1
|
Newman T, Ishihara T, Shaw G, Renfree MB. The structure of the TH/INS locus and the parental allele expressed are not conserved between mammals. Heredity (Edinb) 2024; 133:21-32. [PMID: 38834866 PMCID: PMC11222543 DOI: 10.1038/s41437-024-00689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Parent-of-origin-specific expression of imprinted genes is critical for successful mammalian growth and development. Insulin, coded by the INS gene, is an important growth factor expressed from the paternal allele in the yolk sac placenta of therian mammals. The tyrosine hydroxylase gene TH encodes an enzyme involved in dopamine synthesis. TH and INS are closely associated in most vertebrates, but the mouse orthologues, Th and Ins2, are separated by repeated DNA. In mice, Th is expressed from the maternal allele, but the parental origin of expression is not known for any other mammal so it is unclear whether the maternal expression observed in the mouse represents an evolutionary divergence or an ancestral condition. We compared the length of the DNA segment between TH and INS across species and show that separation of these genes occurred in the rodent lineage with an accumulation of repeated DNA. We found that the region containing TH and INS in the tammar wallaby produces at least five distinct RNA transcripts: TH, TH-INS1, TH-INS2, lncINS and INS. Using allele-specific expression analysis, we show that the TH/INS locus is expressed from the paternal allele in pre- and postnatal tammar wallaby tissues. Determining the imprinting pattern of TH/INS in other mammals might clarify if paternal expression is the ancestral condition which has been flipped to maternal expression in rodents by the accumulation of repeat sequences.
Collapse
Affiliation(s)
- Trent Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
ASCL2 reciprocally controls key trophoblast lineage decisions during hemochorial placenta development. Proc Natl Acad Sci U S A 2021; 118:2016517118. [PMID: 33649217 DOI: 10.1073/pnas.2016517118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Invasive trophoblast cells are critical to spiral artery remodeling in hemochorial placentation. Insufficient trophoblast cell invasion and vascular remodeling can lead to pregnancy disorders including preeclampsia, preterm birth, and intrauterine growth restriction. Previous studies in mice identified achaete-scute homolog 2 (ASCL2) as essential to extraembryonic development. We hypothesized that ASCL2 is a critical and conserved regulator of invasive trophoblast cell lineage development. In contrast to the mouse, the rat possesses deep intrauterine trophoblast cell invasion and spiral artery remodeling similar to human placentation. In this study, we investigated invasive/extravillous trophoblast (EVT) cell differentiation using human trophoblast stem (TS) cells and a loss-of-function mutant Ascl2 rat model. ASCL2 transcripts are expressed in the EVT column and junctional zone, which represent tissue sources of invasive trophoblast progenitor cells within human and rat placentation sites, respectively. Differentiation of human TS cells into EVT cells resulted in significant up-regulation of ASCL2 and several other transcripts indicative of EVT cell differentiation. Disruption of ASCL2 impaired EVT cell differentiation, as indicated by cell morphology and transcript profiles. RNA sequencing analysis of ASCL2-deficient trophoblast cells identified both down-regulation of EVT cell-associated transcripts and up-regulation of syncytiotrophoblast-associated transcripts, indicative of dual activating and repressing functions. ASCL2 deficiency in the rat impacted placental morphogenesis, resulting in junctional zone dysgenesis and failed intrauterine trophoblast cell invasion. ASCL2 acts as a critical and conserved regulator of invasive trophoblast cell lineage development and a modulator of the syncytiotrophoblast lineage.
Collapse
|
3
|
Bogutz AB, Oh-McGinnis R, Jacob KJ, Ho-Lau R, Gu T, Gertsenstein M, Nagy A, Lefebvre L. Transcription factor ASCL2 is required for development of the glycogen trophoblast cell lineage. PLoS Genet 2018; 14:e1007587. [PMID: 30096149 PMCID: PMC6105033 DOI: 10.1371/journal.pgen.1007587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/22/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor ASCL2 plays essential roles in diploid multipotent trophoblast progenitors, intestinal stem cells, follicular T-helper cells, as well as during epidermal development and myogenesis. During early development, Ascl2 expression is regulated by genomic imprinting and only the maternally inherited allele is transcriptionally active in trophoblast. The paternal allele-specific silencing of Ascl2 requires expression of the long non-coding RNA Kcnq1ot1 in cis and the deposition of repressive histone marks. Here we show that Del7AI, a 280-kb deletion allele neighboring Ascl2, interferes with this process in cis and leads to a partial loss of silencing at Ascl2. Genetic rescue experiments show that the low level of Ascl2 expression from the paternal Del7AI allele can rescue the embryonic lethality associated with maternally inherited Ascl2 mutations, in a level-dependent manner. Despite their ability to support development to term, the rescued placentae have a pronounced phenotype characterized by severe hypoplasia of the junctional zone, expansion of the parietal trophoblast giant cell layer, and complete absence of invasive glycogen trophoblast cells. Transcriptome analysis of ectoplacental cones at E7.5 and differentiation assays of Ascl2 mutant trophoblast stem cells show that ASCL2 is required for the emergence or early maintenance of glycogen trophoblast cells during development. Our work identifies a new cis-acting mutation interfering with Kcnq1ot1 silencing function and establishes a novel critical developmental role for the transcription factor ASCL2. By controlling precise networks of target genes, transcription factors play important roles in cell fate determination during development. The Ascl2 gene codes for a transcription factor essential for the maintenance of progenitor cell populations able to differentiate into specialized cell types in the intestine and in the extra-embryonic trophoblast lineage. The trophoblast is an essential component of the placenta, an organ required for development of the embryo in placental mammals. Ascl2 belongs to a group of unusual genes, called imprinted genes, which are expressed from only a single parental copy. Ascl2 is only expressed from the maternally inherited copy in the trophoblast, the paternal copy being kept silent. Here, we describe an engineered deletion neighboring Ascl2 that interferes with the complete silencing of the paternal copy of the gene. We show that the low amount of ASCL2 produced from this deletion can rescue the embryonic lethality associated with non-functional maternal copies of Ascl2. Although the rescued embryos can often survive to term, their placenta is highly disorganized and lacks members of a specific cell lineage, the trophoblast glycogen cells. By analyzing the transcriptional profile of mutant trophoblast progenitors in vivo and of differentiated trophoblast stem cells, we show that ASCL2 plays a very early role in the formation of this cell lineage.
Collapse
Affiliation(s)
- Aaron B. Bogutz
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Rosemary Oh-McGinnis
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Karen J. Jacob
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Rita Ho-Lau
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ting Gu
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Marina Gertsenstein
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
4
|
Genetic and Epigenetic Control of CDKN1C Expression: Importance in Cell Commitment and Differentiation, Tissue Homeostasis and Human Diseases. Int J Mol Sci 2018; 19:ijms19041055. [PMID: 29614816 PMCID: PMC5979523 DOI: 10.3390/ijms19041055] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/31/2018] [Accepted: 03/31/2018] [Indexed: 12/28/2022] Open
Abstract
The CDKN1C gene encodes the p57Kip2 protein which has been identified as the third member of the CIP/Kip family, also including p27Kip1 and p21Cip1. In analogy with these proteins, p57Kip2 is able to bind tightly and inhibit cyclin/cyclin-dependent kinase complexes and, in turn, modulate cell division cycle progression. For a long time, the main function of p57Kip2 has been associated only to correct embryogenesis, since CDKN1C-ablated mice are not vital. Accordingly, it has been demonstrated that CDKN1C alterations cause three human hereditary syndromes, characterized by altered growth rate. Subsequently, the p57Kip2 role in several cell phenotypes has been clearly assessed as well as its down-regulation in human cancers. CDKN1C lies in a genetic locus, 11p15.5, characterized by a remarkable regional imprinting that results in the transcription of only the maternal allele. The control of CDKN1C transcription is also linked to additional mechanisms, including DNA methylation and specific histone methylation/acetylation. Finally, long non-coding RNAs and miRNAs appear to play important roles in controlling p57Kip2 levels. This review mostly represents an appraisal of the available data regarding the control of CDKN1C gene expression. In addition, the structure and function of p57Kip2 protein are briefly described and correlated to human physiology and diseases.
Collapse
|
5
|
Tunster SJ, McNamara GI, Creeth HDJ, John RM. Increased dosage of the imprinted Ascl2 gene restrains two key endocrine lineages of the mouse Placenta. Dev Biol 2016; 418:55-65. [PMID: 27542691 PMCID: PMC5040514 DOI: 10.1016/j.ydbio.2016.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/26/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022]
Abstract
Imprinted genes are expressed primarily from one parental allele by virtue of a germ line epigenetic process. Achaete-scute complex homolog 2 (Ascl2 aka Mash2) is a maternally expressed imprinted gene that plays a key role in placental and intestinal development. Loss-of-function of Ascl2 results in an expansion of the parietal trophoblast giant cell (P-TGC) lineage, an almost complete loss of Trophoblast specific protein alpha (Tpbpa) positive cells in the ectoplacental cone and embryonic failure by E10.5. Tpbpa expression marks the progenitors of some P-TGCs, two additional trophoblast giant cell lineages (spiral artery and canal), the spongiotrophoblast and the glycogen cell lineage. Using a transgenic model, here we show that elevated expression of Ascl2 reduced the number of P-TGC cells by 40%. Elevated Ascl2 also resulted in a marked loss of the spongiotrophoblast and a substantial mislocalisation of glycogen cells into the labyrinth. In addition, Ascl2-Tg placenta contained considerably more placental glycogen than wild type. Glycogen cells are normally located within the junctional zone in close contact with spongiotrophoblast cells, before migrating through the P-TGC layer into the maternal decidua late in gestation where their stores of glycogen are released. The failure of glycogen cells to release their stores of glycogen may explain both the inappropriate accumulation of glycogen and fetal growth restriction observed late in gestation in this model. In addition, using in a genetic cross we provide evidence that Ascl2 requires the activity of a second maternally expressed imprinted gene, Pleckstrin homology-like domain, family a, member 2 (Phlda2) to limit the expansion of the spongiotrophoblast. This "belts and braces" approach demonstrates the importance of genomic imprinting in regulating the size of the placental endocrine compartment for optimal placental development and fetal growth.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF103AX, UK
| | - G I McNamara
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF103AX, UK
| | - H D J Creeth
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF103AX, UK
| | - R M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF103AX, UK.
| |
Collapse
|
6
|
Tunster SJ, Jensen AB, John RM. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 2013; 145:R117-37. [PMID: 23445556 DOI: 10.1530/rep-12-0511] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imprinted genes, which are preferentially expressed from one or other parental chromosome as a consequence of epigenetic events in the germline, are known to functionally converge on biological processes that enable in utero development in mammals. Over 100 imprinted genes have been identified in the mouse, the majority of which are both expressed and imprinted in the placenta. The purpose of this review is to provide a summary of the current knowledge regarding imprinted gene function in the mouse placenta. Few imprinted genes have been assessed with respect to their dosage-related action in the placenta. Nonetheless, current data indicate that imprinted genes converge on two key functions of the placenta, nutrient transport and placental signalling. Murine studies may provide a greater understanding of certain human pathologies, including low birth weight and the programming of metabolic diseases in the adult, and complications of pregnancy, such as pre-eclampsia and gestational diabetes, resulting from fetuses carrying abnormal imprints.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | | | | |
Collapse
|
7
|
Jacob KJ, Robinson WP, Lefebvre L. Beckwith-Wiedemann and Silver-Russell syndromes: opposite developmental imbalances in imprinted regulators of placental function and embryonic growth. Clin Genet 2013; 84:326-34. [PMID: 23495910 DOI: 10.1111/cge.12143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 11/29/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are two congenital disorders with opposite outcomes on fetal growth, overgrowth and growth restriction, respectively. Although both disorders are heterogeneous, most cases of BWS and SRS are associated with opposite epigenetic or genetic abnormalities on 11p15.5 leading to opposite imbalances in the expression levels of imprinted genes. In this article, we review evidence implicating these genes in the developmental regulation of embryonic growth and placental function in mouse models. The emerging picture suggests that both SRS and BWS can be caused by the simultaneous and opposite deregulation of two groups of imprinted genes on 11p15.5. A detailed description of the phenotypic abnormalities associated with each syndrome must take into consideration the developmental functions of each gene involved.
Collapse
Affiliation(s)
- K J Jacob
- Department of Medical Genetics; Life Sciences Institute, Molecular Epigenetics Group, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
8
|
Abstract
Gene targeting in embryonic stem (ES) cells coupled with the site-specific Cre/loxP recombination system offers unique opportunities to identify and analyze the roles of cis-acting sequences in the regulation of imprinted gene expression. Although several different approaches have been described to engineer large chromosomal rearrangements in ES cells, these strategies can be labor-intensive and often require several subcloning of the original stem cells, therefore limiting the chances of obtaining germ line transmission of the mutation introduced. Here we describe an alternative approach which is based on in vivo recombination, therefore limiting the number of steps performed in ES cells and allowing to take advantage of the growing number of loxP insertional mutations already available in transgenic mice.
Collapse
|
9
|
Lefebvre L. The placental imprintome and imprinted gene function in the trophoblast glycogen cell lineage. Reprod Biomed Online 2012; 25:44-57. [PMID: 22560119 DOI: 10.1016/j.rbmo.2012.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
Imprinted genes represent a unique class of autosomal genes expressed from only one of the parental alleles during development. The choice of the expressed allele is not random but rather is determined by the parental origin of the allele. Consequently, the mouse genome contains more than 100 genes expressed preferentially or exclusively from the maternally or the paternally inherited allele. Current research efforts are focused on understanding the molecular mechanism of this epigenetic phenomenon as well as the biological functions of the genes under its regulation. Both theoretical considerations and experimental results support a role for genomic imprinting in the regulation of embryonic growth and placental biology. In this review, recent efforts to establish the complete set of genes showing imprinted expression in the mouse placenta are first discussed. Then, the evidence suggesting that imprinted genes might be implicated in the emergence, maintenance and function of trophoblast glycogen cells is presented. Although the origin and functions of this trophoblast cell lineage are currently unknown, the analysis of mutations in imprinted genes in the mouse are providing new insights into these issues. The implications of this work for placental pathologies in human are also discussed.
Collapse
Affiliation(s)
- Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
10
|
An extended domain of Kcnq1ot1 silencing revealed by an imprinted fluorescent reporter. Mol Cell Biol 2011; 31:2827-37. [PMID: 21576366 DOI: 10.1128/mcb.01435-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distal region of mouse chromosome 7 contains two imprinted domains separated by a relatively gene-poor interval. We have previously described a transgenic mouse line called Tel7KI, which contains a green fluorescent protein (GFP) reporter inserted 2.6 kb upstream of the Ins2 gene at the proximal end of this interval. The GFP reporter from Tel7KI is imprinted and maternally expressed in postimplantation embryos. Here, we present evidence that the distal imprinting center, KvDMR1 (IC2), is responsible for the paternal silencing of Tel7KI. First, we show that Tel7KI is silenced when the noncoding RNA Kcnq1ot1 is biallelically expressed due to absence of maternal DNA methylation at IC2. Second, we use an embryonic stem (ES) cell differentiation assay to examine the effect of an IC2 deletion in cis to Tel7KI and show that it impairs the ability of the paternal transmission Tel7KI ES cells to silence GFP. These results suggested that Kcnq1ot1 silencing extends nearly 300 kb further than previously reported and led us to examine other transcripts between IC1 and IC2. We found that splice variants of Th and Ins2 are imprinted, maternally expressed, and regulated by IC2, showing that the silencing domain uncovered by our transgenic line also affects endogenous transcripts.
Collapse
|
11
|
Oh-McGinnis R, Bogutz AB, Lefebvre L. Partial loss of Ascl2 function affects all three layers of the mature placenta and causes intrauterine growth restriction. Dev Biol 2011; 351:277-86. [PMID: 21238448 DOI: 10.1016/j.ydbio.2011.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 12/17/2022]
Abstract
Several imprinted genes have been implicated in the regulation of placental function and embryonic growth. On distal mouse chromosome 7, two clusters of imprinted genes, each regulated by its own imprinting center (IC), are separated by a poorly characterized region of 280kb (the IC1-IC2 interval). We previously generated a mouse line in which this IC1-IC2 interval has been deleted (Del(7AI) allele) and found that maternal inheritance of this allele results in low birth weights in newborns. Here we report that Del(7AI) causes a partial loss of Ascl2, a maternally expressed gene in the IC2 cluster, which when knocked out leads to embryonic lethality at midgestation due to a lack of spongiotrophoblast formation. The hypomorphic Ascl2 allele causes embryonic growth restriction and an associated placental phenotype characterized by a reduction in placental weight, reduced spongiotrophoblast population, absence of glycogen cells, and an expanded trophoblast giant cell layer. We also uncovered severe defects in the labyrinth layer of maternal mutants including increased production of the trilaminar labyrinth trophoblast cell types and a disorganized labyrinthine vasculature. Our results have important implications for our understanding of the role played by the spongiotrophoblast layer during placentation and show that regulation of the dosage of the imprinted gene Ascl2 can affect all three layers of the chorio-allantoic placenta.
Collapse
Affiliation(s)
- Rosemary Oh-McGinnis
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
12
|
Oh-McGinnis R, Jones MJ, Lefebvre L. Applications of the site-specific recombinase Cre to the study of genomic imprinting. Brief Funct Genomics 2010; 9:281-93. [PMID: 20601421 DOI: 10.1093/bfgp/elq017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of gene targeting approaches has had a tremendous impact on the functional analysis of the mouse genome. A specific application of this technique has been the adaptation of the bacteriophage P1 Cre/loxP site-specific recombinase system which allows for the precise recombination between two loxP sites, resulting in deletion or inversion of the intervening sequences. Because of the efficiency of this system, it can be applied to conditional deletions of relatively short coding sequences or regulatory elements but also to more extensive chromosomal rearrangement strategies. Both mechanistic and functional studies of genomic imprinting have benefited from the development of the Cre/loxP technology. Since imprinted genes within large chromosomal regions are regulated by the action of cis-acting sequences known as imprinting centers, chromosomal engineering approaches are particularly well suited to the elucidation of long-range mechanisms controlling the imprinting of autosomal genes. Here we review the applications of the Cre/loxP technology to the study of genomic imprinting, highlight important insights gained from these studies and discuss future directions in the field.
Collapse
Affiliation(s)
- Rosemary Oh-McGinnis
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|