1
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic retinitis pigmentosa. Prog Retin Eye Res 2024; 107:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP, including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as miscellaneous. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam Reproduction & Development, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam, the Netherlands; Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Marion M Brands
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Clara D M van Karnebeek
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Human Genetics, Section Ophthalmogenetics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maria M van Genderen
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Pincay J, Rodriguez M, Kaushal D, Tsang SH. Rod-sparing in a bardet-biedl syndrome patient with mutations in the ARL6 gene. Doc Ophthalmol 2024; 149:133-138. [PMID: 39078565 DOI: 10.1007/s10633-024-09985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE Bardet-Biedl Syndrome (BBS) is an autosomal recessive disorder characterized by pleiotropism that affects multiple organ systems. The primary features of BBS include rod-cone dystrophy, renal anomalies, post axial polydactyly, and neurologic deficits. The clinical picture of BBS is extensively heterogenous, with inter and intra familial patients varying in levels of syndromic manifestations and severity of symptoms. METHODS In this study we examined a monocular BBS patient who was compound heterozygous for mutations in the ARL6 (BBS3) gene. RESULTS The patient reported visual complaints consistent with a clinical picture of cone or cone-rod dystrophy. Fundus imaging showed retinal mottling on color photos and a parafoveal hyperfluorescent ring on short wave autofluorescence (SW-AF). Full field electroretinogram (ffERG) revealed normal scotopic step tracings and diminished amplitudes in the photopic steps. CONCLUSION This rod-sparing result was consistent with cone-dystrophy and is the first known case of a rod-sparing ffERG phenotype in a BBS patient with mutations in the ARL6 gene. This contributes to the existing phenotype and may potentially contribute to furthering our understanding of BBS pathophysiology.
Collapse
Affiliation(s)
- Jorge Pincay
- Department of Ophthalmology, Columbia University Irving Medical Center, Vanderbilt Clinic 622 W 168th St 3rd Floor, New York, NY, 10032, USA
- State University of New York at Downstate Medical Center, Brooklyn, NY, USA
| | - Marilyn Rodriguez
- Department of Ophthalmology, Columbia University Irving Medical Center, Vanderbilt Clinic 622 W 168th St 3rd Floor, New York, NY, 10032, USA
| | - Divya Kaushal
- Department of Ophthalmology, Columbia University Irving Medical Center, Vanderbilt Clinic 622 W 168th St 3rd Floor, New York, NY, 10032, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, Vanderbilt Clinic 622 W 168th St 3rd Floor, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
3
|
Milibari D, Nowilaty SR, Ba-Abbad R. The Clinical and Mutational Spectrum of Bardet-Biedl Syndrome in Saudi Arabia. Genes (Basel) 2024; 15:762. [PMID: 38927698 PMCID: PMC11202873 DOI: 10.3390/genes15060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The retinal features of Bardet-Biedl syndrome (BBS) are insufficiently characterized in Arab populations. This retrospective study investigated the retinal features and genotypes of BBS in Saudi patients managed at a single tertiary eye care center. Data analysis of the identified 46 individuals from 31 families included visual acuity (VA), systemic manifestations, multimodal retinal imaging, electroretinography (ERG), family pedigrees, and genotypes. Patients were classified to have cone-rod, rod-cone, or generalized photoreceptor dystrophy based on the pattern of macular involvement on the retinal imaging. Results showed that nyctalopia and subnormal VA were the most common symptoms with 76% having VA ≤ 20/200 at the last visit (age: 5-35). Systemic features included obesity 91%, polydactyly 56.5%, and severe cognitive impairment 33%. The predominant retinal phenotype was cone-rod dystrophy 75%, 10% had rod-cone dystrophy and 15% had generalized photoreceptor dystrophy. ERGs were undetectable in 95% of patients. Among the 31 probands, 61% had biallelic variants in BBSome complex genes, 32% in chaperonin complex genes, and 6% had biallelic variants in ARL6; including six previously unreported variants. Interfamilial and intrafamilial variabilities were noted, without a clear genotype-phenotype correlation. Most BBS patients had advanced retinopathy and were legally blind by early adulthood, indicating a narrow therapeutic window for rescue strategies.
Collapse
Affiliation(s)
- Doaa Milibari
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia; (D.M.); (S.R.N.)
- Department of Ophthalmology, King Abdullah Medical City, Makkah 24211, Saudi Arabia
| | - Sawsan R. Nowilaty
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia; (D.M.); (S.R.N.)
| | - Rola Ba-Abbad
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia; (D.M.); (S.R.N.)
- Ocular Genetics Services, King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia
| |
Collapse
|
4
|
Zhong J, Xie Y, Ye H, Chen C, Sun T, Xu K, Zhang X, Li Y. Phenotypic diversity observed in a Chinese patient cohort with biallelic variants in Bardet-Biedl syndrome genes. Eye (Lond) 2023; 37:3398-3405. [PMID: 37031301 PMCID: PMC10630479 DOI: 10.1038/s41433-023-02516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/19/2023] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
PURPOSE Bardet-Biedl syndrome (BBS) is a rare multisystem ciliopathy. The aim of this study was to describe the clinical and genetic features of a cohort of Chinese patients carrying biallelic BBS gene variants. METHODS We recruited 34 patients from 31 unrelated pedigrees who carried biallelic pathogenic variants in BBS genes. All patients underwent ophthalmic and systematic evaluations, as well as comprehensive molecular genetic analyses. Ultimately, 14 patients were followed up over time. RESULTS We identified 47 diseasing-causing variants in 10 BBS genes; 33 were novel. Diagnosis of BBS and non-syndromic retinitis pigmentosa (RP) were established in 28 patients from 27 pedigrees and 6 patients, respectively. The two most prevalent genes in patients with BBS were BBS2 and BBS4, accounting for 51.8% of the probands. The patients exhibited clinical heterogeneity, from patients with all six primary clinical components to patients suffering from non-syndromic RP. The common components were retinal dystrophy, polydactyly, and obesity, with frequencies of 78.6% to 100%, while renal anomaly frequencies were only 7.1%. Patients exhibited early and severe visual defects and retinal degeneration. Patients with biallelic missense variants in BBS2 suffered fewer clinical symptoms and mild visual impairment. Patients with BBS10 variants tended to have cone dystrophy. CONCLUSIONS Our study defined the mutated gene profiles and established the configuration of the variation frequencies for each BBS gene in Chinese patients. Overall, our patients showed early and severe visual defects and retinal degeneration. Genetic analysis is therefore crucial for diagnosis, genetic counseling, and future gene therapy in these patients.
Collapse
Affiliation(s)
- Junwei Zhong
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yue Xie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | | | - Chunjie Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Tengyang Sun
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Ke Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Xiaohui Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yang Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China.
| |
Collapse
|
5
|
Delvallée C, Dollfus H. Retinal Degeneration Animal Models in Bardet-Biedl Syndrome and Related Ciliopathies. Cold Spring Harb Perspect Med 2023; 13:a041303. [PMID: 36596648 PMCID: PMC9808547 DOI: 10.1101/cshperspect.a041303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Retinal degeneration due to photoreceptor ciliary-related proteins dysfunction accounts for more than 25% of all inherited retinal dystrophies. The cilium, being an evolutionarily conserved and ubiquitous organelle implied in many cellular functions, can be investigated by way of many models from invertebrate models to nonhuman primates, all these models have massively contributed to the pathogenesis understanding of human ciliopathies. Taking the Bardet-Biedl syndrome (BBS) as an emblematic example as well as other related syndromic ciliopathies, the contribution of a wide range of models has enabled to characterize the role of the BBS proteins in the archetypical cilium but also at the level of the connecting cilium of the photoreceptors. There are more than 24 BBS genes encoding for proteins that form different complexes such as the BBSome and the chaperone proteins complex. But how they lead to retinal degeneration remains a matter of debate with the possible accumulation of proteins in the inner segment and/or accumulation of unwanted proteins in the outer segment that cannot return in the inner segment machinery. Many BBS proteins (but not the chaperonins for instance) can be modeled in primitive organisms such as Paramecium, Chlamydomonas reinardtii, Trypanosoma brucei, and Caenorhabditis elegans These models have enabled clarifying the role of a subset of BBS proteins in the primary cilium as well as their relations with other modules such as the intraflagellar transport (IFT) module, the nephronophthisis (NPHP) module, or the Meckel-Gruber syndrome (MKS)/Joubert syndrome (JBTS) module mostly involved with the transition zone of the primary cilia. Assessing the role of the primary cilia structure of the connecting cilium of the photoreceptor cells has been very much studied by way of zebrafish modeling (Danio rerio) as well as by a plethora of mouse models. More recently, large animal models have been described for three BBS genes and one nonhuman primate model in rhesus macaque for BBS7 In completion to animal models, human cell models can now be used notably thanks to gene editing and the use of induced pluripotent stem cells (iPSCs). All these models are not only important for pathogenesis understanding but also very useful for studying therapeutic avenues, their pros and cons, especially for gene replacement therapy as well as pharmacological triggers.
Collapse
Affiliation(s)
- Clarisse Delvallée
- Laboratoire de Génétique Médicale UMRS1112, Centre de Recherche Biomédicale de Strasbourg, CRBS, Institut de Génétique Médicale d'Alsace, IGMA, Strasbourg 67000, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale UMRS1112, Centre de Recherche Biomédicale de Strasbourg, CRBS, Institut de Génétique Médicale d'Alsace, IGMA, Strasbourg 67000, France
| |
Collapse
|
6
|
Mizumoto K, Kato K, Fujinami K, Sugita T, Sugita I, Hattori A, Saitoh S, Ueno S, Tsunoda K, Iwata T, Kondo M. A Japanese boy with Bardet-Biedl syndrome caused by a novel homozygous variant in the ARL6 gene who was initially diagnosed with retinitis punctata albescens: A case report. Medicine (Baltimore) 2022; 101:e32161. [PMID: 36550847 PMCID: PMC9771268 DOI: 10.1097/md.0000000000032161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Bardet-Biedl Syndrome (BBS) is an autosomal recessive systemic disorder characterized by retinitis pigmentosa, polydactyly, obesity, intellectual disability, renal impairments, and hypogonadism. The purpose of this study was to determine the ocular characteristics of a boy with BBS caused by a novel homozygous variant in the ARL6 (alternative named BBS3) gene who had been originally diagnosed with retinitis punctata albescens. METHODS This was an observational case study. The patient underwent ophthalmological examinations, electroretinography, and genetic analyses using whole-exome sequencing. RESULTS A 7-year-old boy was examined in our hospital with complaints of a progressive reduction of his visual acuity and night blindness in both eyes. There was no family history of eye diseases and no consanguineous marriage. Fundus examinations showed numerous white spots in the deep retina and retinal pigment epithelium. Fundus autofluorescence showed hypofluorescence consistent with these spots. Both the scotopic and photopic components of the full-field electroretinographies were non-detectable. Based on these clinical findings, this boy was suspected to have retinitis punctata albescens. Subsequent genetic testing using whole-exome sequencing revealed a novel homozygous variants in the ARL6/BBS3 gene (NM_001278293.3:c.528G>A, (p.Trp176Ter)). A systemic examination by the pediatric department revealed that this boy had a history of a surgical excision of polydactyly on his left foot when he was born, and that he was mildly obese. There were no prominent intellectual or gonadal dysfunctions, no craniofacial or dental abnormalities, no congenital heart disease, and no hearing impairment. He was then clinically and genetically diagnosed with BBS. CONCLUSION AND IMPORTANCE In children with night blindness and progressive visual dysfunction, it is important for ophthalmologists to consult clinical geneticists and pediatricians to rule out the possibility of systemic diseases such as BBS.
Collapse
Affiliation(s)
- Keitaro Mizumoto
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kumiko Kato
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
- *Correspondence: Kumiko Kato, Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan (e-mail: )
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Tadasu Sugita
- Department of Ophthalmology, Sugita Eye Hospital, Nagoya, Japan
| | - Iichiro Sugita
- Department of Ophthalmology, Sugita Eye Hospital, Nagoya, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
7
|
Nasser F, Kohl S, Kurtenbach A, Kempf M, Biskup S, Zuleger T, Haack TB, Weisschuh N, Stingl K, Zrenner E. Ophthalmic and Genetic Features of Bardet Biedl Syndrome in a German Cohort. Genes (Basel) 2022; 13:genes13071218. [PMID: 35886001 PMCID: PMC9322102 DOI: 10.3390/genes13071218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to characterize the ophthalmic and genetic features of Bardet Biedl (BBS) syndrome in a cohort of patients from a German specialized ophthalmic care center. Sixty-one patients, aged 5−56 years, underwent a detailed ophthalmic examination including visual acuity and color vision testing, electroretinography (ERG), visually evoked potential recording (VEP), fundus examination, and spectral domain optical coherence tomography (SD-OCT). Adaptive optics flood illumination ophthalmoscopy was performed in five patients. All patients had received diagnostic genetic testing and were selected upon the presence of apparent biallelic variants in known BBS-associated genes. All patients had retinal dystrophy with morphologic changes of the retina. Visual acuity decreased from ~0.2 (decimal) at age 5 to blindness 0 at 50 years. Visual field examination could be performed in only half of the patients and showed a concentric constriction with remaining islands of function in the periphery. ERG recordings were mostly extinguished whereas VEP recordings were reduced in about half of the patients. The cohort of patients showed 51 different likely biallelic mutations—of which 11 are novel—in 12 different BBS-associated genes. The most common associated genes were BBS10 (32.8%) and BBS1 (24.6%), and by far the most commonly observed variants were BBS10 c.271dup;p.C91Lfs*5 (21 alleles) and BBS1 c.1169T>G;p.M390R (18 alleles). The phenotype associated with the different BBS-associated genes and genotypes in our cohort is heterogeneous, with diverse features without genotype−phenotype correlation. The results confirm and expand our knowledge of this rare disease.
Collapse
Affiliation(s)
- Fadi Nasser
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Department of Ophthalmology, University of Leipzig, 04103 Leipzig, Germany
- Correspondence:
| | - Susanne Kohl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Anne Kurtenbach
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Melanie Kempf
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | | | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Nicole Weisschuh
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Katarina Stingl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076 Tuebingen, Germany
| |
Collapse
|
8
|
Bhardwaj A, Yadav A, Yadav M, Tanwar M. Genetic dissection of non-syndromic retinitis pigmentosa. Indian J Ophthalmol 2022; 70:2355-2385. [PMID: 35791117 PMCID: PMC9426071 DOI: 10.4103/ijo.ijo_46_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinitis pigmentosa (RP) belongs to a group of pigmentary retinopathies. It is the most common form of inherited retinal dystrophy, characterized by progressive degradation of photoreceptors that leads to nyctalopia, and ultimately, complete vision loss. RP is distinguished by the continuous retinal degeneration that progresses from the mid-periphery to the central and peripheral retina. RP was first described and named by Franciscus Cornelius Donders in the year 1857. It is one of the leading causes of bilateral blindness in adults, with an incidence of 1 in 3000 people worldwide. In this review, we are going to focus on the genetic heterogeneity of this disease, which is provided by various inheritance patterns, numerosity of variations and inter-/intra-familial variations based upon penetrance and expressivity. Although over 90 genes have been identified in RP patients, the genetic cause of approximately 50% of RP cases remains unknown. Heterogeneity of RP makes it an extremely complicated ocular impairment. It is so complicated that it is known as “fever of unknown origin”. For prognosis and proper management of the disease, it is necessary to understand its genetic heterogeneity so that each phenotype related to the various genetic variations could be treated.
Collapse
Affiliation(s)
- Aarti Bhardwaj
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Anshu Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Mukesh Tanwar
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| |
Collapse
|
9
|
Chandra B, Tung ML, Hsu Y, Scheetz T, Sheffield VC. Retinal ciliopathies through the lens of Bardet-Biedl Syndrome: Past, present and future. Prog Retin Eye Res 2021; 89:101035. [PMID: 34929400 DOI: 10.1016/j.preteyeres.2021.101035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The primary cilium is a highly specialized and evolutionary conserved organelle in eukaryotes that plays a significant role in cell signaling and trafficking. Over the past few decades tremendous progress has been made in understanding the physiology of cilia and the underlying pathomechanisms of various ciliopathies. Syndromic ciliopathies consist of a group of disorders caused by ciliary dysfunction or abnormal ciliogenesis. These disorders have multiorgan involvement in addition to retinal degeneration underscoring the ubiquitous distribution of primary cilia in different cell types. Genotype-phenotype correlation is often challenging due to the allelic heterogeneity and pleiotropy of these disorders. In this review, we discuss the clinical and genetic features of syndromic ciliopathies with a focus on Bardet-Biedl syndrome (BBS) as a representative disorder. We discuss the structure and function of primary cilia and their role in retinal photoreceptors. We describe the progress made thus far in understanding the functional and genetic characterization including expression quantitative trait locus (eQTL) analysis of BBS genes. In the future directions section, we discuss the emerging technologies, such as gene therapy, as well as anticipated challenges and their implications in therapeutic development for ciliopathies.
Collapse
Affiliation(s)
- Bharatendu Chandra
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Moon Ley Tung
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Todd Scheetz
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Val C Sheffield
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
10
|
Tucker BA, Burnight ER, Cranston CM, Ulferts MJ, Luse MA, Westfall T, Scott CA, Marsden A, Gibson-Corley K, Wiley LA, Han IC, Slusarski DC, Mullins RF, Stone EM. Development and biological characterization of a clinical gene transfer vector for the treatment of MAK-associated retinitis pigmentosa. Gene Ther 2021; 29:259-288. [PMID: 34518651 PMCID: PMC9159943 DOI: 10.1038/s41434-021-00291-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/02/2021] [Accepted: 08/26/2021] [Indexed: 12/31/2022]
Abstract
By combining next generation whole exome sequencing and induced pluripotent stem cell (iPSC) technology we found that an Alu repeat inserted in exon 9 of the MAK gene results in a loss of normal MAK transcript and development of human autosomal recessive retinitis pigmentosa (RP). Although a relatively rare cause of disease in the general population, the MAK variant is enriched in individuals of Jewish ancestry. In this population, 1 in 55 individuals are carriers and one third of all cases of recessive RP is caused by this gene. The purpose of this study was to determine if a viral gene augmentation strategy could be used to safely restore functional MAK protein as a step toward a treatment for early stage MAK-associated RP. Patient iPSC-derived photoreceptor precursor cells were generated and transduced with viral vectors containing the MAK transcript. One week after transduction, transcript and protein could be detected via rt-PCR and western blotting respectively. Using patient-derived fibroblast cells and mak knockdown zebra fish we demonstrate that over-expression of the retinal MAK transgene restored the cells ability to regulate primary cilia length. In addition, the visual defect in mak knockdown zebrafish was mitigated via treatment with the retinal MAK transgene. There was no evidence of local or systemic toxicity at 1-month or 3-months following subretinal delivery of clinical grade vector into wild type rats. The findings reported here will help pave the way for initiation of a phase 1 clinical trial for the treatment of patients with MAK-associated RP.
Collapse
Affiliation(s)
- Budd A Tucker
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA. .,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - Erin R Burnight
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Cathryn M Cranston
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mallory J Ulferts
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Meagan A Luse
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Trudi Westfall
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - C Anthony Scott
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Autumn Marsden
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Katherine Gibson-Corley
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luke A Wiley
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ian C Han
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Diane C Slusarski
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
11
|
Vig A, Poulter JA, Ottaviani D, Tavares E, Toropova K, Tracewska AM, Mollica A, Kang J, Kehelwathugoda O, Paton T, Maynes JT, Wheway G, Arno G, Khan KN, McKibbin M, Toomes C, Ali M, Di Scipio M, Li S, Ellingford J, Black G, Webster A, Rydzanicz M, Stawiński P, Płoski R, Vincent A, Cheetham ME, Inglehearn CF, Roberts A, Heon E. DYNC2H1 hypomorphic or retina-predominant variants cause nonsyndromic retinal degeneration. Genet Med 2020; 22:2041-2051. [PMID: 32753734 PMCID: PMC7708302 DOI: 10.1038/s41436-020-0915-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Determining the role of DYNC2H1 variants in nonsyndromic inherited retinal disease (IRD). METHODS Genome and exome sequencing were performed for five unrelated cases of IRD with no identified variant. In vitro assays were developed to validate the variants identified (fibroblast assay, induced pluripotent stem cell [iPSC] derived retinal organoids, and a dynein motility assay). RESULTS Four novel DYNC2H1 variants (V1, g.103327020_103327021dup; V2, g.103055779A>T; V3, g.103112272C>G; V4, g.103070104A>C) and one previously reported variant (V5, g.103339363T>G) were identified. In proband 1 (V1/V2), V1 was predicted to introduce a premature termination codon (PTC), whereas V2 disrupted the exon 41 splice donor site causing incomplete skipping of exon 41. V1 and V2 impaired dynein-2 motility in vitro and perturbed IFT88 distribution within cilia. V3, homozygous in probands 2-4, is predicted to cause a PTC in a retina-predominant transcript. Analysis of retinal organoids showed that this new transcript expression increased with organoid differentiation. V4, a novel missense variant, was in trans with V5, previously associated with Jeune asphyxiating thoracic dystrophy (JATD). CONCLUSION The DYNC2H1 variants discussed herein were either hypomorphic or affecting a retina-predominant transcript and caused nonsyndromic IRD. Dynein variants, specifically DYNC2H1 variants are reported as a cause of non syndromic IRD.
Collapse
Affiliation(s)
- Anjali Vig
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Institute of Medical Science, The University of Toronto, Toronto, Canada
| | - James A Poulter
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | | | - Erika Tavares
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Katerina Toropova
- Department of Biological Sciences, Birbeck, University of London, London, UK
| | - Anna Maria Tracewska
- DNA Analysis Unit, ŁUKASIEWICZ Research Network-PORT Polish Center for Technology Development, Wrocław, Poland
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Antonio Mollica
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jasmine Kang
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | | | - Tara Paton
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Canada
| | | | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Kamron N Khan
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | - Martin McKibbin
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | - Carmel Toomes
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | - Manir Ali
- Department of Ophthalmology, St James' University Hospital, Leeds, UK
| | - Matteo Di Scipio
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Shuning Li
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jamie Ellingford
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicines and health, The University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre (MAHSC), University of Manchester, Manchester, UK
| | - Graeme Black
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicines and health, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrew Webster
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | | | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ajoy Vincent
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Institute of Medical Science, The University of Toronto, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
| | | | | | - Anthony Roberts
- Department of Biological Sciences, Birbeck, University of London, London, UK.
| | - Elise Heon
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.
- Institute of Medical Science, The University of Toronto, Toronto, Canada.
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
12
|
Zhang CJ, Xiang L, Chen XJ, Wang XY, Wu KC, Zhang BW, Chen DF, Jin GH, Zhang H, Chen YC, Liu WQ, Li ML, Ma Y, Jin ZB. Ablation of Mature miR-183 Leads to Retinal Dysfunction in Mice. Invest Ophthalmol Vis Sci 2020; 61:12. [PMID: 32176259 PMCID: PMC7401733 DOI: 10.1167/iovs.61.3.12] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose The microRNA cluster miR-183C, which includes miR-183 and two other genes, is critical for multiple sensory systems. In mouse retina, removal of this cluster results in photoreceptor defects in polarization, phototransduction, and outer segment elongation. However, the individual roles of the three components of this cluster are not clearly known. We studied the separate role of mouse miR-183 in in vivo. Methods miR-183 knockout mice were generated using the CRISPR/Cas9 genome-editing system. Electroretinography were carried out to investigate the changes of retinal structures and function. miR-183 was overexpressed by subretinal adeno-associated virus (AAV) injection in vivo. Rnf217, a target of miR-183 was overexpressed by cell transfection of the photoreceptor-derived cell line 661W in vitro. RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to compare the gene expression changes in AAV-injected mice and transfected cells. Results The miR-183 knockout mice showed progressively attenuated electroretinogram responses. Over- or under-expression of Rnf217, a direct target of miR-183, misregulated expression of cilia-related BBSome genes. Rnf217 overexpression also led to compromised electroretinography responses in WT mice, indicating that it may contribute to functional abnormalities in miR-183 knockout mice. Conclusions miR-183 is essential for mouse retinal function mediated directly and indirectly through Rnf217 and cilia-related genes. Our findings provide valuable insights into the explanation and analysis of the regulatory role of the individual miR-183 in miR-183C.
Collapse
|
13
|
Functional analysis of new human Bardet-Biedl syndrome loci specific variants in the zebrafish model. Sci Rep 2019; 9:12936. [PMID: 31506453 PMCID: PMC6736949 DOI: 10.1038/s41598-019-49217-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
The multiple genetic approaches available for molecular diagnosis of human diseases have made possible to identify an increasing number of pathogenic genetic changes, particularly with the advent of next generation sequencing (NGS) technologies. However, the main challenge lies in the interpretation of their functional impact, which has resulted in the widespread use of animal models. We describe here the functional modelling of seven BBS loci variants, most of them novel, in zebrafish embryos to validate their in silico prediction of pathogenicity. We show that target knockdown (KD) of known BBS (BBS1, BB5 or BBS6) loci leads to developmental defects commonly associated with ciliopathies, as previously described. These KD pleiotropic phenotypes were rescued by co-injecting human wild type (WT) loci sequence but not with the equivalent mutated mRNAs, providing evidence of the pathogenic effect of these BBS changes. Furthermore, direct assessment of cilia located in Kupffer's vesicle (KV) showed a reduction of ciliary length associated with all the studied variants, thus confirming a deleterious effect. Taken together, our results seem to prove the pathogenicity of the already classified and unclassified new BBS variants, as well as highlight the usefulness of zebrafish as an animal model for in vivo assays in human ciliopathies.
Collapse
|
14
|
Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays Biochem 2018; 62:753-763. [PMID: 30287585 DOI: 10.1042/ebc20180030] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a rare inherited disease caused by defects in the BBSome, an octameric complex of BBS proteins. The BBSome is conserved in most organisms with cilia, which are microtubule (MT)-based cell organelles that protrude from the cell surface and function in motility and sensing. Cilia assembly, maintenance, and function require intraflagellar transport (IFT), a bidirectional motility of multi-megadalton IFT trains propelled by molecular motors along the ciliary MTs. IFT has been shown to transport structural proteins, including tubulin, into growing cilia. The BBSome is an adapter for the transport of ciliary membrane proteins and cycles through cilia via IFT. While both the loss and the abnormal accumulation of ciliary membrane proteins have been observed in bbs mutants, recent data converge on a model where the BBSome mainly functions as a cargo adapter for the removal of certain transmembrane and peripheral membrane proteins from cilia. Here, we review recent data on the ultrastructure of the BBSome and how the BBSome recognizes its cargoes and mediates their removal from cilia.
Collapse
|
15
|
Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66:157-186. [PMID: 29597005 DOI: 10.1016/j.preteyeres.2018.03.005] [Citation(s) in RCA: 604] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic, 20-30% of patients with RP also have an associated non-ocular condition. RP typically manifests with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors; central vision loss occurs later in life due to cone dysfunction. Photoreceptor function measured with an electroretinogram is markedly reduced or even absent. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging show a progressive loss of outer retinal layers and altered lipofuscin distribution in a characteristic pattern. Over the past three decades, a vast number of disease-causing variants in more than 80 genes have been associated with non-syndromic RP. The wide heterogeneity of RP makes it challenging to describe the clinical findings and pathogenesis. In this review, we provide a comprehensive overview of the clinical characteristics of RP specific to genetically defined patient subsets. We supply a unique atlas with color fundus photographs of most RP subtypes, and we discuss the relevant considerations with respect to differential diagnoses. In addition, we discuss the genes involved in the pathogenesis of RP, as well as the retinal processes that are affected by pathogenic mutations in these genes. Finally, we review management strategies for patients with RP, including counseling, visual rehabilitation, and current and emerging therapeutic options.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Patel N, Khan AO, Al-Saif M, Moghrabi WN, AlMaarik BM, Ibrahim N, Abdulwahab F, Hashem M, Alshidi T, Alobeid E, Alomar RA, Al-Harbi S, Abouelhoda M, Khabar KSA, Alkuraya FS. A novel mechanism for variable phenotypic expressivity in Mendelian diseases uncovered by an AU-rich element (ARE)-creating mutation. Genome Biol 2017; 18:144. [PMID: 28754144 PMCID: PMC5534118 DOI: 10.1186/s13059-017-1274-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023] Open
Abstract
Background Variable expressivity is a well-known phenomenon in which patients with mutations in one gene display varying degrees of clinical severity, potentially displaying only subsets of the clinical manifestations associated with the multisystem disorder linked to the gene. This remains an incompletely understood phenomenon with proposed mechanisms ranging from allele-specific to stochastic. Results We report three consanguineous families in which an isolated ocular phenotype is linked to a novel 3′ UTR mutation in SLC4A4, a gene known to be mutated in a syndromic form of intellectual disability with renal and ocular involvement. Although SLC4A4 is normally devoid of AU-rich elements (AREs), a 3′ UTR motif that mediates post-transcriptional control of a subset of genes, the mutation we describe creates a functional ARE. We observe a marked reduction in the transcript level of SLC4A4 in patient cells. Experimental confirmation of the ARE-creating mutation is shown using a post-transcriptional reporter system that reveals consistent reduction in the mRNA-half life and reporter activity. Moreover, the neo-ARE binds and responds to the zinc finger protein ZFP36/TTP, an ARE-mRNA decay-promoting protein. Conclusions This novel mutational mechanism for a Mendelian disease expands the potential mechanisms that underlie variable phenotypic expressivity in humans to also include 3′ UTR mutations with tissue-specific pathology.
Collapse
Affiliation(s)
- Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Arif O Khan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, 112412, United Arab Emirates
| | - Maher Al-Saif
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Walid N Moghrabi
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Balsam M AlMaarik
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eman Alobeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana A Alomar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saad Al-Harbi
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia. .,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
| |
Collapse
|
17
|
Scott CA, Marsden AN, Rebagliati MR, Zhang Q, Chamling X, Searby CC, Baye LM, Sheffield VC, Slusarski DC. Nuclear/cytoplasmic transport defects in BBS6 underlie congenital heart disease through perturbation of a chromatin remodeling protein. PLoS Genet 2017; 13:e1006936. [PMID: 28753627 PMCID: PMC5550010 DOI: 10.1371/journal.pgen.1006936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/09/2017] [Accepted: 07/20/2017] [Indexed: 01/31/2023] Open
Abstract
Mutations in BBS6 cause two clinically distinct syndromes, Bardet-Biedl syndrome (BBS), a syndrome caused by defects in cilia transport and function, as well as McKusick-Kaufman syndrome, a genetic disorder characterized by congenital heart defects. Congenital heart defects are rare in BBS, and McKusick-Kaufman syndrome patients do not develop retinitis pigmentosa. Therefore, the McKusick-Kaufman syndrome allele may highlight cellular functions of BBS6 distinct from the presently understood functions in the cilia. In support, we find that the McKusick-Kaufman syndrome disease-associated allele, BBS6H84Y; A242S, maintains cilia function. We demonstrate that BBS6 is actively transported between the cytoplasm and nucleus, and that BBS6H84Y; A242S, is defective in this transport. We developed a transgenic zebrafish with inducible bbs6 to identify novel binding partners of BBS6, and we find interaction with the SWI/SNF chromatin remodeling protein Smarcc1a (SMARCC1 in humans). We demonstrate that through this interaction, BBS6 modulates the sub-cellular localization of SMARCC1 and find, by transcriptional profiling, similar transcriptional changes following smarcc1a and bbs6 manipulation. Our work identifies a new function for BBS6 in nuclear-cytoplasmic transport, and provides insight into the disease mechanism underlying the congenital heart defects in McKusick-Kaufman syndrome patients. To understand how mutations in one gene can cause two distinct human syndromes (McKusick-Kaufman syndrome and Bardet-Bield syndrome), we investigated the cellular functions of the implicated gene BBS6. We found that BBS6 is actively transported between the cytoplasm and nucleus, and this interaction is disrupted in McKusick-Kaufman syndrome, but not Bardet-Biedl syndrome. We find that by manipulating BBS6, we can affect another protein, SMARCC1, which has a direct role in regulating gene expression. When we profiled these changes in gene expression, we find that many genes, which can be directly linked to the symptoms of McKusick-Kaufman syndrome, are affected. Therefore, our data support that the nuclear-cytoplasmic transport defect of BBS6, through disruption of proteins controlling gene expression, cause the symptoms observed in McKusick-Kaufman syndrome patients.
Collapse
Affiliation(s)
- Charles Anthony Scott
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Autumn N. Marsden
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael R. Rebagliati
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Qihong Zhang
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Xitiz Chamling
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Charles C. Searby
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Lisa M. Baye
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Val C. Sheffield
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Wynn Institute for Vision Research University of Iowa, Iowa City, Iowa, United States of America
| | - Diane C. Slusarski
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- Wynn Institute for Vision Research University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
18
|
Murphy D, Cieply B, Carstens R, Ramamurthy V, Stoilov P. The Musashi 1 Controls the Splicing of Photoreceptor-Specific Exons in the Vertebrate Retina. PLoS Genet 2016; 12:e1006256. [PMID: 27541351 PMCID: PMC4991804 DOI: 10.1371/journal.pgen.1006256] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/22/2016] [Indexed: 01/08/2023] Open
Abstract
Alternative pre-mRNA splicing expands the coding capacity of eukaryotic genomes, potentially enabling a limited number of genes to govern the development of complex anatomical structures. Alternative splicing is particularly prevalent in the vertebrate nervous system, where it is required for neuronal development and function. Here, we show that photoreceptor cells, a type of sensory neuron, express a characteristic splicing program that affects a broad set of transcripts and is initiated prior to the development of the light sensing outer segments. Surprisingly, photoreceptors lack prototypical neuronal splicing factors and their splicing profile is driven to a significant degree by the Musashi 1 (MSI1) protein. A striking feature of the photoreceptor splicing program are exons that display a "switch-like" pattern of high inclusion levels in photoreceptors and near complete exclusion outside of the retina. Several ubiquitously expressed genes that are involved in the biogenesis and function of primary cilia produce highly photoreceptor specific isoforms through use of such "switch-like" exons. Our results suggest a potential role for alternative splicing in the development of photoreceptors and the conversion of their primary cilia to the light sensing outer segments.
Collapse
Affiliation(s)
- Daniel Murphy
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Benjamin Cieply
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Russ Carstens
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Visvanathan Ramamurthy
- Departments of Biochemistry, Ophthalmology and Center for Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Peter Stoilov
- Department of Biochemistry and Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Heon E, Kim G, Qin S, Garrison JE, Tavares E, Vincent A, Nuangchamnong N, Scott CA, Slusarski DC, Sheffield VC. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21). Hum Mol Genet 2016; 25:2283-2294. [PMID: 27008867 DOI: 10.1093/hmg/ddw096] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/17/2016] [Indexed: 01/18/2023] Open
Abstract
Bardet Biedl syndrome (BBS) is a multisystem genetically heterogeneous ciliopathy that most commonly leads to obesity, photoreceptor degeneration, digit anomalies, genito-urinary abnormalities, as well as cognitive impairment with autism, among other features. Sequencing of a DNA sample from a 17-year-old female affected with BBS did not identify any mutation in the known BBS genes. Whole-genome sequencing identified a novel loss-of-function disease-causing homozygous mutation (K102*) in C8ORF37, a gene coding for a cilia protein. The proband was overweight (body mass index 29.1) with a slowly progressive rod-cone dystrophy, a mild learning difficulty, high myopia, three limb post-axial polydactyly, horseshoe kidney, abnormally positioned uterus and elevated liver enzymes. Mutations in C8ORF37 were previously associated with severe autosomal recessive retinal dystrophies (retinitis pigmentosa RP64 and cone-rod dystrophy CORD16) but not BBS. To elucidate the functional role of C8ORF37 in a vertebrate system, we performed gene knockdown in Danio rerio and assessed the cardinal features of BBS and visual function. Knockdown of c8orf37 resulted in impaired visual behavior and BBS-related phenotypes, specifically, defects in the formation of Kupffer's vesicle and delays in retrograde transport. Specificity of these phenotypes to BBS knockdown was shown with rescue experiments. Over-expression of human missense mutations in zebrafish also resulted in impaired visual behavior and BBS-related phenotypes. This is the first functional validation and association of C8ORF37 mutations with the BBS phenotype, which identifies BBS21. The zebrafish studies hereby show that C8ORF37 variants underlie clinically diagnosed BBS-related phenotypes as well as isolated retinal degeneration.
Collapse
Affiliation(s)
- Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, M5G 1X8 Canada Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, M5G 1X8 Canada Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada
| | - Gunhee Kim
- Department of Pediatrics, Division of Medical Genetics, Wynn Institute for Vision Research, Carver College of Medicine
| | - Sophie Qin
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada
| | - Janelle E Garrison
- Department of Pediatrics, Division of Medical Genetics, Wynn Institute for Vision Research, Carver College of Medicine
| | - Erika Tavares
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, M5G 1X8 Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, M5G 1X8 Canada Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, M5G 1X8 Canada
| | | | - C Anthony Scott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics, Wynn Institute for Vision Research, Carver College of Medicine
| |
Collapse
|
20
|
Scott CA, Marsden AN, Slusarski DC. Automated, high-throughput, in vivo analysis of visual function using the zebrafish. Dev Dyn 2016; 245:605-13. [PMID: 26890697 DOI: 10.1002/dvdy.24398] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post-fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time. RESULTS To increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli. CONCLUSIONS This automated method along with VIZN allows rapid, high-throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small-molecule drug screens. Developmental Dynamics 245:605-613, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Autumn N Marsden
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
21
|
Khan S, Muhammad N, Khan M, Kamal A, Rehman Z, Khan S. Genetics of human Bardet-Biedl syndrome, an updates. Clin Genet 2016; 90:3-15. [DOI: 10.1111/cge.12737] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/21/2015] [Accepted: 01/03/2016] [Indexed: 12/22/2022]
Affiliation(s)
- S.A. Khan
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - N. Muhammad
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - M.A. Khan
- Gomal Centre of Biochemistry and Biotechnology; Gomal University; Khyber Pakhtunkhwa Pakistan
- Genomic Core Facility; Interim Translational Research Institute; Doha Qatar
| | - A. Kamal
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - Z.U. Rehman
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - S. Khan
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
- Genomic Core Facility; Interim Translational Research Institute; Doha Qatar
| |
Collapse
|
22
|
Khan AO, Decker E, Bachmann N, Bolz HJ, Bergmann C. C8orf37 is mutated in Bardet-Biedl syndrome and constitutes a locus allelic to non-syndromic retinal dystrophies. Ophthalmic Genet 2016; 37:290-3. [DOI: 10.3109/13816810.2015.1066830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Arif O. Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Eva Decker
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | | | - Hanno J. Bolz
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Department of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| |
Collapse
|
23
|
Abstract
Visual defects affect a large proportion of humanity, have a significant negative impact on quality of life, and cause significant economic burden. The wide variety of visual disorders and the large number of gene mutations responsible require a flexible animal model system to carry out research for possible causes and cures for the blinding conditions. With eyes similar to humans in structure and function, zebrafish are an important vertebrate model organism that is being used to study genetic and environmental eye diseases, including myopia, glaucoma, retinitis pigmentosa, ciliopathies, albinism, and diabetes. This review details the use of zebrafish in modeling human ocular diseases.
Collapse
Affiliation(s)
- Brian A Link
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| | - Ross F Collery
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; ,
| |
Collapse
|
24
|
Nash BM, Wright DC, Grigg JR, Bennetts B, Jamieson RV. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy. Transl Pediatr 2015; 4:139-63. [PMID: 26835369 PMCID: PMC4729094 DOI: 10.3978/j.issn.2224-4336.2015.04.03] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retinal dystrophies (RDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. This review aims to demonstrate the high degree of genetic complexity in both the causative disease genes and their associated phenotypes, highlighting the more common clinical manifestation of retinitis pigmentosa (RP). The review also provides insight to recent advances in genomic molecular diagnosis and gene and cell-based therapies for the RDs.
Collapse
Affiliation(s)
- Benjamin M Nash
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| | - Dale C Wright
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| | - John R Grigg
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| | - Bruce Bennetts
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| | - Robyn V Jamieson
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| |
Collapse
|
25
|
Alternative Splicing Shapes the Phenotype of a Mutation in BBS8 To Cause Nonsyndromic Retinitis Pigmentosa. Mol Cell Biol 2015; 35:1860-70. [PMID: 25776555 DOI: 10.1128/mcb.00040-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/10/2015] [Indexed: 01/27/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a genetic disorder affecting multiple systems and organs in the body. Several mutations in genes associated with BBS affect only photoreceptor cells and cause nonsyndromic retinitis pigmentosa (RP), raising the issue of why certain mutations manifest as a systemic disorder whereas other changes in the same gene affect only a specific cell type. Here, we show that cell-type-specific alternative splicing is responsible for confining the phenotype of the A-to-G substitution in the 3' splice site of BBS8 exon 2A (IVS1-2A>G mutation) in the BBS8 gene to photoreceptor cells. The IVS1-2A>G mutation leads to missplicing of BBS8 exon 2A, producing a frameshift in the BBS8 reading frame and thus eliminating the protein specifically in photoreceptor cells. Cell types other than photoreceptors skip exon 2A from the mature BBS8 transcript, which renders them immune to the mutation. We also show that the splicing of Bbs8 exon 2A in photoreceptors is directed exclusively by redundant splicing enhancers located in the adjacent introns. These intronic sequences are sufficient for photoreceptor-cell-specific splicing of heterologous exons, including an exon with a randomized sequence.
Collapse
|
26
|
Li YI, Sanchez-Pulido L, Haerty W, Ponting CP. RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts. Genome Res 2015; 25:1-13. [PMID: 25524026 PMCID: PMC4317164 DOI: 10.1101/gr.181990.114] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022]
Abstract
Ninety-four percent of mammalian protein-coding exons exceed 51 nucleotides (nt) in length. The paucity of micro-exons (≤ 51 nt) suggests that their recognition and correct processing by the splicing machinery present greater challenges than for longer exons. Yet, because thousands of human genes harbor processed micro-exons, specialized mechanisms may be in place to promote their splicing. Here, we survey deep genomic data sets to define 13,085 micro-exons and to study their splicing mechanisms and molecular functions. More than 60% of annotated human micro-exons exhibit a high level of sequence conservation, an indicator of functionality. While most human micro-exons require splicing-enhancing genomic features to be processed, the splicing of hundreds of micro-exons is enhanced by the adjacent binding of splice factors in the introns of pre-messenger RNAs. Notably, splicing of a significant number of micro-exons was found to be facilitated by the binding of RBFOX proteins, which promote their inclusion in the brain, muscle, and heart. Our analyses suggest that accurate regulation of micro-exon inclusion by RBFOX proteins and PTBP1 plays an important role in the maintenance of tissue-specific protein-protein interactions.
Collapse
Affiliation(s)
- Yang I Li
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Luis Sanchez-Pulido
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Wilfried Haerty
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| |
Collapse
|
27
|
Lee C, Wallingford JB, Gross JM. Cluap1 is essential for ciliogenesis and photoreceptor maintenance in the vertebrate eye. Invest Ophthalmol Vis Sci 2014; 55:4585-92. [PMID: 24970261 DOI: 10.1167/iovs.14-14888] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify the mutation and cell biological underpinnings of photoreceptor defects in zebrafish au5 mutants. METHODS Whole genome sequencing and SNP mapping were used to determine the genomic interval that harbors the au5 mutation. A candidate mutation was cloned and sequenced, and mRNA rescue used to validate that the affected gene was correctly identified. In situ hybridization, immunohistochemistry, and confocal imaging were used to determine the effects on photoreceptor development and maintenance in mutant retinae, and to determine if ciliogenesis or cilia-dependent development was affected in mutant embryos. Expression of tagged proteins and high-speed in vivo confocal imaging was used to quantify intraflagellar transport (IFT) and IFT particle localization within multiciliated cells of the Xenopus epidermis. RESULTS The au5 mutants possess a nonsense mutation in cluap1, which encodes a component of the IFT machinery. Photoreceptor defects result from degeneration of photoreceptors, and defects in ciliogenesis precede degeneration. Cilia in the olfactory pit are absent, and left-right heart positioning is aberrant, consistent with a role for cluap1 during ciliogenesis and cilia-dependent development. High-speed in vivo imaging demonstrates that cluap1 undergoes IFT and that it moves along the cilium bidirectionally, with similar localization and kinetics as IFT20, an IFT-B complex component. CONCLUSIONS We identified a novel mutation in cluap1 and determined that photoreceptor maintenance is dependent on cluap1. Imaging data support a model in which cluap1 is a component of the IFT-B complex, and cilia formation requires cluap1 function. These data may provide new insights into the mechanism of photoreceptor degeneration in retinal ciliopathies.
Collapse
Affiliation(s)
- Chanjae Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States
| | - John B Wallingford
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States Howard Hughes Medical Institute, The University of Texas at Austin, Austin, Texas, United States
| | - Jeffrey M Gross
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
28
|
Al-Hamed MH, van Lennep C, Hynes AM, Chrystal P, Eley L, Al-Fadhly F, El Sayed R, Simms RJ, Meyer B, Sayer JA. Functional modelling of a novel mutation in BBS5. Cilia 2014; 3:3. [PMID: 24559376 PMCID: PMC3931281 DOI: 10.1186/2046-2530-3-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 02/04/2014] [Indexed: 12/22/2022] Open
Abstract
Background Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy disorder with 18 known causative genes (BBS1-18). The primary clinical features are renal abnormalities, rod-cone dystrophy, post-axial polydactyly, learning difficulties, obesity and male hypogonadism. Results We describe the clinical phenotype in three Saudi siblings in whom we have identified a novel mutation in exon 12 of BBS5 (c.966dupT; p.Ala323CysfsX57). This single nucleotide duplication creates a frame shift results in a predicted elongated peptide. Translation blocking Morpholino oligonucleotides were used to create zebrafish bbs5 morphants. Morphants displayed retinal layering defects, abnormal cardiac looping and dilated, cystic pronephric ducts with reduced cilia expression. Morphants also displayed significantly reduced dextran clearance via the pronephros compared to wildtype embryos, suggesting reduced renal function in morphants. The eye, kidney and heart defects reported in morphant zebrafish resemble the human phenotype of BBS5 mutations. The pathogenicity of the novel BBS5 mutation was determined. Mutant mRNA was unable to rescue pleiotropic phenotypes of bbs5 morphant zebrafish and in cell culture we demonstrate a mislocalisation of mutant BBS5 protein which fails to localise discretely with the basal body. Conclusions We conclude that this novel BBS5 mutation has a deleterious function that accounts for the multisystem ciliopathy phenotype seen in affected human patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - John A Sayer
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK.
| |
Collapse
|
29
|
Chamling X, Seo S, Searby CC, Kim G, Slusarski DC, Sheffield VC. The centriolar satellite protein AZI1 interacts with BBS4 and regulates ciliary trafficking of the BBSome. PLoS Genet 2014; 10:e1004083. [PMID: 24550735 PMCID: PMC3923683 DOI: 10.1371/journal.pgen.1004083] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a well-known ciliopathy with mutations reported in 18 different genes. Most of the protein products of the BBS genes localize at or near the primary cilium and the centrosome. Near the centrosome, BBS proteins interact with centriolar satellite proteins, and the BBSome (a complex of seven BBS proteins) is believed to play a role in transporting ciliary membrane proteins. However, the precise mechanism by which BBSome ciliary trafficking activity is regulated is not fully understood. Here, we show that a centriolar satellite protein, AZI1 (also known as CEP131), interacts with the BBSome and regulates BBSome ciliary trafficking activity. Furthermore, we show that AZI1 interacts with the BBSome through BBS4. AZI1 is not involved in BBSome assembly, but accumulation of the BBSome in cilia is enhanced upon AZI1 depletion. Under conditions in which the BBSome does not normally enter cilia, such as in BBS3 or BBS5 depleted cells, knock down of AZI1 with siRNA restores BBSome trafficking to cilia. Finally, we show that azi1 knockdown in zebrafish embryos results in typical BBS phenotypes including Kupffer's vesicle abnormalities and melanosome transport delay. These findings associate AZI1 with the BBS pathway. Our findings provide further insight into the regulation of BBSome ciliary trafficking and identify AZI1 as a novel BBS candidate gene. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous autosomal recessive ciliopathy with 18 causative genes reported to date. The syndrome is characterized by obesity, polydactyly, renal defects, hypogenitalism and retinal degeneration. Previous work has illustrated a role for BBS proteins in the trafficking of ciliary cargo proteins including MCHR1, SSTR3, and dopamine receptor 1. In addition, interaction of BBS proteins with other centriolar satellite proteins has been reported. In order to identify novel BBS interacting proteins and novel BBS candidate genes we generated a transgenic BBS4 mouse. In this study, we utilized the transgenic mice to identify a novel BBSome (a complex of eight BBS proteins) interacting protein, AZI1. We show that AZI1 physically binds to the BBSome via BBS4. We also suggest a negative role of AZI1 in ciliary trafficking of the BBSome: when AZI1 is depleted, more BBSome localizes to cilia. Using zebrafish as a model, we show that azi1 morphants are similar to bbs morphants, a finding that further implicates AZI1 with the BBS pathway. Our findings provide further insight into the regulation of BBSome ciliary trafficking and identify AZI1 as a BBS candidate gene.
Collapse
Affiliation(s)
- Xitiz Chamling
- Department of Pediatrics, University of Iowa Interdisciplinary program of genetics, Iowa City, Iowa, United States of America
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Charles C. Searby
- Department of Pediatrics, University of Iowa Interdisciplinary program of genetics, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - GunHee Kim
- Department of Pediatrics, University of Iowa Interdisciplinary program of genetics, Iowa City, Iowa, United States of America
| | - Diane C. Slusarski
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Val C. Sheffield
- Department of Pediatrics, University of Iowa Interdisciplinary program of genetics, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Pickart MA, Klee EW. Zebrafish approaches enhance the translational research tackle box. Transl Res 2014; 163:65-78. [PMID: 24269745 DOI: 10.1016/j.trsl.2013.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 01/08/2023]
Abstract
During the past few decades, zebrafish (Danio rerio) have been a workhorse for developmental biology and genetics. Concurrently, zebrafish have proved highly accessible and effective for translational research by providing a vertebrate animal model useful for gene discovery, disease modeling, chemical genetic screening, and other medically relevant studies. Key resources such as an annotated and complete genome sequence, and diverse tools for genetic manipulation continue to spur broad use of zebrafish. Thus, the purpose of this introductory review is to provide a window into the unique characteristics and diverse uses of zebrafish and to highlight in particular the increasing relevance of zebrafish as a translational animal model. This is accomplished by reviewing broad considerations of anatomic and physiological conservation, approaches for disease modeling and creation, general laboratory methods, genetic tools, genome conservation, and diverse opportunities for functional validation. Additional commentary throughout the review also guides the reader to the 4 new reviews found elsewhere in this special issue that showcase the many unique ways the zebrafish is improving understanding of renal regeneration, mitochondrial disease, dyslipidemia, and aging, for example. With many other possible approaches and a rapidly increasing number of medically relevant reports, zebrafish approaches enhance significantly the tools available for translational research and are actively improving the understanding of human disease.
Collapse
Affiliation(s)
| | - Eric W Klee
- Mayo Clinic, College of Medicine, Rochester, Minn
| |
Collapse
|
31
|
Abstract
The ARF-like (ARL) proteins, within the ARF family, are a collection of functionally diverse GTPases that share extensive (>40 %) identity with the ARFs and each other and are assumed to share basic mechanisms of regulation and a very incompletely documented degree of overlapping regulators. At least four ARLs were already present in the last eukaryotic common ancestor, along with one ARF, and these have been expanded to >20 members in mammals. We know little about the majority of these proteins so our review will focus on those about which the most is known, including ARL1, ARL2, ARL3, ARL4s, ARL6, ARL13s, and ARFRP1. From this fragmentary information we extract some generalizations and conclusions regarding the sources and extent of specificity and functions of the ARLs.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
32
|
Seo S, Mullins RF, Dumitrescu AV, Bhattarai S, Gratie D, Wang K, Stone EM, Sheffield V, Drack AV. Subretinal gene therapy of mice with Bardet-Biedl syndrome type 1. Invest Ophthalmol Vis Sci 2013; 54:6118-32. [PMID: 23900607 DOI: 10.1167/iovs.13-11673] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE To study safety and efficacy of subretinal adeno-associated virus (AAV) vector AAV-Bbs1 injection for treatment of a mouse model of Bardet-Biedl syndrome type 1 (BBS1). METHODS Constructs containing a wild-type (WT) Bbs1 gene with and without a FLAG tag in AAV2/5 vectors were generated. Viral genomes were delivered by subretinal injection to right eyes and sham injections to left eyes at postnatal day 30 (P30) to P60. Transgene expression and BBSome reconstitution were evaluated by immunohistochemistry and Western blotting following sucrose gradient ultracentrifugation. Retinal function was analyzed by electroretinogram (ERG) and structure by optical coherence tomography (OCT). Histology and immunohistochemistry were performed on selected eyes. RESULTS Expression of FLAG-tagged Bbs1 was demonstrated in photoreceptor cells using antibody directed against the FLAG tag. Coinjection of AAV-GFP demonstrated transduction of 24% to 32% of the retina. Western blotting demonstrated BBS1 protein expression and reconstitution of the BBSome. ERG dark-adapted bright flash b-wave amplitudes were higher in AAV-Bbs1-injected eyes than in sham-injected fellow eyes in more than 50% of 19 animals. Anti-rhodopsin staining demonstrated improved localization of rhodopsin in AAV-Bbs1-treated eyes. WT retinas injected with AAV-Bbs1 with or without a FLAG tag showed outer retinal degeneration on ERG, OCT, and histology. CONCLUSIONS In a knock-in model of BBS1, subretinal delivery of AAV-Bbs1 rescues BBSome formation and rhodopsin localization, and shows a trend toward improved ERG. BBS is challenging to treat with gene therapy due to the stoichiometry of the BBSome protein complex and overexpression toxicity.
Collapse
Affiliation(s)
- Seongjin Seo
- Department of Ophthalmology, University of Iowa, Iowa City, Iowa
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tsetskhladze ZR, Canfield VA, Ang KC, Wentzel SM, Reid KP, Berg AS, Johnson SL, Kawakami K, Cheng KC. Functional assessment of human coding mutations affecting skin pigmentation using zebrafish. PLoS One 2012; 7:e47398. [PMID: 23071798 PMCID: PMC3468441 DOI: 10.1371/journal.pone.0047398] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/12/2012] [Indexed: 11/19/2022] Open
Abstract
A major challenge in personalized medicine is the lack of a standard way to define the functional significance of the numerous nonsynonymous, single nucleotide coding variants that are present in each human individual. To begin to address this problem, we have used pigmentation as a model polygenic trait, three common human polymorphisms thought to influence pigmentation, and the zebrafish as a model system. The approach is based on the rescue of embryonic zebrafish mutant phenotypes by “humanized” zebrafish orthologous mRNA. Two hypomorphic polymorphisms, L374F in SLC45A2, and A111T in SLC24A5, have been linked to lighter skin color in Europeans. The phenotypic effect of a second coding polymorphism in SLC45A2, E272K, is unclear. None of these polymorphisms had been tested in the context of a model organism. We have confirmed that zebrafish albino fish are mutant in slc45a2; wild-type slc45a2 mRNA rescued the albino mutant phenotype. Introduction of the L374F polymorphism into albino or the A111T polymorphism into slc24a5 (golden) abolished mRNA rescue of the respective mutant phenotypes, consistent with their known contributions to European skin color. In contrast, the E272K polymorphism had no effect on phenotypic rescue. The experimental conclusion that E272K is unlikely to affect pigmentation is consistent with a lack of correlation between this polymorphism and quantitatively measured skin color in 59 East Asian humans. A survey of mutations causing human oculocutaneous albinism yielded 257 missense mutations, 82% of which are theoretically testable in zebrafish. The developed approach may be extended to other model systems and may potentially contribute to our understanding the functional relationships between DNA sequence variation, human biology, and disease.
Collapse
Affiliation(s)
- Zurab R. Tsetskhladze
- Jake Gittlen Cancer Research Foundation, Penn State Hershey College of Medicine, Hershey, Pennsylvania, United States of America
- Division of Experimental Pathology, Department of Pathology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail: (ZRT); (KCC)
| | - Victor A. Canfield
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, United States of America
| | - Khai C. Ang
- Jake Gittlen Cancer Research Foundation, Penn State Hershey College of Medicine, Hershey, Pennsylvania, United States of America
- Division of Experimental Pathology, Department of Pathology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, United States of America
| | - Steven M. Wentzel
- Jake Gittlen Cancer Research Foundation, Penn State Hershey College of Medicine, Hershey, Pennsylvania, United States of America
- Division of Experimental Pathology, Department of Pathology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, United States of America
| | - Katherine P. Reid
- Jake Gittlen Cancer Research Foundation, Penn State Hershey College of Medicine, Hershey, Pennsylvania, United States of America
- Division of Experimental Pathology, Department of Pathology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, United States of America
| | - Arthur S. Berg
- Department of Public Health Sciences, Penn State Hershey College of Medicine, Hershey, Pennsylvania, United States of America
| | - Stephen L. Johnson
- Department of Genetics, Washington University Medical School, St. Louis, Missouri, United States of America
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka, Japan
| | - Keith C. Cheng
- Jake Gittlen Cancer Research Foundation, Penn State Hershey College of Medicine, Hershey, Pennsylvania, United States of America
- Division of Experimental Pathology, Department of Pathology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail: (ZRT); (KCC)
| |
Collapse
|
34
|
Cox KF, Kerr NC, Kedrov M, Nishimura D, Jennings BJ, Stone EM, Sheffield VC, Iannaccone A. Phenotypic expression of Bardet-Biedl syndrome in patients homozygous for the common M390R mutation in the BBS1 gene. Vision Res 2012; 75:77-87. [PMID: 22940089 DOI: 10.1016/j.visres.2012.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE To characterize the phenotype of Bardet-Biedl syndrome (BBS) patients homozygous for the BBS1 M390R mutation. METHODS Three patients [PT1, F, 27 years old (yo) at last examination, 14-year follow-up (F/U) PT2, F, 15-yo PT3, M, 15-yo, both 1-year F/U] underwent eye exams, Goldmann visual fields (GVFs), dark- (DA) and light-adapted (LA) electroretinograms (ERGs), spectral domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF). Vision and systemic history were also collected. RESULTS All patients had night blindness, hyperopic astigmatism, ptosis or mild blepharospasm, foot polydactyly, 5th finger clinodactyly, history of headaches, and variable, diet-responsive obesity. Two had asthma, PT1 was developmentally delayed, PT2 had Asperger-like symptoms, and PT3 had normal cognition. At age 14, acuity was 20/100 in PT1, who had nystagmus since age 2, 20/40 in PT2 and 20/30 in PT3. By 27yo PT1 progressed to 20/320, by 15 yo PT2 was 20/60 and PT3 remained stable. PT1 had well preserved peripheral GVFs, with minimal progression over 10 years of F/U. PT2 and PT3 presented with ring scotomas and I4e<5°. All patients had severe generalized visual sensitivity depression. ERGs were consistently recordable (also rod ERG in PT3 after 60 min DA), but progressed to non-recordable in PT1. Mixed DA ERGs exhibited electronegativity. In PT3, this was partly due to a bleaching effect during bright-flash DA averaging, partly to ON≫OFF LA response compromise. PT2 and 3 had, on SD-OCTs, generalized macular thinning, normal retinal lamination, and widespread photoreceptor outer/inner segment attenuation except foveally, and multiple rings of abnormal FAF configuring a complex bull's eye-pattern. PT1 had macular atrophy. All patients also had peripapillary nerve fiber layer thickening. CONCLUSIONS The observed phenotype matches very closely that reported in patients by Azari et al. (IOVS 2006) and in the Bbs1-M390R knock-in mouse model, and expands it to the characterization of important ERG response characteristics that provide insight in the pathogenesis of retinopathy in these patients. Our findings confirm the consistent pathogenicity of the BBS1 M390R mutation.
Collapse
Affiliation(s)
- Kyle F Cox
- University of Tennessee Health Science Center, Hamilton Eye Institute, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Estrada-Cuzcano A, Neveling K, Kohl S, Banin E, Rotenstreich Y, Sharon D, Falik-Zaccai T, Hipp S, Roepman R, Wissinger B, Letteboer S, Mans D, Blokland E, Kwint M, Gijsen S, van Huet R, Collin R, Scheffer H, Veltman J, Zrenner E, den Hollander A, Klevering B, Cremers F, Cremers FPM. Mutations in C8orf37, encoding a ciliary protein, are associated with autosomal-recessive retinal dystrophies with early macular involvement. Am J Hum Genet 2012; 90:102-9. [PMID: 22177090 DOI: 10.1016/j.ajhg.2011.11.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/28/2011] [Accepted: 11/18/2011] [Indexed: 01/06/2023] Open
Abstract
Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together encompassing 46 Mb. Next-generation sequencing of all exons, flanking intron sequences, microRNAs, and other highly conserved genomic elements in these three regions revealed a homozygous nonsense mutation (c.497T>A [p.Leu166(∗)]) in C8orf37, located on chromosome 8q22.1. This mutation was not present in 150 ethnically matched control individuals, single-nucleotide polymorphism databases, or the 1000 Genomes database. Immunohistochemical studies revealed C8orf37 localization at the base of the primary cilium of human retinal pigment epithelium cells and at the base of connecting cilia of mouse photoreceptors. C8orf37 sequence analysis of individuals who had retinal dystrophy and carried conspicuously large homozygous regions encompassing C8orf37 revealed a homozygous splice-site mutation (c.156-2A>G) in two siblings of a consanguineous family and homozygous missense mutations (c.529C>T [p.Arg177Trp]; c.545A>G [p.Gln182Arg]) in siblings of two other consanguineous families. The missense mutations affect highly conserved amino acids, and in silico analyses predicted that both variants are probably pathogenic. Clinical assessment revealed CRD in four individuals and RP with early macular involvement in two individuals. The two CRD siblings with the c.156-2A>G mutation also showed unilateral postaxial polydactyly. These results underline the importance of disrupted ciliary processes in the pathogenesis of retinal dystrophies.
Collapse
|
36
|
Mok CA, Healey MP, Shekhar T, Leroux MR, Héon E, Zhen M. Mutations in a guanylate cyclase GCY-35/GCY-36 modify Bardet-Biedl syndrome-associated phenotypes in Caenorhabditis elegans. PLoS Genet 2011; 7:e1002335. [PMID: 22022287 PMCID: PMC3192831 DOI: 10.1371/journal.pgen.1002335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/25/2011] [Indexed: 11/23/2022] Open
Abstract
Ciliopathies are pleiotropic and genetically heterogeneous disorders caused by defective development and function of the primary cilium. Bardet-Biedl syndrome (BBS) proteins localize to the base of cilia and undergo intraflagellar transport, and the loss of their functions leads to a multisystemic ciliopathy. Here we report the identification of mutations in guanylate cyclases (GCYs) as modifiers of Caenorhabditis elegans bbs endophenotypes. The loss of GCY-35 or GCY-36 results in suppression of the small body size, developmental delay, and exploration defects exhibited by multiple bbs mutants. Moreover, an effector of cGMP signalling, a cGMP-dependent protein kinase, EGL-4, also modifies bbs mutant defects. We propose that a misregulation of cGMP signalling, which underlies developmental and some behavioural defects of C. elegans bbs mutants, may also contribute to some BBS features in other organisms. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, multisystemic disorder. Defects to the cilium, an evolutionarily conserved organelle, cause ciliopathies, a growing class of diseases that includes BBS. BBS proteins are involved in the vesicular transport of proteins to the cilium and in the process of intraflagellar transport. Here we show that, in addition to sensory defects, Caenorhabditis elegans bbs mutants exhibit reduced body size and delayed developmental timing. The reduced body size phenotype is not fully recapitulated by IFT mutants, suggesting that BBS proteins may have additional functions beyond bridging IFT motors. We further identified that the loss of function mutations in the soluble guanylate cyclase complex, GCY-35/GCY-36, results in a suppression of these defects. Interestingly, GCY-35/GCY-36 influences the body size through a cGMP-dependent protein kinase EGL-4 in a group of body cavity neurons. BBS proteins, on the other hand, function through a non-overlapping set of ciliated sensory neurons to influence cGMP signalling in the body cavity neurons. In conclusion, this study reveals a non-cell autonomous role for sensory cilia in regulating cGMP signalling during development. We propose that aberrant cGMP signalling, essential for a number of cellular processes, may also contribute to some ciliopathy features in other systems.
Collapse
Affiliation(s)
- Calvin A. Mok
- The Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Michael P. Healey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Tanvi Shekhar
- The Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Elise Héon
- The Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- * E-mail: (MZ); (HZ)
| | - Mei Zhen
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- * E-mail: (MZ); (HZ)
| |
Collapse
|
37
|
Bachmann-Gagescu R, Phelps IG, Stearns G, Link BA, Brockerhoff SE, Moens CB, Doherty D. The ciliopathy gene cc2d2a controls zebrafish photoreceptor outer segment development through a role in Rab8-dependent vesicle trafficking. Hum Mol Genet 2011; 20:4041-55. [PMID: 21816947 PMCID: PMC3177654 DOI: 10.1093/hmg/ddr332] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ciliopathies are a genetically and phenotypically heterogeneous group of human developmental disorders whose root cause is the absence or dysfunction of primary cilia. Joubert syndrome is characterized by a distinctive hindbrain malformation variably associated with retinal dystrophy and cystic kidney disease. Mutations in CC2D2A are found in ∼10% of patients with Joubert syndrome. Here we describe the retinal phenotype of cc2d2a mutant zebrafish consisting of disorganized rod and cone photoreceptor outer segments resulting in abnormal visual function as measured by electroretinogram. Our analysis reveals trafficking defects in mutant photoreceptors affecting transmembrane outer segment proteins (opsins) and striking accumulation of vesicles, suggesting a role for Cc2d2a in vesicle trafficking and fusion. This is further supported by mislocalization of Rab8, a key regulator of opsin carrier vesicle trafficking, in cc2d2a mutant photoreceptors and by enhancement of the cc2d2a retinal and kidney phenotypes with partial knockdown of rab8. We demonstrate that Cc2d2a localizes to the connecting cilium in photoreceptors and to the transition zone in other ciliated cell types and that cilia are present in these cells in cc2d2a mutants, arguing against a primary function for Cc2d2a in ciliogenesis. Our data support a model where Cc2d2a, localized at the photoreceptor connecting cilium/transition zone, facilitates protein transport through a role in Rab8-dependent vesicle trafficking and fusion.
Collapse
Affiliation(s)
- Ruxandra Bachmann-Gagescu
- HHMI and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | | | |
Collapse
|