (i.e. impaired specific force generation) in patients with spinal degeneration who are sagittally imbalanced (compared to patients without deformity). Additionally, there are clear indications that patients with spinal degeneration (all groups) have intrinsic force sarcomere-length properties that are dysregulated. This provides important insight into the pathophysiology of muscle weakness in this patient group.
Collapse
Affiliation(s)
- Alex M Noonan
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Masoud Malakoutian
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
- ICORD, University of British Columbia, Vancouver, Canada
| | - Iraj Dehghan-Hamani
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
- ICORD, University of British Columbia, Vancouver, Canada
| | - Stephen Lewis
- Divisions of Neurosurgery and Orthopedic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - John Street
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | - Thomas R Oxland
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
- ICORD, University of British Columbia, Vancouver, Canada
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
5
|
Laitila J, Seaborne RAE, Ranu N, Kolb JS, Wallgren-Pettersson C, Witting N, Vissing J, Vilchez JJ, Zanoteli E, Palmio J, Huovinen S, Granzier H, Ochala J. Myosin ATPase inhibition fails to rescue the metabolically dysregulated proteome of nebulin-deficient muscle. J Physiol 2024; 602:5229-5245. [PMID: 39216086 DOI: 10.1113/jp286870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Nemaline myopathy (NM) is a genetic muscle disease, primarily caused by mutations in the NEB gene (NEB-NM) and with muscle myosin dysfunction as a major molecular pathogenic mechanism. Recently, we have observed that the myosin biochemical super-relaxed state was significantly impaired in NEB-NM, inducing an aberrant increase in ATP consumption and remodelling of the energy proteome in diseased muscle fibres. Because the small-molecule Mavacamten is known to promote the myosin super-relaxed state and reduce the ATP demand, we tested its potency in the context of NEB-NM. We first conducted in vitro experiments in isolated single myofibres from patients and found that Mavacamten successfully reversed the myosin ATP overconsumption. Following this, we assessed its short-term in vivo effects using the conditional nebulin knockout (cNeb KO) mouse model and subsequently performing global proteomics profiling in dissected soleus myofibres. After a 4 week treatment period, we observed a remodelling of a large number of proteins in both cNeb KO mice and their wild-type siblings. Nevertheless, these changes were not related to the energy proteome, indicating that short-term Mavacamten treatment is not sufficient to properly counterbalance the metabolically dysregulated proteome of cNeb KO mice. Taken together, our findings emphasize Mavacamten potency in vitro but challenge its short-term efficacy in vivo. KEY POINTS: No cure exists for nemaline myopathy, a type of genetic skeletal muscle disease mainly derived from mutations in genes encoding myofilament proteins. Applying Mavacamten, a small molecule directly targeting the myofilaments, to isolated membrane-permeabilized muscle fibres from human patients restored myosin energetic disturbances. Treating a mouse model of nemaline myopathy in vivo with Mavacamten for 4 weeks, remodelled the skeletal muscle fibre proteome without any noticeable effects on energetic proteins. Short-term Mavacamten treatment may not be sufficient to reverse the muscle phenotype in nemaline myopathy.
Collapse
Affiliation(s)
- Jenni Laitila
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert A E Seaborne
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Natasha Ranu
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Justin S Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, MO, USA
| | - Carina Wallgren-Pettersson
- The Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Nanna Witting
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Juan Jesus Vilchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Johanna Palmio
- Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Sanna Huovinen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Henk Granzier
- The Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Fabian L, Karimi E, Farman GP, Gohlke J, Ottenheijm CAC, Granzier HL, Dowling JJ. Comprehensive phenotypic characterization of an allelic series of zebrafish models of NEB-related nemaline myopathy. Hum Mol Genet 2024; 33:1036-1054. [PMID: 38493359 PMCID: PMC11153343 DOI: 10.1093/hmg/ddae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Nemaline myopathy (NM) is a rare congenital neuromuscular disorder characterized by muscle weakness and hypotonia, slow gross motor development, and decreased respiratory function. Mutations in at least twelve genes, all of each encode proteins that are either components of the muscle thin filament or regulate its length and stability, have been associated with NM. Mutations in Nebulin (NEB), a giant filamentous protein localized in the sarcomere, account for more than 50% of NM cases. At present, there remains a lack of understanding of whether NEB genotype influences nebulin function and NM-patient phenotypes. In addition, there is a lack of therapeutically tractable models that can enable drug discovery and address the current unmet treatment needs of patients. To begin to address these gaps, here we have characterized five new zebrafish models of NEB-related NM. These mutants recapitulate most aspects of NEB-based NM, showing drastically reduced survival, defective muscle structure, reduced contraction force, shorter thin filaments, presence of electron-dense structures in myofibers, and thickening of the Z-disks. This study represents the first extensive investigation of an allelic series of nebulin mutants, and thus provides an initial examination in pre-clinical models of potential genotype-phenotype correlations in human NEB patients. It also represents the first utilization of a set of comprehensive outcome measures in zebrafish, including correlation between molecular analyses, structural and biophysical investigations, and phenotypic outcomes. Therefore, it provides a rich source of data for future studies exploring the NM pathomechanisms, and an ideal springboard for therapy identification and development for NEB-related NM.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Genetics and Genome Biology Program, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Esmat Karimi
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam University Medical Center (location VUMC), De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Hendrikus L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - James J Dowling
- Genetics and Genome Biology Program, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Division of Neurology, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Karimi E, Gohlke J, van der Borgh M, Lindqvist J, Hourani Z, Kolb J, Cossette S, Lawlor MW, Ottenheijm C, Granzier H. Characterization of NEB pathogenic variants in patients reveals novel nemaline myopathy disease mechanisms and omecamtiv mecarbil force effects. Acta Neuropathol 2024; 147:72. [PMID: 38634969 PMCID: PMC11026289 DOI: 10.1007/s00401-024-02726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Nebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Pathogenic variants in the nebulin gene (NEB) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking curative therapies. In this study, we examined a cohort of ten NEM2 patients, each with unique pathogenic variants, aiming to understand their impact on mRNA, protein, and functional levels. Results show that pathogenic truncation variants affect NEB mRNA stability and lead to nonsense-mediated decay of the mutated transcript. Moreover, a high incidence of cryptic splice site activation was found in patients with pathogenic splicing variants that are expected to disrupt the actin-binding sites of nebulin. Determination of protein levels revealed patients with either relatively normal or markedly reduced nebulin. We observed a positive relation between the reduction in nebulin and a reduction in TFL, or reduction in tension (both maximal and submaximal tension). Interestingly, our study revealed a pathogenic duplication variant in nebulin that resulted in a four-copy gain in the triplicate region of NEB and a much larger nebulin protein and longer TFL. Additionally, we investigated the effect of Omecamtiv mecarbil (OM), a small-molecule activator of cardiac myosin, on force production of type 1 muscle fibers of NEM2 patients. OM treatment substantially increased submaximal tension across all NEM2 patients ranging from 87 to 318%, with the largest effects in patients with the lowest level of nebulin. In summary, this study indicates that post-transcriptional or post-translational mechanisms regulate nebulin expression. Moreover, we propose that the pathomechanism of NEM2 involves not only shortened but also elongated thin filaments, along with the disruption of actin-binding sites resulting from pathogenic splicing variants. Significantly, our findings highlight the potential of OM treatment to improve skeletal muscle function in NEM2 patients, especially those with large reductions in nebulin levels.
Collapse
Affiliation(s)
- Esmat Karimi
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Mila van der Borgh
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Stacy Cossette
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
- Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Coen Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Department of Physiology, Amsterdam UMC (Location VUMC), Amsterdam, Netherlands
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Donkervoort S, van de Locht M, Ronchi D, Reunert J, McLean CA, Zaki M, Orbach R, de Winter JM, Conijn S, Hoomoedt D, Neto OLA, Magri F, Viaene AN, Foley AR, Gorokhova S, Bolduc V, Hu Y, Acquaye N, Napoli L, Park JH, Immadisetty K, Miles LB, Essawi M, McModie S, Ferreira LF, Zanotti S, Neuhaus SB, Medne L, ElBagoury N, Johnson KR, Zhang Y, Laing NG, Davis MR, Bryson-Richardson RJ, Hwee DT, Hartman JJ, Malik FI, Kekenes-Huskey PM, Comi GP, Sharaf-Eldin W, Marquardt T, Ravenscroft G, Bönnemann CG, Ottenheijm CAC. Pathogenic TNNI1 variants disrupt sarcomere contractility resulting in hypo- and hypercontractile muscle disease. Sci Transl Med 2024; 16:eadg2841. [PMID: 38569017 DOI: 10.1126/scitranslmed.adg2841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.
Collapse
Affiliation(s)
- Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martijn van de Locht
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, 20135, Italy
| | - Janine Reunert
- Department of General Pediatrics, University of Münster, Münster, 48149, Germany
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Melbourne, Victoria, 3004, Australia
- Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Victoria, 3168, Australia
| | - Maha Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josine M de Winter
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Stefan Conijn
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Daan Hoomoedt
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Osorio Lopes Abath Neto
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francesca Magri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, 20122, Italy
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana Gorokhova
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Medical Genetics, Timone Children's Hospital, APHM, Marseille, 13005, France
- INSERM, U1251-MMG, Aix-Marseille Université, Marseille, 13009, France
| | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Acquaye
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Napoli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, 20122, Italy
| | - Julien H Park
- Department of General Pediatrics, University Hospital Münster, Münster, 48149 Germany
| | - Kalyan Immadisetty
- Department of Cell and Molecular Physiology, Loyola University, Chicago, IL 60153, USA
| | - Lee B Miles
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Mona Essawi
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Salar McModie
- Department of Neurology, Alfred Health, Melbourne, Victoria, 3004, Australia
| | - Leonardo F Ferreira
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Simona Zanotti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, 20122, Italy
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Livija Medne
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nagham ElBagoury
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Kory R Johnson
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Zhang
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nigel G Laing
- Neurogenetics Unit, Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
- Centre for Medical Research University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Mark R Davis
- Neurogenetics Unit, Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | | | - Darren T Hwee
- Research and Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - James J Hartman
- Research and Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Fady I Malik
- Research and Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | | | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, 20135, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, 20122, Italy
| | - Wessam Sharaf-Eldin
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Thorsten Marquardt
- Department of General Pediatrics, University of Münster, Münster, 48149, Germany
| | - Gianina Ravenscroft
- Centre for Medical Research University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| |
Collapse
|
9
|
Vasilescu C, Colpan M, Ojala TH, Manninen T, Mutka A, Ylänen K, Rahkonen O, Poutanen T, Martelius L, Kumari R, Hinterding H, Brilhante V, Ojanen S, Lappalainen P, Koskenvuo J, Carroll CJ, Fowler VM, Gregorio CC, Suomalainen A. Recessive TMOD1 mutation causes childhood cardiomyopathy. Commun Biol 2024; 7:7. [PMID: 38168645 PMCID: PMC10761686 DOI: 10.1038/s42003-023-05670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Familial cardiomyopathy in pediatric stages is a poorly understood presentation of heart disease in children that is attributed to pathogenic mutations. Through exome sequencing, we report a homozygous variant in tropomodulin 1 (TMOD1; c.565C>T, p.R189W) in three individuals from two unrelated families with childhood-onset dilated and restrictive cardiomyopathy. To decipher the mechanism of pathogenicity of the R189W mutation in TMOD1, we utilized a wide array of methods, including protein analyses, biochemistry and cultured cardiomyocytes. Structural modeling revealed potential defects in the local folding of TMOD1R189W and its affinity for actin. Cardiomyocytes expressing GFP-TMOD1R189W demonstrated longer thin filaments than GFP-TMOD1wt-expressing cells, resulting in compromised filament length regulation. Furthermore, TMOD1R189W showed weakened activity in capping actin filament pointed ends, providing direct evidence for the variant's effect on actin filament length regulation. Our data indicate that the p.R189W variant in TMOD1 has altered biochemical properties and reveals a unique mechanism for childhood-onset cardiomyopathy.
Collapse
Affiliation(s)
- Catalina Vasilescu
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, 85724, USA
| | - Tiina H Ojala
- Department of Pediatric Cardiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Tuula Manninen
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Aino Mutka
- Department of Pathology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Kaisa Ylänen
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and University Hospital, 33521, Tampere, Finland
| | - Otto Rahkonen
- Department of Pediatric Cardiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Tuija Poutanen
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and University Hospital, 33521, Tampere, Finland
| | - Laura Martelius
- Department of Pediatric Radiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Helena Hinterding
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Virginia Brilhante
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Simo Ojanen
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | | | - Christopher J Carroll
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland
- Molecular and Clinical Sciences, St. George's, University of London, London, United Kingdom
| | - Velia M Fowler
- Department of Biological Sciences, University of Delaware, Newark, DE, 19711, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, 85724, USA.
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine, New York, NY, 10029, USA.
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland.
- HUSlab, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland.
| |
Collapse
|
10
|
Karimi E, van der Borgh M, Lindqvist J, Gohlke J, Hourani Z, Kolb J, Cossette S, Lawlor MW, Ottenheijm C, Granzier H. Characterization of NEB mutations in patients reveals novel nemaline myopathy disease mechanisms and omecamtiv mecarbil force effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572678. [PMID: 38187705 PMCID: PMC10769406 DOI: 10.1101/2023.12.20.572678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Nebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Mutations in the nebulin gene ( NEB ) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking therapies targeting the underlying pathological mechanisms. In this study, we examined a cohort of ten NEM2 patients, each with unique mutations, aiming to understand their impact on mRNA, protein, and functional levels. Results show that truncation mutations affect NEB mRNA stability and lead to nonsense-mediated decay of the mutated transcript. Moreover, a high incidence of cryptic splice site activation was found in patients with splicing mutations which is expected to disrupt the actin-binding sites of nebulin. Determination of protein levels revealed patients with relatively normal nebulin levels and others with markedly reduced nebulin. We observed a positive relation between the reduction in nebulin and a reduction in TFL, and a positive relation between the reduction in nebulin level and the reduction in tension (both maximal and submaximal tension). Interestingly, our study revealed a duplication mutation in nebulin that resulted in a larger nebulin protein and longer TFL. Additionally, we investigated the effect of Omecamtiv mecarbil (OM), a small-molecule activator of cardiac myosin, on force production of type I muscle fibers of NEM2 patients. OM treatment substantially increased submaximal tension across all NEM2 patients ranging from 87-318%, with the largest effects in patients with the lowest level of nebulin. In summary, this study indicates that post-transcriptional or post-translational mechanisms regulate nebulin expression. Moreover, we propose that the pathomechanism of NEM2 involves not only shortened but also elongated thin filaments, along with the disruption of actin-binding sites resulting from splicing mutations. Significantly, our findings highlight the potential of OM treatment to improve skeletal muscle function in NEM2 patients, especially those with large reductions in nebulin levels.
Collapse
|
11
|
Schultz LE, Colpan M, Smith GE, Mayfield RM, Larrinaga TM, Kostyukova AS, Gregorio CC. A nemaline myopathy-linked mutation inhibits the actin-regulatory functions of tropomodulin and leiomodin. Proc Natl Acad Sci U S A 2023; 120:e2315820120. [PMID: 37956287 PMCID: PMC10665800 DOI: 10.1073/pnas.2315820120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
Actin is a highly expressed protein in eukaryotic cells and is essential for numerous cellular processes. In particular, efficient striated muscle contraction is dependent upon the precise regulation of actin-based thin filament structure and function. Alterations in the lengths of actin-thin filaments can lead to the development of myopathies. Leiomodins and tropomodulins are members of an actin-binding protein family that fine-tune thin filament lengths, and their dysfunction is implicated in muscle diseases. An Lmod3 mutation [G326R] was previously identified in patients with nemaline myopathy (NM), a severe skeletal muscle disorder; this residue is conserved among Lmod and Tmod isoforms and resides within their homologous leucine-rich repeat (LRR) domain. We mutated this glycine to arginine in Lmod and Tmod to determine the physiological function of this residue and domain. This G-to-R substitution disrupts Lmod and Tmod's LRR domain structure, altering their binding interface with actin and destroying their abilities to regulate thin filament lengths. Additionally, this mutation renders Lmod3 nonfunctional in vivo. We found that one single amino acid is essential for folding of Lmod and Tmod LRR domains, and thus is essential for the opposing actin-regulatory functions of Lmod (filament elongation) and Tmod (filament shortening), revealing a mechanism underlying the development of NM.
Collapse
Affiliation(s)
- Lauren E. Schultz
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ85724
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ85724
| | - Garry E. Smith
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA99164
| | - Rachel M. Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ85724
| | - Tania M. Larrinaga
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ85724
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA99164
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ85724
- Department of Medicine, Cardiovascular Research Institute, Icahn School of Medicine, New York, NY10029
| |
Collapse
|
12
|
Slick RA, Tinklenberg JA, Sutton J, Zhang L, Meng H, Beatka MJ, Vanden Avond M, Prom MJ, Ott E, Montanaro F, Heisner J, Toro R, Granzier H, Geurts AM, Stowe DF, Hill RB, Lawlor MW. Aberrations in Energetic Metabolism and Stress-Related Pathways Contribute to Pathophysiology in the Neb Conditional Knockout Mouse Model of Nemaline Myopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1528-1547. [PMID: 37422147 PMCID: PMC10548278 DOI: 10.1016/j.ajpath.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Nemaline myopathy (NM) is a genetically and clinically heterogeneous disease that is diagnosed on the basis of the presence of nemaline rods on skeletal muscle biopsy. Although NM has typically been classified by causative genes, disease severity or prognosis cannot be predicted. The common pathologic end point of nemaline rods (despite diverse genetic causes) and an unexplained range of muscle weakness suggest that shared secondary processes contribute to the pathogenesis of NM. We speculated that these processes could be identified through a proteome-wide interrogation using a mouse model of severe NM in combination with pathway validation and structural/functional analyses. A proteomic analysis was performed using skeletal muscle tissue from the Neb conditional knockout mouse model compared with its wild-type counterpart to identify pathophysiologically relevant biological processes that might impact disease severity or provide new treatment targets. A differential expression analysis and Ingenuity Pathway Core Analysis predicted perturbations in several cellular processes, including mitochondrial dysfunction and changes in energetic metabolism and stress-related pathways. Subsequent structural and functional studies demonstrated abnormal mitochondrial distribution, decreased mitochondrial respiratory function, an increase in mitochondrial transmembrane potential, and extremely low ATP content in Neb conditional knockout muscles relative to wild type. Overall, the findings of these studies support a role for severe mitochondrial dysfunction as a novel contributor to muscle weakness in NM.
Collapse
Affiliation(s)
- Rebecca A Slick
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Sutton
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark Vanden Avond
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mariah J Prom
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily Ott
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom the NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - James Heisner
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rafael Toro
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Henk Granzier
- College of Medicine, University of Arizona, Tucson, Arizona
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David F Stowe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wisconsin
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
13
|
Zapater I Morales C, Carman PJ, Soffar DB, Windner SE, Dominguez R, Baylies MK. Drosophila Tropomodulin is required for multiple actin-dependent processes within developing myofibers. Development 2023; 150:dev201194. [PMID: 36806912 PMCID: PMC10112908 DOI: 10.1242/dev.201194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Proper muscle contraction requires the assembly and maintenance of sarcomeres and myofibrils. Although the protein components of myofibrils are generally known, less is known about the mechanisms by which they individually function and together synergize for myofibril assembly and maintenance. For example, it is unclear how the disruption of actin filament (F-actin) regulatory proteins leads to the muscle weakness observed in myopathies. Here, we show that knockdown of Drosophila Tropomodulin (Tmod), results in several myopathy-related phenotypes, including reduction of muscle cell (myofiber) size, increased sarcomere length, disorganization and misorientation of myofibrils, ectopic F-actin accumulation, loss of tension-mediating proteins at the myotendinous junction, and misshaped and internalized nuclei. Our findings support and extend the tension-driven self-organizing myofibrillogenesis model. We show that, like its mammalian counterpart, Drosophila Tmod caps F-actin pointed-ends, and we propose that this activity is crucial for cellular processes in different locations within the myofiber that directly and indirectly contribute to the maintenance of muscle function. Our findings provide significant insights to the role of Tmod in muscle development, maintenance and disease.
Collapse
Affiliation(s)
- Carolina Zapater I Morales
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Peter J Carman
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David B Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Stefanie E Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Roberto Dominguez
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary K Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Ranu N, Laitila J, Dugdale HF, Mariano J, Kolb JS, Wallgren-Pettersson C, Witting N, Vissing J, Vilchez JJ, Fiorillo C, Zanoteli E, Auranen M, Jokela M, Tasca G, Claeys KG, Voermans NC, Palmio J, Huovinen S, Moggio M, Beck TN, Kontrogianni-Konstantopoulos A, Granzier H, Ochala J. NEB mutations disrupt the super-relaxed state of myosin and remodel the muscle metabolic proteome in nemaline myopathy. Acta Neuropathol Commun 2022; 10:185. [PMID: 36528760 PMCID: PMC9758823 DOI: 10.1186/s40478-022-01491-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Nemaline myopathy (NM) is one of the most common non-dystrophic genetic muscle disorders. NM is often associated with mutations in the NEB gene. Even though the exact NEB-NM pathophysiological mechanisms remain unclear, histological analyses of patients' muscle biopsies often reveal unexplained accumulation of glycogen and abnormally shaped mitochondria. Hence, the aim of the present study was to define the exact molecular and cellular cascade of events that would lead to potential changes in muscle energetics in NEB-NM. For that, we applied a wide range of biophysical and cell biology assays on skeletal muscle fibres from NM patients as well as untargeted proteomics analyses on isolated myofibres from a muscle-specific nebulin-deficient mouse model. Unexpectedly, we found that the myosin stabilizing conformational state, known as super-relaxed state, was significantly impaired, inducing an increase in the energy (ATP) consumption of resting muscle fibres from NEB-NM patients when compared with controls or with other forms of genetic/rare, acquired NM. This destabilization of the myosin super-relaxed state had dynamic consequences as we observed a remodeling of the metabolic proteome in muscle fibres from nebulin-deficient mice. Altogether, our findings explain some of the hitherto obscure hallmarks of NM, including the appearance of abnormal energy proteins and suggest potential beneficial effects of drugs targeting myosin activity/conformations for NEB-NM.
Collapse
Affiliation(s)
- Natasha Ranu
- grid.13097.3c0000 0001 2322 6764Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Jenni Laitila
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark ,grid.7737.40000 0004 0410 2071The Folkhälsan Institute of Genetics and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Hannah F. Dugdale
- grid.13097.3c0000 0001 2322 6764Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK ,grid.6571.50000 0004 1936 8542School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jennifer Mariano
- grid.411024.20000 0001 2175 4264Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Justin S. Kolb
- grid.134563.60000 0001 2168 186XDepartment of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Carina Wallgren-Pettersson
- grid.7737.40000 0004 0410 2071The Folkhälsan Institute of Genetics and Department of Medical and Clinical Genetics, Medicum, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Nanna Witting
- grid.5254.60000 0001 0674 042XCopenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- grid.5254.60000 0001 0674 042XCopenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Juan Jesus Vilchez
- grid.84393.350000 0001 0360 9602Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain ,grid.452372.50000 0004 1791 1185Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Spain, Valencia, Spain
| | - Chiara Fiorillo
- grid.5606.50000 0001 2151 3065Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, DINOGMI, University of Genoa, Genoa, Italy
| | - Edmar Zanoteli
- grid.11899.380000 0004 1937 0722Department of Neurology, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Mari Auranen
- grid.7737.40000 0004 0410 2071Clinical Neurosciences, University of Helsinki and Helsinki University Hospital, NeurologyHelsinki, Finland
| | - Manu Jokela
- grid.1374.10000 0001 2097 1371Neurology, Clinical Medicine, University of Turku, Turku, Finland ,grid.410552.70000 0004 0628 215XNeurocenter, Turku University Hospital, Turku, Finland ,grid.502801.e0000 0001 2314 6254Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Giorgio Tasca
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Rome, Italy ,grid.1006.70000 0001 0462 7212John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Kristl G. Claeys
- grid.410569.f0000 0004 0626 3338Department of Neurology, University Hospitals Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nicol C. Voermans
- grid.10417.330000 0004 0444 9382Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna Palmio
- grid.502801.e0000 0001 2314 6254Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, Tampere, Finland
| | - Sanna Huovinen
- grid.412330.70000 0004 0628 2985Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - Maurizio Moggio
- grid.414818.00000 0004 1757 8749Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Thomas Nyegaard Beck
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Henk Granzier
- grid.134563.60000 0001 2168 186XDepartment of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Julien Ochala
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Tolkatchev D, Gregorio CC, Kostyukova AS. The role of leiomodin in actin dynamics: a new road or a secret gate. FEBS J 2022; 289:6119-6131. [PMID: 34273242 PMCID: PMC8761783 DOI: 10.1111/febs.16128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022]
Abstract
Leiomodin is an important emerging regulator of thin filaments. As novel molecular, cellular, animal model, and human data accumulate, the mechanisms of its action become clearer. Structural studies played a significant part in understanding the functional significance of leiomodin's interacting partners and functional domains. In this review, we present the current state of knowledge on the structural and cellular properties of leiomodin which has led to two proposed mechanisms of its function. Although it is known that leiomodin is essential for life, numerous domains within leiomodin remain unstudied and as such, we outline future directions for investigations that we predict will provide evidence that leiomodin is a multifunctional protein.
Collapse
Affiliation(s)
- Dmitri Tolkatchev
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
16
|
Removal of MuRF1 Increases Muscle Mass in Nemaline Myopathy Models, but Does Not Provide Functional Benefits. Int J Mol Sci 2022; 23:ijms23158113. [PMID: 35897687 PMCID: PMC9331820 DOI: 10.3390/ijms23158113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Nemaline myopathy (NM) is characterized by skeletal muscle weakness and atrophy. No curative treatments exist for this debilitating disease. NM is caused by mutations in proteins involved in thin-filament function, turnover, and maintenance. Mutations in nebulin, encoded by NEB, are the most common cause. Skeletal muscle atrophy is tightly linked to upregulation of MuRF1, an E3 ligase, that targets proteins for proteasome degradation. Here, we report a large increase in MuRF1 protein levels in both patients with nebulin-based NM, also named NEM2, and in mouse models of the disease. We hypothesized that knocking out MuRF1 in animal models of NM with muscle atrophy would ameliorate the muscle deficits. To test this, we crossed MuRF1 KO mice with two NEM2 mouse models, one with the typical form and the other with the severe form. The crosses were viable, and muscles were studied in mice at 3 months of life. Ultrastructural examination of gastrocnemius muscle lacking MuRF1 and with severe NM revealed a small increase in vacuoles, but no significant change in the myofibrillar fractional area. MuRF1 deficiency led to increased weights of various muscle types in the NM models. However, this increase in muscle size was not associated with increased in vivo or in vitro force production. We conclude that knocking out MuRF1 in NEM2 mice increases muscle size, but does not improve muscle function.
Collapse
|
17
|
Szikora S, Görög P, Mihály J. The Mechanisms of Thin Filament Assembly and Length Regulation in Muscles. Int J Mol Sci 2022; 23:5306. [PMID: 35628117 PMCID: PMC9140763 DOI: 10.3390/ijms23105306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The actin containing tropomyosin and troponin decorated thin filaments form one of the crucial components of the contractile apparatus in muscles. The thin filaments are organized into densely packed lattices interdigitated with myosin-based thick filaments. The crossbridge interactions between these myofilaments drive muscle contraction, and the degree of myofilament overlap is a key factor of contractile force determination. As such, the optimal length of the thin filaments is critical for efficient activity, therefore, this parameter is precisely controlled according to the workload of a given muscle. Thin filament length is thought to be regulated by two major, but only partially understood mechanisms: it is set by (i) factors that mediate the assembly of filaments from monomers and catalyze their elongation, and (ii) by factors that specify their length and uniformity. Mutations affecting these factors can alter the length of thin filaments, and in human cases, many of them are linked to debilitating diseases such as nemaline myopathy and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Péter Görög
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Doctoral School of Multidisciplinary Medical Science, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
18
|
Molecular and cellular basis of genetically inherited skeletal muscle disorders. Nat Rev Mol Cell Biol 2021; 22:713-732. [PMID: 34257452 PMCID: PMC9686310 DOI: 10.1038/s41580-021-00389-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Neuromuscular disorders comprise a diverse group of human inborn diseases that arise from defects in the structure and/or function of the muscle tissue - encompassing the muscle cells (myofibres) themselves and their extracellular matrix - or muscle fibre innervation. Since the identification in 1987 of the first genetic lesion associated with a neuromuscular disorder - mutations in dystrophin as an underlying cause of Duchenne muscular dystrophy - the field has made tremendous progress in understanding the genetic basis of these diseases, with pathogenic variants in more than 500 genes now identified as underlying causes of neuromuscular disorders. The subset of neuromuscular disorders that affect skeletal muscle are referred to as myopathies or muscular dystrophies, and are due to variants in genes encoding muscle proteins. Many of these proteins provide structural stability to the myofibres or function in regulating sarcolemmal integrity, whereas others are involved in protein turnover, intracellular trafficking, calcium handling and electrical excitability - processes that ensure myofibre resistance to stress and their primary activity in muscle contraction. In this Review, we discuss how defects in muscle proteins give rise to muscle dysfunction, and ultimately to disease, with a focus on pathologies that are most common, best understood and that provide the most insight into muscle biology.
Collapse
|
19
|
Monti E, Waldvogel J, Ritzmann R, Freyler K, Albracht K, Helm M, De Cesare N, Pavan P, Reggiani C, Gollhofer A, Narici MV. Muscle in Variable Gravity: "I Do Not Know Where I Am, But I Know What to Do". Front Physiol 2021; 12:714655. [PMID: 34421657 PMCID: PMC8371909 DOI: 10.3389/fphys.2021.714655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose: Fascicle and sarcomere lengths are important predictors of muscle mechanical performance. However, their regulation during stretch-shortening cycle (SSC) activities in usual and challenging conditions is poorly understood. In this study, we aimed to investigate muscle fascicle and sarcomere behavior during drop jumps (a common SSC activity) in conditions of variable gravity. Methods: Fifteen volunteers performed repeated drop jumps in 1 g, hypo-gravity (0 to 1 g), and hyper-gravity (1 to 2 g) during a parabolic flight. Gastrocnemius medialis (GM) electromyographic activity and fascicle length (Lf) were measured at drop-off, ground contact (GC), minimum ankle joint angle (MAJ), and push-off. GM sarcomere number was estimated by dividing Lf, measured by ultrasound at rest, by published data on GM sarcomere length, and measured in vivo at the same joint angle. Changes in sarcomere length were estimated by dividing GM Lf in each jump phase by sarcomere number calculated individually. The sarcomere force-generating capacity in each jump phase was estimated from the sarcomere length-tension relationship previously reported in the literature. Results: The results showed that, regardless of the gravity level, GM sarcomeres operated in the ascending portion of their length-tension relationship in all the jump phases. Interestingly, although in hypo-gravity and hyper-gravity during the braking phase (GC-MAJ) GM fascicles and sarcomeres experienced a stretch (as opposed to the quasi-isometric behavior in 1 g), at MAJ they reached similar lengths as in 1 g, allowing sarcomeres to develop about the 70% of their maximum force. Conclusion: The observed fascicle behavior during drop jumping seems useful for anchoring the tendon, enabling storage of elastic energy and its release in the subsequent push-off phase for effectively re-bouncing in all gravity levels, suggesting that an innate neuromuscular wisdom enables to perform SSC movements also in challenging conditions.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Janice Waldvogel
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Ramona Ritzmann
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Department of Biomechanics, Rennbahnklinik, Muttenz, Switzerland
| | - Kathrin Freyler
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Kirsten Albracht
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.,Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences, Aachen, Germany
| | - Michael Helm
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Niccolò De Cesare
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Piero Pavan
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
20
|
de Winter JM, Gineste C, Minardi E, Brocca L, Rossi M, Borsboom T, Beggs AH, Bernard M, Bendahan D, Hwee DT, Malik FI, Pellegrino MA, Bottinelli R, Gondin J, Ottenheijm CAC. Acute and chronic tirasemtiv treatment improves in vivo and in vitro muscle performance in actin-based nemaline myopathy mice. Hum Mol Genet 2021; 30:1305-1320. [PMID: 33909041 PMCID: PMC8255131 DOI: 10.1093/hmg/ddab112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Nemaline myopathy, a disease of the actin-based thin filament, is one of the most frequent congenital myopathies. To date, no specific therapy is available to treat muscle weakness in nemaline myopathy. We tested the ability of tirasemtiv, a fast skeletal troponin activator that targets the thin filament, to augment muscle force-both in vivo and in vitro-in a nemaline myopathy mouse model with a mutation (H40Y) in Acta1. In Acta1H40Y mice, treatment with tirasemtiv increased the force response of muscles to submaximal stimulation frequencies. This resulted in a reduced energetic cost of force generation, which increases the force production during a fatigue protocol. The inotropic effects of tirasemtiv were present in locomotor muscles and, albeit to a lesser extent, in respiratory muscles, and they persisted during chronic treatment, an important finding as respiratory failure is the main cause of death in patients with congenital myopathy. Finally, translational studies on permeabilized muscle fibers isolated from a biopsy of a patient with the ACTA1H40Y mutation revealed that at physiological Ca2+ concentrations, tirasemtiv increased force generation to values that were close to those generated in muscle fibers of healthy subjects. These findings indicate the therapeutic potential of fast skeletal muscle troponin activators to improve muscle function in nemaline myopathy due to the ACTA1H40Y mutation, and future studies should assess their merit for other forms of nemaline myopathy and for other congenital myopathies.
Collapse
Affiliation(s)
- Josine M de Winter
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam 1081 HV, The Netherlands
| | | | - Elisa Minardi
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Maira Rossi
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Tamara Borsboom
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam 1081 HV, The Netherlands
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monique Bernard
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, 13005 Marseille, France
| | - David Bendahan
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, 13005 Marseille, France
| | - Darren T Hwee
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Fady I Malik
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Maria Antonietta Pellegrino
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
- Interdipartimental Centre for Biology and Sport Medicine, University of Pavia, Pavia 27100, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
- Istituti Clinici Maugeri (IRCCS), Scientific Institute of Pavia, Pavia 27100, Italy
| | - Julien Gondin
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, 13005 Marseille, France
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS 5310, INSERM U1217, 69008, Lyon, France
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
21
|
Laflamme N, Lace B, Thonta Setty S, Rioux N, Labrie Y, Droit A, Chrestian N, Rivest S. A Homozygous Deep Intronic Mutation Alters the Splicing of Nebulin Gene in a Patient With Nemaline Myopathy. Front Neurol 2021; 12:660113. [PMID: 34211429 PMCID: PMC8239344 DOI: 10.3389/fneur.2021.660113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
Nemaline myopathy is a rare disorder affecting the muscle sarcomere. Mutations in nebulin gene (NEB) are known to be responsible for about 50% of nemaline myopathy cases. Nebulin is a giant protein which is formed integrally with the sarcomeric thin filament. This complex gene is under extensive alternative splicing giving rise to multiple isoforms. In this study, we report a 6-year-old boy presenting with general muscular weaknesses. Identification of rod-shaped structures in the patient' biopsy raised doubt about the presence of a nemaline myopathy. Next-generation sequencing was used to identify a causative mutation for the patient syndrome. A homozygous deep intronic substitution was found in the intron 144 of the NEB. The variant was predicted by in silico tools to create a new donor splice site. Molecular analysis has shown that the mutation could alter splicing events of the nebulin gene leading to a significant decrease of isoforms level. This change in the expression level of nebulin could give rise to functional consequences in the sarcomere. These results are consistent with the phenotypes observed in the patient. Such a discovery of variants in this gene will allow a better understanding of the involvement of nebulin in neuromuscular diseases and help find new treatments for the nemaline myopathy.
Collapse
Affiliation(s)
- Nathalie Laflamme
- Centre de recherche CHU de Québec- Laval University, Quebec City, QC, Canada
| | - Baiba Lace
- Department of Medical Genetics, Centre Mère Enfant Soleil, Laval University, Quebec City, QC, Canada
| | | | - Nadie Rioux
- Centre de recherche CHU de Québec- Laval University, Quebec City, QC, Canada
| | - Yvan Labrie
- Centre de recherche CHU de Québec- Laval University, Quebec City, QC, Canada
| | - Arnaud Droit
- Centre de recherche CHU de Québec- Laval University, Quebec City, QC, Canada
| | - Nicolas Chrestian
- Department of Pediatric Neurology, Pediatric Neuromuscular Disorder, Centre Mère Enfant Soleil, Laval University, Quebec City, QC, Canada
| | - Serge Rivest
- Centre de recherche CHU de Québec- Laval University, Quebec City, QC, Canada
| |
Collapse
|
22
|
Monti E, Reggiani C, Franchi MV, Toniolo L, Sandri M, Armani A, Zampieri S, Giacomello E, Sarto F, Sirago G, Murgia M, Nogara L, Marcucci L, Ciciliot S, Šimunic B, Pišot R, Narici MV. Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. J Physiol 2021; 599:3037-3061. [PMID: 33881176 PMCID: PMC8359852 DOI: 10.1113/jp281365] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Key points Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation–contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Abstract Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)‐positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C‐terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross‐sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation–contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading. Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation–contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Andrea Armani
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, 35124, Italy
| | - Emiliana Giacomello
- Clinical Department of Medical, Surgical and Health Sciences, Strada di Fiume, 447, Trieste, 34149, Italy
| | - Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Stefano Ciciliot
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Boštjan Šimunic
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Rado Pišot
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia.,CIR-MYO Myology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
23
|
van de Locht M, Donkervoort S, de Winter JM, Conijn S, Begthel L, Kusters B, Mohassel P, Hu Y, Medne L, Quinn C, Moore SA, Foley AR, Seo G, Hwee DT, Malik FI, Irving T, Ma W, Granzier HL, Kamsteeg EJ, Immadisetty K, Kekenes-Huskey P, Pinto JR, Voermans N, Bönnemann CG, Ottenheijm CA. Pathogenic variants in TNNC2 cause congenital myopathy due to an impaired force response to calcium. J Clin Invest 2021; 131:145700. [PMID: 33755597 PMCID: PMC8087209 DOI: 10.1172/jci145700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Troponin C (TnC) is a critical regulator of skeletal muscle contraction; it binds Ca2+ to activate muscle contraction. Surprisingly, the gene encoding fast skeletal TnC (TNNC2) has not yet been implicated in muscle disease. Here, we report 2 families with pathogenic variants in TNNC2. Patients present with a distinct, dominantly inherited congenital muscle disease. Molecular dynamics simulations suggested that the pathomechanisms by which the variants cause muscle disease include disruption of the binding sites for Ca2+ and for troponin I. In line with these findings, physiological studies in myofibers isolated from patients' biopsies revealed a markedly reduced force response of the sarcomeres to [Ca2+]. This pathomechanism was further confirmed in experiments in which contractile dysfunction was evoked by replacing TnC in myofibers from healthy control subjects with recombinant, mutant TnC. Conversely, the contractile dysfunction of myofibers from patients was repaired by replacing endogenous, mutant TnC with recombinant, wild-type TnC. Finally, we tested the therapeutic potential of the fast skeletal muscle troponin activator tirasemtiv in patients' myofibers and showed that the contractile dysfunction was repaired. Thus, our data reveal that pathogenic variants in TNNC2 cause congenital muscle disease, and they provide therapeutic angles to repair muscle contractility.
Collapse
Affiliation(s)
- Martijn van de Locht
- Deptartment of Physiology, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Josine M. de Winter
- Deptartment of Physiology, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
| | - Stefan Conijn
- Deptartment of Physiology, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
| | - Leon Begthel
- Deptartment of Physiology, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
| | - Benno Kusters
- Department of Neurology and Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Livija Medne
- Division of Human Genetics, Department of Pediatrics, Individualized Medical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Colin Quinn
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven A. Moore
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - A. Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Gwimoon Seo
- Protein Expression Facility, Institute of Molecular Biophysics, The Florida State University, Tallahassee, Florida, USA
| | - Darren T. Hwee
- Research and Early Development, Cytokinetics Inc., South San Francisco, California, USA
| | - Fady I. Malik
- Research and Early Development, Cytokinetics Inc., South San Francisco, California, USA
| | - Thomas Irving
- BioCAT, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Weikang Ma
- BioCAT, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Henk L. Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Erik-Jan Kamsteeg
- Department of Neurology and Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kalyan Immadisetty
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois, USA
| | - Peter Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois, USA
| | - José R. Pinto
- Department of Biomedical Sciences, The Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Nicol Voermans
- Department of Neurology and Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Coen A.C. Ottenheijm
- Deptartment of Physiology, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
24
|
Fenwick AJ, Wood AM, Tanner BCW. The spatial distribution of thin filament activation influences force development and myosin activity in computational models of muscle contraction. Arch Biochem Biophys 2021; 703:108855. [PMID: 33781771 DOI: 10.1016/j.abb.2021.108855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Striated muscle contraction is initiated by Ca2+ binding to, and activating, thin filament regulatory units (RU) within the sarcomere, which then allows myosin cross-bridges from the opposing thick filament to bind actin and generate force. The amount of overlap between the filaments dictates how many potential cross-bridges are capable of binding, and thus how force is generated by the sarcomere. Myopathies and atrophy can impair muscle function by limiting cross-bridge interactions between the filaments, which can occur when the length of the thin filament is reduced or when RU function is disrupted. To investigate how variations in thin filament length and RU density affect ensemble cross-bridge behavior and force production, we simulated muscle contraction using a spatially explicit computational model of the half-sarcomere. Thin filament RUs were disabled either uniformly from the pointed end of the filament (to model shorter thin filament length) or randomly throughout the length of the half-sarcomere. Both uniform and random RU 'knockout' schemes decreased overall force generation during maximal and submaximal activation. The random knockout scheme also led to decreased calcium sensitivity and cooperativity of the force-pCa relationship. We also found that the rate of force development slowed with the random RU knockout, compared to the uniform RU knockout or conditions of normal RU activation. These findings imply that the relationship between RU density and force production within the sarcomere involves more complex coordination than simply the raw number of RUs available for myosin cross-bridge binding, and that the spatial pattern in which activatable RU are distributed throughout the sarcomere influences the dynamics of force production.
Collapse
Affiliation(s)
- Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Alexander M Wood
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
25
|
Colpan M, Iwanski J, Gregorio CC. CAP2 is a regulator of actin pointed end dynamics and myofibrillogenesis in cardiac muscle. Commun Biol 2021; 4:365. [PMID: 33742108 PMCID: PMC7979805 DOI: 10.1038/s42003-021-01893-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
The precise assembly of actin-based thin filaments is crucial for muscle contraction. Dysregulation of actin dynamics at thin filament pointed ends results in skeletal and cardiac myopathies. Here, we discovered adenylyl cyclase-associated protein 2 (CAP2) as a unique component of thin filament pointed ends in cardiac muscle. CAP2 has critical functions in cardiomyocytes as it depolymerizes and inhibits actin incorporation into thin filaments. Strikingly distinct from other pointed-end proteins, CAP2's function is not enhanced but inhibited by tropomyosin and it does not directly control thin filament lengths. Furthermore, CAP2 plays an essential role in cardiomyocyte maturation by modulating pre-sarcomeric actin assembly and regulating α-actin composition in mature thin filaments. Identification of CAP2's multifunctional roles provides missing links in our understanding of how thin filament architecture is regulated in striated muscle and it reveals there are additional factors, beyond Tmod1 and Lmod2, that modulate actin dynamics at thin filament pointed ends.
Collapse
Affiliation(s)
- Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Jessika Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
26
|
Gohlke J, Tonino P, Lindqvist J, Smith JE, Granzier H. The number of Z-repeats and super-repeats in nebulin greatly varies across vertebrates and scales with animal size. J Gen Physiol 2020; 153:211611. [PMID: 33337482 PMCID: PMC7754682 DOI: 10.1085/jgp.202012783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Nebulin is a skeletal muscle protein that associates with the sarcomeric thin filaments and has functions in regulating the length of the thin filament and the structure of the Z-disk. Here we investigated the nebulin gene in 53 species of birds, fish, amphibians, reptiles, and mammals. In all species, nebulin has a similar domain composition that mostly consists of ∼30-residue modules (or simple repeats), each containing an actin-binding site. All species have a large region where simple repeats are organized into seven-module super-repeats, each containing a tropomyosin binding site. The number of super-repeats shows high interspecies variation, ranging from 21 (zebrafish, hummingbird) to 31 (camel, chimpanzee), and, importantly, scales with body size. The higher number of super-repeats in large animals was shown to increase thin filament length, which is expected to increase the sarcomere length for optimal force production, increase the energy efficiency of isometric force production, and lower the shortening velocity of muscle. It has been known since the work of A.V. Hill in 1950 that as species increase in size, the shortening velocity of their muscle is reduced, and the present work shows that nebulin contributes to the mechanistic basis. Finally, we analyzed the differentially spliced simple repeats in nebulin's C terminus, whose inclusion correlates with the width of the Z-disk. The number of Z-repeats greatly varies (from 5 to 18) and correlates with the number of super-repeats. We propose that the resulting increase in the width of the Z-disk in large animals increases the number of contacts between nebulin and structural Z-disk proteins when the Z-disk is stressed for long durations.
Collapse
Affiliation(s)
- Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Johan Lindqvist
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
27
|
Rocha ML, Dittmayer C, Uruha A, Korinth D, Chaoui R, Schlembach D, Rossi R, Pelin K, Suk EK, Schmid S, Goebel HH, Schuelke M, Stenzel W, Englert B. A novel mutation in NEB causing foetal nemaline myopathy with arthrogryposis during early gestation. Neuromuscul Disord 2020; 31:239-245. [PMID: 33376055 DOI: 10.1016/j.nmd.2020.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Nemaline myopathies are a clinically and genetically heterogeneous group of congenital myopathies, mainly characterized by muscle weakness, hypotonia and respiratory insufficiency. Here, we report a male foetus of consanguineous parents with a severe congenital syndrome characterized by arthrogryposis detected at 13 weeks of gestation. We describe severe complex dysmorphic facial and musculoskeletal features by post mortem fetal examination confirming the prenatal diagnosis. Histomorphological and ultrastructural studies of skeletal muscle reveal mini-rods in myotubes caused by a novel homozygous splice-site mutation in NEB (NM_001164508, chr2:g.152,417,623C>A GRCh37.p11 | c.19,102-1G>T ENST00000397345.3). No rods were seen in the myocardium. We discuss the relevance of this mutation in the context of nemaline myopathies associated with early developmental musculoskeletal disorders.
Collapse
Affiliation(s)
- Maria L Rocha
- Department of Pathology, Vivantes Friedrichshain Hospital, Vivantes Hospital Group, Charité Academic Teaching Hospital, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Akinori Uruha
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Dirk Korinth
- Private practice of Human Genetics, Berlin, Germany and Private practice of Human Genetics and Molecular Pathology, Rostock, Germany
| | - Rabih Chaoui
- Center for Prenatal Diagnosis-Friedrichstrasse, Berlin, Germany
| | - Dietmar Schlembach
- Clinic for Obstetric Medicine and Center for Prenatal Medicine, Vivantes Neukölln Hospital, Vivantes Hospital Group, Charité Academic Teaching Hospital, Berlin, Germany
| | - Rainer Rossi
- Department of Paediatrics, Vivantes Neukölln Hospital, Vivantes Hospital Group, Charité Academic Teaching Hospital, Berlin, Germany
| | - Katarina Pelin
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Biomedicum, Helsinki, Finland; Department of Medical and Clinical Genetics, Biomedicum, University of Helsinki, Helsinki, Finland; Faculty of Biological and EnviroNEMental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Eun Kyung Suk
- Private practice of Human Genetics, Berlin, Germany and Private practice of Human Genetics and Molecular Pathology, Rostock, Germany
| | - Simone Schmid
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Hans H Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Department of Neuropathology, Universitätsmedizin Mainz, Germany
| | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
| | - Benjamin Englert
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
28
|
Garibaldi M, Fattori F, Pennisi EM, Merlonghi G, Fionda L, Vanoli F, Leonardi L, Bucci E, Morino S, Micaloni A, Tartaglione T, Uijterwijk B, Zierikzee M, Ottenheijm C, Bertini ES, Stoppacciaro A, Raffa S, Salvetti M, Antonini G. Novel ACTA1 mutation causes late-presenting nemaline myopathy with unusual dark cores. Neuromuscul Disord 2020; 31:139-148. [PMID: 33384202 DOI: 10.1016/j.nmd.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
ACTA1 gene encodes the skeletal muscle alpha-actin, the core of thin filaments of the sarcomere. ACTA1 mutations are responsible of several muscle disorders including nemaline, cores, actin aggregate myopathies and fiber-type disproportion. We report clinical, muscle imaging, histopatological and genetic data of an Italian family carrying a novel ACTA1 mutation. All affected members showed a late-presenting, diffuse muscle weakness with sternocleidomastoideus and temporalis atrophy. Mild dysmorphic features were also detected. The most affected muscles by muscle MRI were rectus abdominis, gluteus minimus, vastus intermedius and both gastrocnemii. Muscle biopsy showed the presence of nemaline bodies with several unusual dark areas at Gomori Trichrome, corresponding to unstructured cores with abundant electrodense material by electron microscopy. The molecular analysis revealed missense variant c.148G>A; p.(Gly50Ser) in the exon 3 of ACTA1, segregating with affected members in the family. We performed a functional essay of fibre contractility showing a higher pCa50 (a measure of the calcium sensitivity of force) of type 1 fibers compared to control subjects' type 1 muscle fibers. Our findings expand the clinico-pathological spectrum of ACTA1-related congenital myopathies and the genetic spectrum of core-rod myopathies.
Collapse
Affiliation(s)
- Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy.
| | - Fabiana Fattori
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Elena Maria Pennisi
- Unit of Neuromuscular Disorders, Neurology, San Filippo Neri Hospital, Rome, Italy
| | - Gioia Merlonghi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Laura Fionda
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Fiammetta Vanoli
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Luca Leonardi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Andrea Micaloni
- Laboratory of Ultrastructural pathology, Department of Clinical and Molecular Medicine, SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Tommaso Tartaglione
- Department of Radiology, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | - Bas Uijterwijk
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
| | - Martijn Zierikzee
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
| | - Coen Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, Netherlands
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Antonella Stoppacciaro
- Unit of Pathology, Department of Clinical and Molecular Medicine, SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Salvatore Raffa
- Laboratory of Ultrastructural pathology, Department of Clinical and Molecular Medicine, SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Marco Salvetti
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
29
|
Kiss B, Gohlke J, Tonino P, Hourani Z, Kolb J, Strom J, Alekhina O, Smith JE, Ottenheijm C, Gregorio C, Granzier H. Nebulin and Lmod2 are critical for specifying thin-filament length in skeletal muscle. SCIENCE ADVANCES 2020; 6:6/46/eabc1992. [PMID: 33177085 PMCID: PMC7673738 DOI: 10.1126/sciadv.abc1992] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/23/2020] [Indexed: 06/07/2023]
Abstract
Regulating the thin-filament length in muscle is crucial for controlling the number of myosin motors that generate power. The giant protein nebulin forms a long slender filament that associates along the length of the thin filament in skeletal muscle with functions that remain largely obscure. Here nebulin's role in thin-filament length regulation was investigated by targeting entire super-repeats in the Neb gene; nebulin was either shortened or lengthened by 115 nm. Its effect on thin-filament length was studied using high-resolution structural and functional techniques. Results revealed that thin-filament length is strictly regulated by the length of nebulin in fast muscles. Nebulin's control is less tight in slow muscle types where a distal nebulin-free thin-filament segment exists, the length of which was found to be regulated by leiomodin-2 (Lmod2). We propose that strict length control by nebulin promotes high-speed shortening and that dual-regulation by nebulin/Lmod2 enhances contraction efficiency.
Collapse
Affiliation(s)
- Balázs Kiss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Olga Alekhina
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Coen Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Carol Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA.
- Allan and Alfie Endowed Chair for Heart Disease in Women Research, Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
30
|
An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I. Genes (Basel) 2020; 11:genes11091109. [PMID: 32971903 PMCID: PMC7564762 DOI: 10.3390/genes11091109] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type I (DM1) is the most common form of adult muscular dystrophy, caused by expansion of a CTG triplet repeat in the 3′ untranslated region (3′UTR) of the myotonic dystrophy protein kinase (DMPK) gene. The pathological CTG repeats result in protein trapping by expanded transcripts, a decreased DMPK translation and the disruption of the chromatin structure, affecting neighboring genes expression. The muscleblind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) are two families of tissue-specific regulators of developmentally programmed alternative splicing that act as antagonist regulators of several pre-mRNA targets, including troponin 2 (TNNT2), insulin receptor (INSR), chloride channel 1 (CLCN1) and MBNL2. Sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology, inducing a spliceopathy that leads to a developmental remodelling of the transcriptome due to an adult-to-foetal splicing switch, which results in the loss of cell function and viability. Moreover, recent studies indicate that additional pathogenic mechanisms may also contribute to disease pathology, including a misregulation of cellular mRNA translation, localization and stability. This review focuses on the cause and effects of MBNL and CELF1 deregulation in DM1, describing the molecular mechanisms underlying alternative splicing misregulation for a deeper understanding of DM1 complexity. To contribute to this analysis, we have prepared a comprehensive list of transcript alterations involved in DM1 pathogenesis, as well as other deregulated mRNA processing pathways implications.
Collapse
|
31
|
Triggering typical nemaline myopathy with compound heterozygous nebulin mutations reveals myofilament structural changes as pathomechanism. Nat Commun 2020; 11:2699. [PMID: 32483185 PMCID: PMC7264197 DOI: 10.1038/s41467-020-16526-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/06/2020] [Indexed: 12/26/2022] Open
Abstract
Nebulin is a giant protein that winds around the actin filaments in the skeletal muscle sarcomere. Compound-heterozygous mutations in the nebulin gene (NEB) cause typical nemaline myopathy (NM), a muscle disorder characterized by muscle weakness with limited treatment options. We created a mouse model with a missense mutation p.Ser6366Ile and a deletion of NEB exon 55, the Compound-Het model that resembles typical NM. We show that Compound-Het mice are growth-retarded and have muscle weakness. Muscles have a reduced myofibrillar fractional-area and sarcomeres are disorganized, contain rod bodies, and have longer thin filaments. In contrast to nebulin-based severe NM where haplo-insufficiency is the disease driver, Compound-Het mice express normal amounts of nebulin. X-ray diffraction revealed that the actin filament is twisted with a larger radius, that tropomyosin and troponin behavior is altered, and that the myofilament spacing is increased. The unique disease mechanism of nebulin-based typical NM reveals novel therapeutic targets. Nebulin-based nemaline myopathy is a heterogenous disease with unclear pathological mechanisms. Here, the authors generate a mouse model that mimics the most common genetic cause of the disease and demonstrate that muscle weakness in this model is associated with twisted actin filaments and altered tropomyosin and troponin behaviour.
Collapse
|
32
|
Laitila JM, McNamara EL, Wingate CD, Goullee H, Ross JA, Taylor RL, van der Pijl R, Griffiths LM, Harries R, Ravenscroft G, Clayton JS, Sewry C, Lawlor MW, Ottenheijm CAC, Bakker AJ, Ochala J, Laing NG, Wallgren-Pettersson C, Pelin K, Nowak KJ. Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb. Acta Neuropathol Commun 2020; 8:18. [PMID: 32066503 PMCID: PMC7027239 DOI: 10.1186/s40478-020-0893-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, NebY2303H, Y935X, has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, NebY2303H,Y935X mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.
Collapse
|
33
|
de Winter JM, Molenaar JP, Yuen M, van der Pijl R, Shen S, Conijn S, van de Locht M, Willigenburg M, Bogaards SJ, van Kleef ES, Lassche S, Persson M, Rassier DE, Sztal TE, Ruparelia AA, Oorschot V, Ramm G, Hall TE, Xiong Z, Johnson CN, Li F, Kiss B, Lozano-Vidal N, Boon RA, Marabita M, Nogara L, Blaauw B, Rodenburg RJ, Küsters B, Doorduin J, Beggs AH, Granzier H, Campbell K, Ma W, Irving T, Malfatti E, Romero NB, Bryson-Richardson RJ, van Engelen BG, Voermans NC, Ottenheijm CA. KBTBD13 is an actin-binding protein that modulates muscle kinetics. J Clin Invest 2020; 130:754-767. [PMID: 31671076 PMCID: PMC6994151 DOI: 10.1172/jci124000] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
The mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation-induced muscle relaxation, muscle fiber- and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13R408C-knockin mouse models, and a GFP-labeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin - a major constituent of the thin filament - and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology.
Collapse
Affiliation(s)
| | - Joery P. Molenaar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| | - Michaela Yuen
- Department of Physiology, Amsterdam University Medical Center, Netherlands
- Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Australia
| | - Robbert van der Pijl
- Department of Physiology, Amsterdam University Medical Center, Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Shengyi Shen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Stefan Conijn
- Department of Physiology, Amsterdam University Medical Center, Netherlands
| | | | - Menne Willigenburg
- Department of Physiology, Amsterdam University Medical Center, Netherlands
| | | | - Esmee S.B. van Kleef
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Saskia Lassche
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Malin Persson
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Dilson E. Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Tamar E. Sztal
- School of Biological Sciences, Monash University, Melbourne, Australia
| | | | - Viola Oorschot
- Monash Ramaciotti Centre for Structural Cryo-Electron Microscopy, Monash University, Melbourne, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Structural Cryo-Electron Microscopy, Monash University, Melbourne, Australia
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Thomas E. Hall
- Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
| | - Zherui Xiong
- Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
| | - Christopher N. Johnson
- Division of Clinical Pharmacology, Center for Arrhythmia Research and Therapeutics and Center for Structural Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Frank Li
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Balazs Kiss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | | | - Reinier A. Boon
- Department of Physiology, Amsterdam University Medical Center, Netherlands
| | - Manuela Marabita
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Italy
| | - Richard J. Rodenburg
- Department of Pediatrics, Radboud University Medical Centre, Translational Metabolic Laboratory, Nijmegen, Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jonne Doorduin
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alan H. Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ken Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Weikang Ma
- BioCAT, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Thomas Irving
- BioCAT, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Edoardo Malfatti
- Service Neurologie Médicale, Centre de Référence Maladies Neuromusculaire Paris-Nord CHU Raymond-Poincaré, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie Appliquées, UFR des Sciences de la Santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, Garches, France
| | - Norma B. Romero
- Sorbonne Université, Myology Institute, Neuromuscular Morphology Unit, Center for Research in Myology, GH Pitié-Salpêtrière Paris, France
- Centre de Référence de Pathologie Neuromusculaire Paris-Est, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Baziel G.M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Coen A.C. Ottenheijm
- Department of Physiology, Amsterdam University Medical Center, Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
34
|
Abstract
Nebulin, encoded by NEB, is a giant skeletal muscle protein of about 6669 amino acids which forms an integral part of the sarcomeric thin filament. In recent years, the nebula around this protein has been largely lifted resulting in the discovery that nebulin is critical for a number of tasks in skeletal muscle. In this review, we firstly discussed nebulin’s role as a structural component of the thin filament and the Z-disk, regulating the length and the mechanical properties of the thin filament as well as providing stability to myofibrils by interacting with structural proteins within the Z-disk. Secondly, we reviewed nebulin’s involvement in the regulation of muscle contraction, cross-bridge cycling kinetics, Ca2+-homeostasis and excitation contraction (EC) coupling. While its role in Ca2+-homeostasis and EC coupling is still poorly understood, a large number of studies have helped to improve our knowledge on how nebulin affects skeletal muscle contractile mechanics. These studies suggest that nebulin affects the number of force generating actin-myosin cross-bridges and may also affect the force that each cross-bridge produces. It may exert this effect by interacting directly with actin and myosin and/or indirectly by potentially changing the localisation and function of the regulatory complex (troponin and tropomyosin). Besides unravelling the biology of nebulin, these studies are particularly helpful in understanding the patho-mechanism of myopathies caused by NEB mutations, providing knowledge which constitutes the critical first step towards the development of therapeutic interventions. Currently, effective treatments are not available, although a number of therapeutic strategies are being investigated.
Collapse
|
35
|
Gineste C, Ogier AC, Varlet I, Hourani Z, Bernard M, Granzier H, Bendahan D, Gondin J. In vivo characterization of skeletal muscle function in nebulin-deficient mice. Muscle Nerve 2020; 61:416-424. [PMID: 31893464 DOI: 10.1002/mus.26798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The conditional nebulin knockout mouse is a new model mimicking nemaline myopathy, a rare disease characterized by muscle weakness and rods within muscle fibers. We investigated the impact of nebulin (NEB) deficiency on muscle function in vivo. METHODS Conditional nebulin knockout mice and control littermates were studied at 10 to 12 months. Muscle function (force and fatigue) and anatomy (muscles volume and fat content) were measured in vivo. Myosin heavy chain (MHC) composition and nebulin (NEB) protein expression were assessed by protein electrophoresis. RESULTS Conditional nebulin knockout mice displayed a lower NEB level (-90%) leading to a 40% and 45% reduction in specific maximal force production and muscles volume, respectively. Nebulin deficiency was also associated with higher resistance to fatigue and increased MHC I content. DISCUSSION Adult nebulin-deficient mice displayed severe muscle atrophy and weakness in vivo related to a low NEB content but an improved fatigue resistance due to a slower contractile phenotype.
Collapse
Affiliation(s)
| | - Augustin C Ogier
- Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
| | | | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | - Julien Gondin
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,Institut NeuroMyoGène, UMR CNRS 5310 - INSERM U1217, Université Claude Bernard, Lyon, France
| |
Collapse
|
36
|
Mi-Mi L, Farman GP, Mayfield RM, Strom J, Chu M, Pappas CT, Gregorio CC. In vivo elongation of thin filaments results in heart failure. PLoS One 2020; 15:e0226138. [PMID: 31899774 PMCID: PMC6941805 DOI: 10.1371/journal.pone.0226138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
A novel cardiac-specific transgenic mouse model was generated to identify the physiological consequences of elongated thin filaments during post-natal development in the heart. Remarkably, increasing the expression levels in vivo of just one sarcomeric protein, Lmod2, results in ~10% longer thin filaments (up to 26% longer in some individual sarcomeres) that produce up to 50% less contractile force. Increasing the levels of Lmod2 in vivo (Lmod2-TG) also allows us to probe the contribution of Lmod2 in the progression of cardiac myopathy because Lmod2-TG mice present with a unique cardiomyopathy involving enlarged atrial and ventricular lumens, increased heart mass, disorganized myofibrils and eventually, heart failure. Turning off of Lmod2 transgene expression at postnatal day 3 successfully prevents thin filament elongation, as well as gross morphological and functional disease progression. We show here that Lmod2 has an essential role in regulating cardiac contractile force and function.
Collapse
Affiliation(s)
- Lei Mi-Mi
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| | - Gerrie P. Farman
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| | - Rachel M. Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| | - Joshua Strom
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| | - Miensheng Chu
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| | - Christopher T. Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
37
|
Tinklenberg JA, Siebers EM, Beatka MJ, Fickau BA, Ayres S, Meng H, Yang L, Simpson P, Granzier HL, Lawlor MW. Myostatin Inhibition Using ActRIIB-mFc Does Not Produce Weight Gain or Strength in the Nebulin Conditional KO Mouse. J Neuropathol Exp Neurol 2019; 78:130-139. [PMID: 30597051 DOI: 10.1093/jnen/nly120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations in at least 12 genes are responsible for a group of congenital skeletal muscle diseases known as nemaline myopathies (NMs). NMs are associated with a range of clinical symptoms and pathological changes often including the presence of cytoplasmic rod-like structures (nemaline bodies) and myofiber hypotrophy. Our recent work has identified a variable degree of behavioral benefit when treating 2 NM mouse models due to mutations in Acta1 with myostatin inhibition. This study is focused on the effects of delivering ActRIIB-mFc (Acceleron; a myostatin inhibitor) to the nebulin conditional knockout KO (Neb cKO) mouse model of NM. Treatment of Neb cKO mice with ActRIIB-mFc did not produce increases in weight gain, strength, myofiber size, or hypertrophic pathway signaling. Overall, our studies demonstrate a lack of response in Neb cKO mice to myostatin inhibition, which differs from the response observed when treating other NM models.
Collapse
Affiliation(s)
- Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine.,Neuroscience Research Center Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily M Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine.,Neuroscience Research Center Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine.,Neuroscience Research Center Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brittany A Fickau
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine.,Neuroscience Research Center Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Samuel Ayres
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine.,Neuroscience Research Center Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Pippa Simpson
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine
| | - Henk L Granzier
- Division of Quantitative Health Sciences, Department of Pediatrics Medical College of Wisconsin, Milwaukee, Wisconsin (PS); and College of Medicine, University of Arizona, Tucson, Arizona
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine.,Neuroscience Research Center Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
38
|
Lee EJ, Kolb J, Hwee DT, Malik FI, Granzier HL. Functional Characterization of the Intact Diaphragm in a Nebulin-Based Nemaline Myopathy (NM) Model-Effects of the Fast Skeletal Muscle Troponin Activator tirasemtiv. Int J Mol Sci 2019; 20:E5008. [PMID: 31658633 PMCID: PMC6829460 DOI: 10.3390/ijms20205008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 02/08/2023] Open
Abstract
Respiratory failure due to diaphragm dysfunction is considered a main cause of death in nemaline myopathy (NM) and we studied both isometric force and isotonic shortening of diaphragm muscle in a mouse model of nebulin-based NM (Neb cKO). A large contractile deficit was found in nebulin-deficient intact muscle that is frequency dependent, with the largest deficits at low-intermediate stimulation frequencies (e.g., a deficit of 72% at a stimulation frequency of 20 Hz). The effect of the fast skeletal muscle troponin activator (FSTA) tirasemtiv on force was examined. Tirasemtiv had a negligible effect at maximal stimulation frequencies, but greatly reduced the force deficit of the diaphragm at sub-maximal stimulation levels with an effect that was largest in Neb cKO diaphragm. As a result, the force deficit of Neb cKO diaphragm fell (from 72% to 29% at 20 Hz). Similar effects were found in in vivo experiments on the nerve-stimulated gastrocnemius muscle complex. Load-clamp experiments on diaphragm muscle showed that tirasemtiv increased the shortening velocity, and reduced the deficit in mechanical power by 33%. Thus, tirasemtiv significantly improves muscle function in a mouse model of nebulin-based nemaline myopathy.
Collapse
Affiliation(s)
- Eun-Jeong Lee
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA.
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA.
| | - Darren T Hwee
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA 94080, USA.
| | - Fady I Malik
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA 94080, USA.
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA.
- Medical Research Building, RM 325, 1656 E Mabel St, Tucson, AZ 85721, USA.
| |
Collapse
|
39
|
Yudin N, Larkin DM. Shared Signatures of Selection Related to Adaptation and Acclimation in Local Cattle and Sheep Breeds from Russia. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419070159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Abstract
Nemaline myopathy (NM) is among the most common non-dystrophic congenital myopathies (incidence 1:50.000). Hallmark features of NM are skeletal muscle weakness and the presence of nemaline bodies in the muscle fiber. The clinical phenotype of NM patients is quite diverse, ranging from neonatal death to normal lifespan with almost normal motor function. As the respiratory muscles are involved as well, severely affected patients are ventilator-dependent. The mechanisms underlying muscle weakness in NM are currently poorly understood. Therefore, no therapeutic treatment is available yet. Eleven implicated genes have been identified: ten genes encode proteins that are either components of thin filament, or are thought to contribute to stability or turnover of thin filament proteins. The thin filament is a major constituent of the sarcomere, the smallest contractile unit in muscle. It is at this level of contraction – thin-thick filament interaction – where muscle weakness originates in NM patients. This review focusses on how sarcomeric gene mutations directly compromise sarcomere function in NM. Insight into the contribution of sarcomeric dysfunction to muscle weakness in NM, across the genes involved, will direct towards the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Coen A.C. Ottenheijm
- Correspondence to: Coen Ottenheijm, PhD, Department of Physiology, VU University Medical Center, O|2 building, 12W-51, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands. Tel.: +31 20 4448123; Fax: +31 20 4448124; E-mail:
| |
Collapse
|
41
|
Chase PB. Elastic domains of giant proteins in striated muscle: Modeling compliance with rulers. J Gen Physiol 2019; 151:619-622. [PMID: 30975697 PMCID: PMC6504283 DOI: 10.1085/jgp.201912345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chase examines a study using the MUSICO model of striated muscle to evaluate the function of giant elastic proteins titin and nebulin.
Collapse
Affiliation(s)
- P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL
| |
Collapse
|
42
|
Recessive MYH7-related myopathy in two families. Neuromuscul Disord 2019; 29:456-467. [PMID: 31130376 DOI: 10.1016/j.nmd.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
Abstract
Myopathies due to recessive MYH7 mutations are exceedingly rare, reported in only two families to date. We describe three patients from two families (from Australia and the UK) with a myopathy caused by recessive mutations in MYH7. The Australian family was homozygous for a c.5134C > T, p.Arg1712Trp mutation, whilst the UK patient was compound heterozygous for a truncating (c.4699C > T; p.Gln1567*) and a missense variant (c.4664A > G; p.Glu1555Gly). All three patients shared key clinical features, including infancy/childhood onset, pronounced axial/proximal weakness, spinal rigidity, severe scoliosis, and normal cardiac function. There was progressive respiratory impairment necessitating non-invasive ventilation despite preserved ambulation, a combination of features often seen in SEPN1- or NEB-related myopathies. On biopsy, the Australian proband showed classical myosin storage myopathy features, while the UK patient showed multi-minicore like areas. To establish pathogenicity of the Arg1712Trp mutation, we expressed mutant MYH7 protein in COS-7 cells, observing abnormal mutant myosin aggregation compared to wild-type. We describe skinned myofiber studies of patient muscle and hypertrophy of type II myofibers, which may be a compensatory mechanism. In summary, we have expanded the phenotype of ultra-rare recessive MYH7 disease, and provide novel insights into associated changes in muscle physiology.
Collapse
|
43
|
Mijailovich SM, Stojanovic B, Nedic D, Svicevic M, Geeves MA, Irving TC, Granzier HL. Nebulin and titin modulate cross-bridge cycling and length-dependent calcium sensitivity. J Gen Physiol 2019; 151:680-704. [PMID: 30948421 PMCID: PMC6504291 DOI: 10.1085/jgp.201812165] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/15/2019] [Accepted: 03/03/2019] [Indexed: 12/13/2022] Open
Abstract
Various mutations in the structural proteins nebulin and titin that are present in human disease are known to affect the contractility of striated muscle. Loss of nebulin is associated with reduced actin filament length and impairment of myosin binding to actin, whereas titin is thought to regulate muscle passive elasticity and is likely involved in length-dependent activation. Here, we sought to assess the modulation of muscle function by these sarcomeric proteins by using the computational platform muscle simulation code (MUSICO) to quantitatively separate the effects of structural changes, kinetics of cross-bridge cycling, and calcium sensitivity of the thin filaments. The simulations show that variation in thin filament length cannot by itself account for experimental observations of the contractility in nebulin-deficient muscle, but instead must be accompanied by a decreased myosin binding rate. Additionally, to match the observed calcium sensitivity, the rate of TnI detachment from actin needed to be increased. Simulations for cardiac muscle provided quantitative estimates of the effects of different titin-based passive elasticities on muscle force and activation in response to changes in sarcomere length and interfilament lattice spacing. Predicted force-pCa relations showed a decrease in both active tension and sensitivity to calcium with a decrease in passive tension and sarcomere length. We conclude that this behavior is caused by partial redistribution of the muscle load between active muscle force and titin-dependent passive force, and also by redistribution of stretch along the thin filament, which together modulate the release of TnI from actin. These data help advance understanding of how nebulin and titin mutations affect muscle function.
Collapse
Affiliation(s)
- Srboljub M Mijailovich
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA .,Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Boban Stojanovic
- University of Kragujevac, Faculty of Science, Kragujevac, Serbia
| | - Djordje Nedic
- University of Kragujevac, Faculty of Science, Kragujevac, Serbia
| | - Marina Svicevic
- University of Kragujevac, Faculty of Science, Kragujevac, Serbia
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Thomas C Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | | |
Collapse
|
44
|
Leonard TR, Howard JJ, Larkin-Kaiser K, Joumaa V, Logan K, Orlik B, El-Hawary R, Gauthier L, Herzog W. Stiffness of hip adductor myofibrils is decreased in children with spastic cerebral palsy. J Biomech 2019; 87:100-106. [PMID: 30853092 DOI: 10.1016/j.jbiomech.2019.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/28/2019] [Accepted: 02/25/2019] [Indexed: 01/16/2023]
Abstract
Cerebral palsy (CP) is the result of a static brain lesion which causes spasticity and muscle contracture. The source of the increased passive stiffness in patients is not understood and while whole muscle down to single muscle fibres have been investigated, the smallest functional unit of muscle (the sarcomere) has not been. Muscle biopsies (adductor longus and gracilis) from pediatric patients were obtained (CP n = 9 and control n = 2) and analyzed for mechanical stiffness, in-vivo sarcomere length and titin isoforms. Adductor longus muscle was the focus of this study and the results for sarcomere length showed a significant increase in length for CP (3.6 µm) compared to controls (2.6 µm). Passive stress at the same sarcomere length for CP compared to control was significantly lower in CP and the elastic modulus for the physiological range of muscle was lower in CP compared to control (98.2 kPa and 166.1 kPa, respectively). Our results show that CP muscle at its most reduced level (the myofibril) is more compliant compared to normal, which is completely opposite to what is observed at higher structural levels (single fibres, muscle fibre bundles and whole muscle). It is noteworthy that at the in vivo sarcomere length in CP, the passive forces are greater than normal, purely as a functional of these more compliant sarcomeres operating at long lengths. Titin isoforms were not different between CP and non-CP adductor longus but titin:nebulin was reduced in CP muscle, which may be due to titin loss or an over-expression of nebulin in CP muscles.
Collapse
Affiliation(s)
| | | | | | - Venus Joumaa
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | - Walter Herzog
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
45
|
Tinklenberg JA, Siebers EM, Beatka MJ, Meng H, Yang L, Zhang Z, Ross JA, Ochala J, Morris C, Owens JM, Laing NG, Nowak KJ, Lawlor MW. Myostatin inhibition using mRK35 produces skeletal muscle growth and tubular aggregate formation in wild type and TgACTA1D286G nemaline myopathy mice. Hum Mol Genet 2019; 27:638-648. [PMID: 29293963 DOI: 10.1093/hmg/ddx431] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022] Open
Abstract
Nemaline myopathy (NM) is a heterogeneous congenital skeletal muscle disease with cytoplasmic rod-like structures (nemaline bodies) in muscle tissue. While weakness in NM is related to contractile abnormalities, myofiber smallness is an additional abnormality in NM that may be treatable. We evaluated the effects of mRK35 (a myostatin inhibitor developed by Pfizer) treatment in the TgACTA1D286G mouse model of NM. mRK35 induced skeletal muscle growth that led to significant increases in animal bodyweight, forelimb grip strength and muscle fiber force, although it should be noted that animal weight and forelimb grip strength in untreated TgACTA1D286G mice was not different from controls. Treatment was also associated with an increase in the number of tubular aggregates found in skeletal muscle. These findings suggest that myostatin inhibition may be useful in promoting muscle growth and strength in Acta1-mutant muscle, while also further establishing the relationship between low levels of myostatin and tubular aggregate formation.
Collapse
Affiliation(s)
- Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Emily M Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville 32607, FL, USA
| | - Zizhao Zhang
- Department of Biomedical Engineering, University of Florida, Gainesville 32607, FL, USA
| | - Jacob A Ross
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | | | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Kristen J Nowak
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.,Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| |
Collapse
|
46
|
Nebulin stiffens the thin filament and augments cross-bridge interaction in skeletal muscle. Proc Natl Acad Sci U S A 2018; 115:10369-10374. [PMID: 30249654 PMCID: PMC6187167 DOI: 10.1073/pnas.1804726115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nebulin is a giant sarcomeric protein that spans along the actin filament in skeletal muscle, from the Z-disk to near the thin filament pointed end. Mutations in nebulin cause muscle weakness in nemaline myopathy patients, suggesting that nebulin plays important roles in force generation, yet little is known about nebulin's influence on thin filament structure and function. Here, we used small-angle X-ray diffraction and compared intact muscle deficient in nebulin (using a conditional nebulin-knockout, Neb cKO) with control (Ctrl) muscle. When muscles were activated, the spacing of the actin subunit repeat (27 Å) increased in both genotypes; when converted to thin filament stiffness, the obtained value was 30 pN/nm in Ctrl muscle and 10 pN/nm in Neb cKO muscle; that is, the thin filament was approximately threefold stiffer when nebulin was present. In contrast, the thick filament stiffness was not different between the genotypes. A significantly shorter left-handed (59 Å) thin filament helical pitch was found in passive and contracting Neb cKO muscles, as well as impaired tropomyosin and troponin movement. Additionally, a reduced myosin mass transfer toward the thin filament in contracting Neb cKO muscle was found, suggesting reduced cross-bridge interaction. We conclude that nebulin is critically important for physiological force levels, as it greatly stiffens the skeletal muscle thin filament and contributes to thin filament activation and cross-bridge recruitment.
Collapse
|
47
|
Lindqvist J, van den Berg M, van der Pijl R, Hooijman PE, Beishuizen A, Elshof J, de Waard M, Girbes A, Spoelstra-de Man A, Shi ZH, van den Brom C, Bogaards S, Shen S, Strom J, Granzier H, Kole J, Musters RJP, Paul MA, Heunks LMA, Ottenheijm CAC. Positive End-Expiratory Pressure Ventilation Induces Longitudinal Atrophy in Diaphragm Fibers. Am J Respir Crit Care Med 2018; 198:472-485. [PMID: 29578749 PMCID: PMC6118031 DOI: 10.1164/rccm.201709-1917oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 03/26/2018] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Diaphragm weakness in critically ill patients prolongs ventilator dependency and duration of hospital stay and increases mortality and healthcare costs. The mechanisms underlying diaphragm weakness include cross-sectional fiber atrophy and contractile protein dysfunction, but whether additional mechanisms are at play is unknown. OBJECTIVES To test the hypothesis that mechanical ventilation with positive end-expiratory pressure (PEEP) induces longitudinal atrophy by displacing the diaphragm in the caudal direction and reducing the length of fibers. METHODS We studied structure and function of diaphragm fibers of mechanically ventilated critically ill patients and mechanically ventilated rats with normal and increased titin compliance. MEASUREMENTS AND MAIN RESULTS PEEP causes a caudal movement of the diaphragm, both in critically ill patients and in rats, and this caudal movement reduces fiber length. Diaphragm fibers of 18-hour mechanically ventilated rats (PEEP of 2.5 cm H2O) adapt to the reduced length by absorbing serially linked sarcomeres, the smallest contractile units in muscle (i.e., longitudinal atrophy). Increasing the compliance of titin molecules reduces longitudinal atrophy. CONCLUSIONS Mechanical ventilation with PEEP results in longitudinal atrophy of diaphragm fibers, a response that is modulated by the elasticity of the giant sarcomeric protein titin. We postulate that longitudinal atrophy, in concert with the aforementioned cross-sectional atrophy, hampers spontaneous breathing trials in critically ill patients: during these efforts, end-expiratory lung volume is reduced, and the shortened diaphragm fibers are stretched to excessive sarcomere lengths. At these lengths, muscle fibers generate less force, and diaphragm weakness ensues.
Collapse
Affiliation(s)
- Johan Lindqvist
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | - Robbert van der Pijl
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology
| | | | - Albertus Beishuizen
- Department of Intensive Care, Medisch Spectrum Twente, Enschede, the Netherlands; and
| | | | | | | | | | - Zhong-Hua Shi
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | | | | | - Shengyi Shen
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Joshua Strom
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Henk Granzier
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | | | - Marinus A. Paul
- Department of Cardiothoracic Surgery, Vrije Universiteit Medical Center, Amsterdam, the Netherlands
| | | | - Coen A. C. Ottenheijm
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology
| |
Collapse
|
48
|
Pappas CT, Farman GP, Mayfield RM, Konhilas JP, Gregorio CC. Cardiac-specific knockout of Lmod2 results in a severe reduction in myofilament force production and rapid cardiac failure. J Mol Cell Cardiol 2018; 122:88-97. [PMID: 30102883 DOI: 10.1016/j.yjmcc.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Abstract
Leiomodin-2 (Lmod2) is a striated muscle-specific actin binding protein that is implicated in assembly of thin filaments. The necessity of Lmod2 in the adult mouse and role it plays in the mechanics of contraction are unknown. To answer these questions, we generated cardiac-specific conditional Lmod2 knockout mice (cKO). These mice die within a week of induction of the knockout with severe left ventricular systolic dysfunction and little change in cardiac morphology. Cardiac trabeculae isolated from cKO mice have a significant decrease in maximum force production and a blunting of myofilament length-dependent activation. Thin filaments are non-uniform and substantially reduced in length in cKO hearts, affecting the functional overlap of the thick and thin filaments. Remarkably, we also found that Lmod2 levels are directly linked to thin filament length and cardiac function in vivo, with a low amount (<20%) of Lmod2 necessary to maintain cardiac function. Thus, Lmod2 plays an essential role in maintaining proper cardiac thin filament length in adult mice, which in turn is necessary for proper generation of contractile force. Dysregulation of thin filament length in the absence of Lmod2 contributes to heart failure.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA.
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Rachel M Mayfield
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - John P Konhilas
- Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; Department of Physiology and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
49
|
Sztal TE, McKaige EA, Williams C, Oorschot V, Ramm G, Bryson-Richardson RJ. Testing of therapies in a novel nebulin nemaline myopathy model demonstrate a lack of efficacy. Acta Neuropathol Commun 2018; 6:40. [PMID: 29848386 PMCID: PMC5977763 DOI: 10.1186/s40478-018-0546-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 12/19/2022] Open
Abstract
Nemaline myopathies are heterogeneous congenital muscle disorders causing skeletal muscle weakness and, in some cases, death soon after birth. Mutations in nebulin, encoding a large sarcomeric protein required for thin filament function, are responsible for approximately 50% of nemaline myopathy cases. Despite the severity of the disease there is no effective treatment for nemaline myopathy with limited research to develop potential therapies. Several supplements, including L-tyrosine, have been suggested to be beneficial and consequently self-administered by nemaline myopathy patients without any knowledge of their efficacy. We have characterized a zebrafish model for nemaline myopathy caused by a mutation in nebulin. These fish form electron-dense nemaline bodies and display reduced muscle function akin to the phenotypes observed in nemaline myopathy patients. We have utilized our zebrafish model to test and evaluate four treatments currently self-administered by nemaline myopathy patients to determine their ability to increase skeletal muscle function. Analysis of muscle pathology and locomotion following treatment with L-tyrosine, L-carnitine, taurine, or creatine revealed no significant improvement in skeletal muscle function emphasizing the urgency to develop effective therapies for nemaline myopathy.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Animals, Genetically Modified
- Dose-Response Relationship, Drug
- Embryo, Nonmammalian
- Gene Expression Regulation/genetics
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Microscopy, Electron
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle Proteins/therapeutic use
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Mutation/genetics
- Myopathies, Nemaline/genetics
- Myopathies, Nemaline/pathology
- Myopathies, Nemaline/therapy
- RNA, Messenger/metabolism
- Zebrafish
Collapse
Affiliation(s)
- Tamar E Sztal
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Emily A McKaige
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Caitlin Williams
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, VIC, 3800, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | | |
Collapse
|
50
|
Joureau B, de Winter JM, Conijn S, Bogaards SJP, Kovacevic I, Kalganov A, Persson M, Lindqvist J, Stienen GJM, Irving TC, Ma W, Yuen M, Clarke NF, Rassier DE, Malfatti E, Romero NB, Beggs AH, Ottenheijm CAC. Dysfunctional sarcomere contractility contributes to muscle weakness in ACTA1-related nemaline myopathy (NEM3). Ann Neurol 2018; 83:269-282. [PMID: 29328520 DOI: 10.1002/ana.25144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Nemaline myopathy (NM) is one of the most common congenital nondystrophic myopathies and is characterized by muscle weakness, often from birth. Mutations in ACTA1 are a frequent cause of NM (ie, NEM3). ACTA1 encodes alpha-actin 1, the main constituent of the sarcomeric thin filament. The mechanisms by which mutations in ACTA1 contribute to muscle weakness in NEM3 are incompletely understood. We hypothesized that sarcomeric dysfunction contributes to muscle weakness in NEM3 patients. METHODS To test this hypothesis, we performed contractility measurements in individual muscle fibers and myofibrils obtained from muscle biopsies of 14 NEM3 patients with different ACTA1 mutations. To identify the structural basis for impaired contractility, low angle X-ray diffraction and stimulated emission-depletion microscopy were applied. RESULTS Our findings reveal that muscle fibers of NEM3 patients display a reduced maximal force-generating capacity, which is caused by dysfunctional sarcomere contractility in the majority of patients, as revealed by contractility measurements in myofibrils. Low angle X-ray diffraction and stimulated emission-depletion microscopy indicate that dysfunctional sarcomere contractility in NEM3 patients involves a lower number of myosin heads binding to actin during muscle activation. This lower number is not the result of reduced thin filament length. Interestingly, the calcium sensitivity of force is unaffected in some patients, but decreased in others. INTERPRETATION Dysfunctional sarcomere contractility is an important contributor to muscle weakness in the majority of NEM3 patients. This information is crucial for patient stratification in future clinical trials. Ann Neurol 2018;83:269-282.
Collapse
Affiliation(s)
- Barbara Joureau
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | | | - Stefan Conijn
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Sylvia J P Bogaards
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Igor Kovacevic
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Albert Kalganov
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Malin Persson
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Johan Lindqvist
- Department of Molecular and Cellular Biology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Ger J M Stienen
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Thomas C Irving
- Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Weikang Ma
- Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Michaela Yuen
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Edoardo Malfatti
- Pierre and Marie Curie University/University of Paris VI, Sorbonne Universities, National Institute of Health and Medical Research UMRS974, National Center for Scientific Research FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Norma B Romero
- Pierre and Marie Curie University/University of Paris VI, Sorbonne Universities, National Institute of Health and Medical Research UMRS974, National Center for Scientific Research FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Department of Molecular and Cellular Biology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| |
Collapse
|