1
|
Halmi CA, Leonard CE, McIntosh AT, Taneyhill LA. N-cadherin facilitates trigeminal sensory neuron outgrowth and target tissue innervation. Development 2025; 152:dev204369. [PMID: 40260574 PMCID: PMC12070061 DOI: 10.1242/dev.204369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
The trigeminal ganglion emerges from the condensation of two distinct precursor cell populations, cranial placodes and neural crest. While its dual cellular origin is well understood, the molecules underlying its formation remain relatively obscure. Trigeminal ganglion assembly is mediated, in part, by neural cadherin (N-cadherin), which is initially expressed by placodal neurons and is required for their proper coalescence with neural crest cells. Axon outgrowth first occurs from placodal neurons, but as gangliogenesis proceeds, neural crest cells also differentiate into N-cadherin-expressing neurons, and both extend axons toward targets. However, the role of N-cadherin in axon outgrowth and target innervation has not been explored. Our data show that N-cadherin knockdown in chick trigeminal placode cells decreases trigeminal ganglion size, nerve growth and target innervation in vivo, and reduces neurite complexity of neural crest-derived neurons in vitro. Furthermore, blocking N-cadherin-mediated adhesion prevents axon extension in most placodal neurons in vitro. Collectively, these findings reveal cell- and non-cell autonomous functions for N-cadherin, highlighting its crucial role in mediating reciprocal interactions between neural crest- and placode-derived neurons throughout trigeminal ganglion development.
Collapse
Affiliation(s)
- Caroline A. Halmi
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Carrie E. Leonard
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Alec T. McIntosh
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Lisa A. Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Halmi CA, Leonard CE, McIntosh AT, Taneyhill LA. N-cadherin facilitates trigeminal sensory neuron outgrowth and target tissue innervation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.20.594965. [PMID: 38826314 PMCID: PMC11142107 DOI: 10.1101/2024.05.20.594965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The trigeminal ganglion emerges from the condensation of two distinct precursor cell populations, cranial placodes and neural crest. While its dual cellular origin is well understood, the molecules underlying its formation remain relatively obscure. Trigeminal ganglion assembly is mediated, in part, by neural cadherin (N-cadherin), which is initially expressed by placodal neurons and required for their proper coalescence with neural crest cells. Axon outgrowth first occurs from placodal neurons, but as gangliogenesis proceeds, neural crest cells also differentiate into N-cadherin-expressing neurons, and both extend axons toward targets. However, the role of N-cadherin in axon outgrowth and target innervation has not been explored. Our data show that N-cadherin knockdown in chick trigeminal placode cells decreases trigeminal ganglion size, nerve growth, and target innervation in vivo , and reduces neurite complexity of neural crest-derived neurons in vitro. Furthermore, blocking N-cadherin-mediated adhesion prevents axon extension in most placodal neurons in vitro . Collectively, these findings reveal cell- and non-cell autonomous functions for N-cadherin, highlighting its critical role in mediating reciprocal interactions between neural crest- and placode-derived neurons throughout trigeminal ganglion development.
Collapse
|
3
|
Park SJ, Son SM, Barbosa AD, Wrobel L, Stamatakou E, Squitieri F, Balmus G, Rubinsztein DC. Nuclear proteasomes buffer cytoplasmic proteins during autophagy compromise. Nat Cell Biol 2024; 26:1691-1699. [PMID: 39209961 PMCID: PMC11469956 DOI: 10.1038/s41556-024-01488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Autophagy is a conserved pathway where cytoplasmic contents are engulfed by autophagosomes, which then fuse with lysosomes enabling their degradation. Mutations in core autophagy genes cause neurological conditions, and autophagy defects are seen in neurodegenerative diseases such as Parkinson's disease and Huntington's disease. Thus, we have sought to understand the cellular pathway perturbations that autophagy-perturbed cells are vulnerable to by seeking negative genetic interactions such as synthetic lethality in autophagy-null human cells using available data from yeast screens. These revealed that loss of proteasome and nuclear pore complex components cause synergistic viability changes akin to synthetic fitness loss in autophagy-null cells. This can be attributed to the cytoplasm-to-nuclear transport of proteins during autophagy deficiency and subsequent degradation of these erstwhile cytoplasmic proteins by nuclear proteasomes. As both autophagy and cytoplasm-to-nuclear transport are defective in Huntington's disease, such cells are more vulnerable to perturbations of proteostasis due to these synthetic interactions.
Collapse
Affiliation(s)
- So Jung Park
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Sung Min Son
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Antonio Daniel Barbosa
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Lidia Wrobel
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Eleanna Stamatakou
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - David C Rubinsztein
- Department of Medical Genetics, and Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Morandell J, Monziani A, Lazioli M, Donzel D, Döring J, Oss Pegorar C, D'Anzi A, Pellegrini M, Mattiello A, Bortolotti D, Bergonzoni G, Tripathi T, Mattis VB, Kovalenko M, Rosati J, Dieterich C, Dassi E, Wheeler VC, Ellederová Z, Wilusz JE, Viero G, Biagioli M. CircHTT(2,3,4,5,6) - co-evolving with the HTT CAG-repeat tract - modulates Huntington's disease phenotypes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102234. [PMID: 38974999 PMCID: PMC11225910 DOI: 10.1016/j.omtn.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Circular RNA (circRNA) molecules have critical functions during brain development and in brain-related disorders. Here, we identified and validated a circRNA, circHTT(2,3,4,5,6), stemming from the Huntington's disease (HD) gene locus that is most abundant in the central nervous system (CNS). We uncovered its evolutionary conservation in diverse mammalian species, and a correlation between circHTT(2,3,4,5,6) levels and the length of the CAG-repeat tract in exon-1 of HTT in human and mouse HD model systems. The mouse orthologue, circHtt(2,3,4,5,6), is expressed during embryogenesis, increases during nervous system development, and is aberrantly upregulated in the presence of the expanded CAG tract. While an IRES-like motif was predicted in circH TT (2,3,4,5,6), the circRNA does not appear to be translated in adult mouse brain tissue. Nonetheless, a modest, but consistent fraction of circHtt(2,3,4,5,6) associates with the 40S ribosomal subunit, suggesting a possible role in the regulation of protein translation. Finally, circHtt(2,3,4,5,6) overexpression experiments in HD-relevant STHdh striatal cells revealed its ability to modulate CAG expansion-driven cellular defects in cell-to-substrate adhesion, thus uncovering an unconventional modifier of HD pathology.
Collapse
Affiliation(s)
- Jasmin Morandell
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Alan Monziani
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Martina Lazioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Deborah Donzel
- Institute of Biophysics Unit at Trento, National Research Council - CNR, 38123 Trento, Italy
| | - Jessica Döring
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Claudio Oss Pegorar
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Angela D'Anzi
- Cellular Reprogramming Unit Fondazione IRCCS, Casa Sollievo Della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Miguel Pellegrini
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Andrea Mattiello
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Dalia Bortolotti
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Takshashila Tripathi
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Virginia B Mattis
- Board of Governor's Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marina Kovalenko
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jessica Rosati
- Cellular Reprogramming Unit Fondazione IRCCS, Casa Sollievo Della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zdenka Ellederová
- Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriella Viero
- Institute of Biophysics Unit at Trento, National Research Council - CNR, 38123 Trento, Italy
| | - Marta Biagioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| |
Collapse
|
5
|
Ayyildiz D, Bergonzoni G, Monziani A, Tripathi T, Döring J, Kerschbamer E, Di Leva F, Pennati E, Donini L, Kovalenko M, Zasso J, Conti L, Wheeler VC, Dieterich C, Piazza S, Dassi E, Biagioli M. CAG repeat expansion in the Huntington's disease gene shapes linear and circular RNAs biogenesis. PLoS Genet 2023; 19:e1010988. [PMID: 37831730 PMCID: PMC10617732 DOI: 10.1371/journal.pgen.1010988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/31/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Alternative splicing (AS) appears to be altered in Huntington's disease (HD), but its significance for early, pre-symptomatic disease stages has not been inspected. Here, taking advantage of Htt CAG knock-in mouse in vitro and in vivo models, we demonstrate a correlation between Htt CAG repeat length and increased aberrant linear AS, specifically affecting neural progenitors and, in vivo, the striatum prior to overt behavioral phenotypes stages. Remarkably, a significant proportion (36%) of the aberrantly spliced isoforms are not-functional and meant to non-sense mediated decay (NMD). The expanded Htt CAG repeats further reflect on a previously neglected, global impairment of back-splicing, leading to decreased circular RNAs production in neural progenitors. Integrative transcriptomic analyses unveil a network of transcriptionally altered micro-RNAs and RNA-binding proteins (Celf, hnRNPs, Ptbp, Srsf, Upf1, Ythd2) which might influence the AS machinery, primarily in neural cells. We suggest that this unbalanced expression of linear and circular RNAs might alter neural fitness, contributing to HD pathogenesis.
Collapse
Affiliation(s)
- Dilara Ayyildiz
- Bioinformatic facility, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
- Biomedical Sciences and Biotechnology, University of Udine, Udine, Italy
| | - Guendalina Bergonzoni
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Alan Monziani
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Takshashila Tripathi
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Jessica Döring
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Emanuela Kerschbamer
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Francesca Di Leva
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Elia Pennati
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Luisa Donini
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Marina Kovalenko
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jacopo Zasso
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Luciano Conti
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Silvano Piazza
- Bioinformatic facility, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Marta Biagioli
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| |
Collapse
|
6
|
Komatsu H. Innovative Therapeutic Approaches for Huntington's Disease: From Nucleic Acids to GPCR-Targeting Small Molecules. Front Cell Neurosci 2021; 15:785703. [PMID: 34899193 PMCID: PMC8662694 DOI: 10.3389/fncel.2021.785703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disorder due to an extraordinarily expanded CAG repeat in the huntingtin gene that confers a gain-of-toxic function in the mutant protein. There is currently no effective cure that attenuates progression and severity of the disease. Since HD is an inherited monogenic disorder, lowering the mutant huntingtin (mHTT) represents a promising therapeutic strategy. Huntingtin lowering strategies mostly focus on nucleic acid approaches, such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs). While these approaches seem to be effective, the drug delivery to the brain poses a great challenge and requires direct injection into the central nervous system (CNS) that results in substantial burden for patients. This review discusses the topics on Huntingtin lowering strategies with clinical trials in patients already underway and introduce an innovative approach that has the potential to deter the disease progression through the inhibition of GPR52, a striatal-enriched class A orphan G protein-coupled receptor (GPCR) that represents a promising therapeutic target for psychiatric disorders. Chemically simple, potent, and selective GPR52 antagonists have been discovered through high-throughput screening and subsequent structure-activity relationship studies. These small molecule antagonists not only diminish both soluble and aggregated mHTT in the striatum, but also ameliorate HD-like defects in HD mice. This therapeutic approach offers great promise as a novel strategy for HD therapy, while nucleic acid delivery still faces considerable challenges.
Collapse
Affiliation(s)
- Hidetoshi Komatsu
- Business Strategy, Kyowa Pharmaceutical Industry Co., Ltd., Osaka, Japan.,Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
7
|
Hernandez SJ, Fote G, Reyes-Ortiz AM, Steffan JS, Thompson LM. Cooperation of cell adhesion and autophagy in the brain: Functional roles in development and neurodegenerative disease. Matrix Biol Plus 2021; 12:100089. [PMID: 34786551 PMCID: PMC8579148 DOI: 10.1016/j.mbplus.2021.100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cellular adhesive connections directed by the extracellular matrix (ECM) and maintenance of cellular homeostasis by autophagy are seemingly disparate functions that are molecularly intertwined, each regulating the other. This is an emerging field in the brain where the interplay between adhesion and autophagy functions at the intersection of neuroprotection and neurodegeneration. The ECM and adhesion proteins regulate autophagic responses to direct protein clearance and guide regenerative programs that go awry in brain disorders. Concomitantly, autophagic flux acts to regulate adhesion dynamics to mediate neurite outgrowth and synaptic plasticity with functional disruption contributed by neurodegenerative disease. This review highlights the cooperative exchange between cellular adhesion and autophagy in the brain during health and disease. As the mechanistic alliance between adhesion and autophagy has been leveraged therapeutically for metastatic disease, understanding overlapping molecular functions that direct the interplay between adhesion and autophagy might uncover therapeutic strategies to correct or compensate for neurodegeneration.
Collapse
Affiliation(s)
- Sarah J. Hernandez
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Gianna Fote
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea M. Reyes-Ortiz
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S. Steffan
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Psychaitry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
8
|
Developmental defects in Huntington's disease show that axonal growth and microtubule reorganization require NUMA1. Neuron 2021; 110:36-50.e5. [PMID: 34793694 DOI: 10.1016/j.neuron.2021.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/14/2021] [Accepted: 10/21/2021] [Indexed: 01/09/2023]
Abstract
Although the classic symptoms of Huntington's disease (HD) manifest in adulthood, neural progenitor cell behavior is already abnormal by 13 weeks' gestation. To determine how these developmental defects evolve, we turned to cell and mouse models. We found that layer II/III neurons that normally connect the hemispheres are limited in their growth in HD by microtubule bundling defects within the axonal growth cone, so that fewer axons cross the corpus callosum. Proteomic analyses of the growth cones revealed that NUMA1 (nuclear/mitotic apparatus protein 1) is downregulated in HD by miR-124. Suppressing NUMA1 in wild-type cells recapitulates the microtubule and axonal growth defects of HD, whereas raising NUMA1 levels with antagomiR-124 or stabilizing microtubules with epothilone B restores microtubule organization and rescues axonal growth. NUMA1 therefore regulates the microtubule network in the growth cone, and HD, which is traditionally conceived as a disease of intracellular trafficking, also disturbs the cytoskeletal network.
Collapse
|
9
|
Martinez B, Peplow PV. Altered microRNA expression in animal models of Huntington's disease and potential therapeutic strategies. Neural Regen Res 2021; 16:2159-2169. [PMID: 33818488 PMCID: PMC8354140 DOI: 10.4103/1673-5374.310673] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A review of recent animal models of Huntington's disease showed many microRNAs had altered expression levels in the striatum and cerebral cortex, and which were mostly downregulated. Among the altered microRNAs were miR-9/9*, miR-29b, miR-124a, miR-132, miR-128, miR-139, miR-122, miR-138, miR-23b, miR-135b, miR-181 (all downregulated) and miR-448 (upregulated), and similar changes had been previously found in Huntington's disease patients. In the animal cell studies, the altered microRNAs included miR-9, miR-9*, miR-135b, miR-222 (all downregulated) and miR-214 (upregulated). In the animal models, overexpression of miR-155 and miR-196a caused a decrease in mutant huntingtin mRNA and protein level, lowered the mutant huntingtin aggregates in striatum and cortex, and improved performance in behavioral tests. Improved performance in behavioral tests also occurred with overexpression of miR-132 and miR-124. In the animal cell models, overexpression of miR-22 increased the viability of rat primary cortical and striatal neurons infected with mutant huntingtin and decreased huntingtin -enriched foci of ≥ 2 µm. Also, overexpression of miR-22 enhanced the survival of rat primary striatal neurons treated with 3-nitropropionic acid. Exogenous expression of miR-214, miR-146a, miR-150, and miR-125b decreased endogenous expression of huntingtin mRNA and protein in HdhQ111/HdhQ111 cells. Further studies with animal models of Huntington's disease are warranted to validate these findings and identify specific microRNAs whose overexpression inhibits the production of mutant huntingtin protein and other harmful processes and may provide a more effective means of treating Huntington's disease in patients and slowing its progression.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Medicine, St. Georges University School of Medicine, Grenada
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Correspondence to: Philip V. Peplow, .
| |
Collapse
|
10
|
de Souza JM, Abd-Elrahman KS, Ribeiro FM, Ferguson SSG. mGluR5 regulates REST/NRSF signaling through N-cadherin/β-catenin complex in Huntington's disease. Mol Brain 2020; 13:118. [PMID: 32859226 PMCID: PMC7456045 DOI: 10.1186/s13041-020-00657-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/20/2020] [Indexed: 03/05/2023] Open
Abstract
Repressor element 1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a transcription repressor and its expression is regulated by the Wnt pathway through β-catenin. Metabotropic glutamate receptor 5 (mGluR5) signaling plays a key role in controlling neuronal gene expression. Interestingly, REST/NRSF nuclear translocation and signaling, as well as mGluR5 signaling are altered in the presence of mutant huntingtin. It remains unclear whether mGluR5 can modulate Wnt and REST/NRSF signaling under physiological conditions and whether this modulation is altered in Huntington's disease (HD). Using primary corticostriatal neurons derived from wild type mouse embryos, we find that targeting mGluR5 using the agonist, DHPG, or the negative allosteric modulator, CTEP, modulates REST/NRSF expression by regulating the assembly of N-cadherin/ β-catenin complex in a Src kinase-dependent manner. We have validated our in vitro findings in vivo using two HD mouse models. Specifically, we show that pharmacological inhibition of mGluR5 in zQ175 mice and genetic ablation of mGluR5 in BACHD mice corrected the pathological activation of Src and rescued REST/NRSF-dependent signaling. Together, our data provide evidence that mGluR5 regulates REST/NRSF expression via the Wnt pathway and highlight the contribution of impaired REST/ NRSF signaling to HD pathology.
Collapse
Affiliation(s)
- Jéssica M. de Souza
- University of Ottawa Brain and Mind Institute and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Khaled S. Abd-Elrahman
- University of Ottawa Brain and Mind Institute and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521 Egypt
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Stephen S. G. Ferguson
- University of Ottawa Brain and Mind Institute and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
| |
Collapse
|
11
|
Human Huntington's Disease iPSC-Derived Cortical Neurons Display Altered Transcriptomics, Morphology, and Maturation. Cell Rep 2019; 25:1081-1096.e6. [PMID: 30355486 DOI: 10.1016/j.celrep.2018.09.076] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/02/2018] [Accepted: 09/24/2018] [Indexed: 01/11/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by an expanded CAG repeat in the Huntingtin (HTT) gene. Induced pluripotent stem cell (iPSC) models of HD provide an opportunity to study the mechanisms underlying disease pathology in disease-relevant patient tissues. Murine studies have demonstrated that HTT is intricately involved in corticogenesis. However, the effect of mutant Hungtintin (mtHTT) in human corticogenesis has not yet been thoroughly explored. This examination is critical, due to inherent differences in cortical development and timing between humans and mice. We therefore differentiated HD and non-diseased iPSCs into functional cortical neurons. While HD patient iPSCs can successfully differentiate toward a cortical fate in culture, the resulting neurons display altered transcriptomics, morphological and functional phenotypes indicative of altered corticogenesis in HD.
Collapse
|
12
|
Abstract
Huntingtin (HTT) is a scaffold protein mostly known because it gives rise to the severe and incurable inherited neurological disorder Huntington’s disease (HD) when mutated. The Huntingtin gene (HTT) carries a polymorphic trinucleotide expansion of CAGs in exon 1 that ranges from 9 to 35 in the non-HD affected population. However, if it exceeds 35 CAG repeats, the altered protein is referred to as mutant HTT and leads to the development of HD. Given the wide spectrum of severe symptoms developed by HD individuals, wild-type and mutant HTT have been mostly studied in the context of this disorder. However, HTT expression is ubiquitous and several peripheral symptoms in HD have been described, suggesting that HTT is of importance, not only in the central nervous system (CNS), but also in peripheral organs. Accordingly, HTT and mutant HTT may interfere with non-brain-related diseases. Correlative studies have highlighted a decreased cancer incidence in the HD population and both wild-type and mutant HTT have been implicated in tumor progression. In this review, we describe the current evidence linking wild-type and mutant HTT to cancer and discuss how CAG polymorphism, HTT function, and partners may influence carcinogenesis and metastatic progression.
Collapse
Affiliation(s)
- Morgane Sonia Thion
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris Cedex 05, France
| | - Sandrine Humbert
- Grenoble Institut des Neurosciences, GIN, Univ. Grenoble Alpes, Grenoble, France.,INSERM, U1216, Grenoble, France
| |
Collapse
|
13
|
Smatlikova P, Askeland G, Vaskovicova M, Klima J, Motlik J, Eide L, Ellederová Z. Age-Related Oxidative Changes in Primary Porcine Fibroblasts Expressing Mutated Huntingtin. NEURODEGENER DIS 2019; 19:22-34. [PMID: 31167196 DOI: 10.1159/000500091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/30/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is a devastating neurodegenerative disorder caused by CAG triplet expansions in the huntingtin gene. Oxidative stress is linked to HD pathology, although it is not clear whether this is an effect or a mediator of disease. The transgenic (TgHD) minipig expresses the N-terminal part of human-mutated huntingtin and represents a unique model to investigate therapeutic strategies towards HD. A more detailed characterization of this model is needed to fully utilize its potential. METHODS In this study, we focused on the molecular and cellular features of fibroblasts isolated from TgHD minipigs and the wild-type (WT) siblings at different ages, pre-symptomatic at the age of 24-36 months and with the onset of behavioural symptoms at the age of 48 months. We measured oxidative stress, the expression of oxidative stress-related genes, proliferation capacity along with the expression of cyclin B1 and D1 proteins, cellular permeability, and the integrity of the nuclear DNA (nDNA) and mitochondrial DNA in these cells. RESULTS TgHD fibroblasts isolated from 48-month-old animals showed increased oxidative stress, which correlated with the overexpression of SOD2 encoding mitochondrial superoxide dismutase 2, and the NEIL3 gene encoding DNA glycosylase involved in replication-associated repair of oxidized DNA. TgHD cells displayed an abnormal proliferation capacity and permeability. We further demonstrated increased nDNA damage in pre-symptomatic TgHD fibroblasts (isolated from animals aged 24-36 months). CONCLUSIONS Our results unravel phenotypic alterations in primary fibroblasts isolated from the TgHD minipig model at the age of 48 months. Importantly, nDNA damage appears to precede these phenotypic alterations. Our results highlight the impact of fibroblasts from TgHD minipigs in studying the molecular mechanisms of HD pathophysiology that gradually occur with age.
Collapse
Affiliation(s)
- Petra Smatlikova
- Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Georgina Askeland
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Michaela Vaskovicova
- Laboratory of DNA Integrity, Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Jiri Klima
- Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czechia
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czechia
| | - Lars Eide
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Zdenka Ellederová
- Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czechia,
| |
Collapse
|
14
|
Cheng C, Spengler RM, Keiser MS, Monteys AM, Rieders JM, Ramachandran S, Davidson BL. The long non-coding RNA NEAT1 is elevated in polyglutamine repeat expansion diseases and protects from disease gene-dependent toxicities. Hum Mol Genet 2018; 27:4303-4314. [PMID: 30239724 PMCID: PMC6276831 DOI: 10.1093/hmg/ddy331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022] Open
Abstract
Polyglutamine (polyQ) repeat diseases are a class of neurodegenerative disorders caused by CAG-repeat expansion. There are diverse cellular mechanisms behind the pathogenesis of polyQ disorders, including transcriptional dysregulation. Interestingly, we find that levels of the long isoform of nuclear paraspeckle assembly transcript 1 (Neat1L) are elevated in the brains of mouse models of spinocerebellar ataxia types 1, 2, 7 and Huntington's disease (HD). Neat1L was also elevated in differentiated striatal neurons derived from HD knock-in mice and in HD patient brains. The elevation was mutant Huntingtin (mHTT) dependent, as knockdown of mHTT in vitro and in vivo restored Neat1L to normal levels. In additional studies, we found that Neat1L is repressed by methyl CpG binding protein 2 (MeCP2) by RNA-protein interaction but not by occupancy of MeCP2 at its promoter. We also found that NEAT1L overexpression protects from mHTT-induced cytotoxicity, while reducing it enhanced mHTT-dependent toxicity. Gene set enrichment analysis of previously published RNA sequencing data from mouse embryonic fibroblasts and cells derived from HD patients shows that loss of NEAT1L impairs multiple cellular functions, including pathways involved in cell proliferation and development. Intriguingly, the genes dysregulated in HD human brain samples overlap with pathways affected by a reduction in NEAT1, confirming the correlation of NEAT1L and HD-induced perturbations. Cumulatively, the role of NEAT1L in polyQ disease model systems and human tissues suggests that it may play a protective role in CAG-repeat expansion diseases.
Collapse
Affiliation(s)
- Congsheng Cheng
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryan M Spengler
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Megan S Keiser
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alejandro Mas Monteys
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julianne M Rieders
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shyam Ramachandran
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Hung CLK, Maiuri T, Bowie LE, Gotesman R, Son S, Falcone M, Giordano JV, Gillis T, Mattis V, Lau T, Kwan V, Wheeler V, Schertzer J, Singh K, Truant R. A patient-derived cellular model for Huntington's disease reveals phenotypes at clinically relevant CAG lengths. Mol Biol Cell 2018; 29:2809-2820. [PMID: 30256717 PMCID: PMC6249865 DOI: 10.1091/mbc.e18-09-0590] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The huntingtin protein participates in several cellular processes that are disrupted when the polyglutamine tract is expanded beyond a threshold of 37 CAG DNA repeats in Huntington’s disease (HD). Cellular biology approaches to understand these functional disruptions in HD have primarily focused on cell lines with synthetically long CAG length alleles that clinically represent outliers in this disease and a more severe form of HD that lacks age onset. Patient-derived fibroblasts are limited to a finite number of passages before succumbing to cellular senescence. We used human telomerase reverse transcriptase (hTERT) to immortalize fibroblasts taken from individuals of varying age, sex, disease onset, and CAG repeat length, which we have termed TruHD cells. TruHD cells display classic HD phenotypes of altered morphology, size and growth rate, increased sensitivity to oxidative stress, aberrant adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratios, and hypophosphorylated huntingtin protein. We additionally observed dysregulated reactive oxygen species (ROS)-dependent huntingtin localization to nuclear speckles in HD cells. We report the generation and characterization of a human, clinically relevant cellular model for investigating disease mechanisms in HD at the single-cell level, which, unlike transformed cell lines, maintains functions critical for huntingtin transcriptional regulation and genomic integrity.
Collapse
Affiliation(s)
- Claudia Lin-Kar Hung
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tamara Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Laura Erin Bowie
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ryan Gotesman
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Susie Son
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mina Falcone
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - James Victor Giordano
- Center for Genomic Medicine, Harvard Medical School, Boston, MA 02114.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Tammy Gillis
- Center for Genomic Medicine, Harvard Medical School, Boston, MA 02114.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Virginia Mattis
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Trevor Lau
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Vickie Kwan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada.,Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Vanessa Wheeler
- Center for Genomic Medicine, Harvard Medical School, Boston, MA 02114.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jonathan Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Karun Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
16
|
Ghatak S, Raha S. Beta catenin is regulated by its subcellular distribution and mutant huntingtin status in Huntington's disease cell STHdhQ111/HdhQ111. Biochem Biophys Res Commun 2018; 503:359-364. [PMID: 29894684 DOI: 10.1016/j.bbrc.2018.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 01/31/2023]
Abstract
Dysregulation of gene expression at RNA and protein level is a hallmark of Huntington's disease (HD). Altered levels of microRNAs and beta catenin in HD were studied earlier; however, any direct involvement of full length, basally-expressing mutant huntingtin (Htt) remained to be elusive. Here we reported that the gain-of-function mutation of full-length basally-expressing Htt in HD cell Q111 (STHdhQ111/HdhQ111) upregulated microRNA-214 and decreased beta catenin & its transcriptional activity in an aggregate-independent manner. The result was quite opposite of the function of aggregate-forming mutant Htt fragment 83Q-DsRed. Here, we also reported an elevated level of beta catenin phosphorylation in Q111 cell compared to Q7 cell (SThdhQ7/HdhQ7). We showed that in Q111 cell (compared to Q7), beta catenin was more localized in the cytosol than that of the plasma membrane. This is significant as Gsk3beta phosphorylates beta catenin in the cytosol. Hence, for the first time, our study identified beta catenin localization and mutant Htt status as two key factors of beta catenin regulation in HD.
Collapse
Affiliation(s)
- Supratim Ghatak
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
| | - Sanghamitra Raha
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| |
Collapse
|
17
|
Reduced cell size, chromosomal aberration and altered proliferation rates are characteristics and confounding factors in the STHdh cell model of Huntington disease. Sci Rep 2017; 7:16880. [PMID: 29203806 PMCID: PMC5715050 DOI: 10.1038/s41598-017-17275-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/23/2017] [Indexed: 01/10/2023] Open
Abstract
Huntington disease is a fatal neurodegenerative disorder caused by a CAG repeat expansion in the gene encoding the huntingtin protein. Expression of the mutant protein disrupts various intracellular pathways and impairs overall cell function. In particular striatal neurons seem to be most vulnerable to mutant huntingtin-related changes. A well-known and commonly used model to study molecular aspects of Huntington disease are the striatum-derived STHdh cell lines generated from wild type and huntingtin knock-in mouse embryos. However, obvious morphological differences between wild type and mutant cell lines exist, which have rarely been described and might not have always been considered when designing experiments or interpreting results. Here, we demonstrate that STHdh cell lines display differences in cell size, proliferation rate and chromosomal content. While the chromosomal divergence is considered to be a result of the cells’ tumour characteristics, differences in size and proliferation, however, were confirmed in a second non-immortalized Huntington disease cell model. Importantly, our results further suggest that the reported phenotypes can confound other study outcomes and lead to false conclusions. Thus, careful experimental design and data analysis are advised when using these cell models.
Collapse
|
18
|
Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells. Mol Neurobiol 2017; 55:3351-3371. [PMID: 28497201 PMCID: PMC5842500 DOI: 10.1007/s12035-017-0477-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Huntington disease (HD) is a dominantly inherited disorder caused by a CAG expansion mutation in the huntingtin (HTT) gene, which results in the HTT protein that contains an expanded polyglutamine tract. The adult form of HD exhibits a late onset of the fully symptomatic phase. However, there is also a long presymptomatic phase, which has been increasingly investigated and recognized as important for the disease development. Moreover, the juvenile form of HD, evoked by a higher number of CAG repeats, resembles a neurodevelopmental disorder and has recently been the focus of additional interest. Multiple lines of data, such as the developmental necessity of HTT, its role in the cell cycle and neurogenesis, and findings from pluripotent stem cells, suggest the existence of a neurodevelopmental component in HD pathogenesis. Therefore, we discuss the early molecular pathogenesis of HD in pluripotent and neural stem cells, with respect to the neurodevelopmental aspects of HD.
Collapse
|
19
|
The Ubiquitin Receptor ADRM1 Modulates HAP40-Induced Proteasome Activity. Mol Neurobiol 2016; 54:7382-7400. [PMID: 27815841 DOI: 10.1007/s12035-016-0247-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/23/2016] [Indexed: 10/20/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by an N-terminal expansion of polyglutamine stretch (polyQ) of huntingtin (Htt) protein. HAP40 is a huntingtin-associated protein with unknown cellular functions. Increased HAP40 expression has been reported in the brain of HD patients and HD mouse model. However, the relationship between the elevation of HAP40 and HD etiology remains elusive. In this study, we demonstrated that overexpression of HAP40 enhanced accumulation of mutant Htt aggregates and caused defects in proteasome function. Specifically, excess HAP40 interfered with adhesion-regulating molecule 1 (ADRM1), a proteasome ubiquitin receptor, to regulate the proteasome-dependent pathway. Increasing ADRM1 in the presence of excess HAP40 alleviated mutant Htt aggregates and at the same time, restored the cell viability. Reducing ADRM1 in the absence of excess HAP40; on the other hand, increased mutant Htt aggregates and decreased the cell viability. Our data provide compelling evidence to support that ADRM1 plays an important role in mediating removal of mutant Htt aggregates when excess HAP40 is present. ADRM1-dependent ubiquitin proteasome system (UPS) may be a general mechanism to guard cells from mutant Htt toxicity.
Collapse
|
20
|
Ring KL, An MC, Zhang N, O'Brien RN, Ramos EM, Gao F, Atwood R, Bailus BJ, Melov S, Mooney SD, Coppola G, Ellerby LM. Genomic Analysis Reveals Disruption of Striatal Neuronal Development and Therapeutic Targets in Human Huntington's Disease Neural Stem Cells. Stem Cell Reports 2016; 5:1023-1038. [PMID: 26651603 PMCID: PMC4682390 DOI: 10.1016/j.stemcr.2015.11.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 11/02/2015] [Accepted: 11/12/2015] [Indexed: 12/29/2022] Open
Abstract
We utilized induced pluripotent stem cells (iPSCs) derived from Huntington's disease (HD) patients as a human model of HD and determined that the disease phenotypes only manifest in the differentiated neural stem cell (NSC) stage, not in iPSCs. To understand the molecular basis for the CAG repeat expansion-dependent disease phenotypes in NSCs, we performed transcriptomic analysis of HD iPSCs and HD NSCs compared to isogenic controls. Differential gene expression and pathway analysis pointed to transforming growth factor β (TGF-β) and netrin-1 as the top dysregulated pathways. Using data-driven gene coexpression network analysis, we identified seven distinct coexpression modules and focused on two that were correlated with changes in gene expression due to the CAG expansion. Our HD NSC model revealed the dysregulation of genes involved in neuronal development and the formation of the dorsal striatum. The striatal and neuronal networks disrupted could be modulated to correct HD phenotypes and provide therapeutic targets.
Collapse
Affiliation(s)
- Karen L Ring
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Mahru C An
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Ningzhe Zhang
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Eliana Marisa Ramos
- Departments of Neurology and Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Fuying Gao
- Departments of Neurology and Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Robert Atwood
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Sean D Mooney
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Giovanni Coppola
- Departments of Neurology and Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
21
|
Chandrasekaran S, Bonchev D. Network analysis of human post-mortem microarrays reveals novel genes, microRNAs, and mechanistic scenarios of potential importance in fighting huntington's disease. Comput Struct Biotechnol J 2016; 14:117-130. [PMID: 27924190 PMCID: PMC5128196 DOI: 10.1016/j.csbj.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease is a progressive neurodegenerative disorder characterized by motor disturbances, cognitive decline, and neuropsychiatric symptoms. In this study, we utilized network-based analysis in an attempt to explore and understand the underlying molecular mechanism and to identify critical molecular players of this disease condition. Using human post-mortem microarrays from three brain regions (cerebellum, frontal cortex and caudate nucleus) we selected in a four-step procedure a seed set of highly modulated genes. Several protein-protein interaction networks, as well as microRNA-mRNA networks were constructed for these gene sets with the Elsevier Pathway Studio software and its associated ResNet database. We applied a gene prioritizing procedure based on vital network topological measures, such as high node connectivity and centrality. Adding to these criteria the guilt-by-association rule and exploring their innate biomolecular functions, we propose 19 novel genes from the analyzed microarrays, from which CEBPA, CDK1, CX3CL1, EGR1, E2F1, ERBB2, LRP1, HSP90AA1 and ZNF148 might be of particular interest for experimental validation. A possibility is discussed for dual-level gene regulation by both transcription factors and microRNAs in Huntington's disease mechanism. We propose several possible scenarios for experimental studies initiated via the extra-cellular ligands TGFB1, FGF2 and TNF aiming at restoring the cellular homeostasis in Huntington's disease.
Collapse
Affiliation(s)
- Sreedevi Chandrasekaran
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
22
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
23
|
Modeling Huntington׳s disease with patient-derived neurons. Brain Res 2015; 1656:76-87. [PMID: 26459990 DOI: 10.1016/j.brainres.2015.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/17/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
Huntington׳s Disease (HD) is a fatal neurodegenerative disorder caused by expanded polyglutamine repeats in the Huntingtin (HTT) gene. While the gene was identified over two decades ago, it remains poorly understood why mutant HTT (mtHTT) is initially toxic to striatal medium spiny neurons (MSNs). Models of HD using non-neuronal human patient cells and rodents exhibit some characteristic HD phenotypes. While these current models have contributed to the field, they are limited in disease manifestation and may vary in their response to treatments. As such, human HD patient MSNs for disease modeling could greatly expand the current understanding of HD and facilitate the search for a successful treatment. It is now possible to use pluripotent stem cells, which can generate any tissue type in the body, to study and potentially treat HD. This review covers disease modeling in vitro and, via chimeric animal generation, in vivo using human HD patient MSNs differentiated from embryonic stem cells or induced pluripotent stem cells. This includes an overview of the differentiation of pluripotent cells into MSNs, the established phenotypes found in cell-based models and transplantation studies using these cells. This review not only outlines the advancements in the rapidly progressing field of HD modeling using neurons derived from human pluripotent cells, but also it highlights several remaining controversial issues such as the 'ideal' series of pluripotent lines, the optimal cell types to use and the study of a primarily adult-onset disease in a developmental model. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
|
24
|
Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ. Huntington disease. Nat Rev Dis Primers 2015; 1:15005. [PMID: 27188817 DOI: 10.1038/nrdp.2015.5] [Citation(s) in RCA: 1017] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Huntington disease is devastating to patients and their families - with autosomal dominant inheritance, onset typically in the prime of adult life, progressive course, and a combination of motor, cognitive and behavioural features. The disease is caused by an expanded CAG trinucleotide repeat (of variable length) in HTT, the gene that encodes the protein huntingtin. In mutation carriers, huntingtin is produced with abnormally long polyglutamine sequences that confer toxic gains of function and predispose the protein to fragmentation, resulting in neuronal dysfunction and death. In this Primer, we review the epidemiology of Huntington disease, noting that prevalence is higher than previously thought, geographically variable and increasing. We describe the relationship between CAG repeat length and clinical phenotype, as well as the concept of genetic modifiers of the disease. We discuss normal huntingtin protein function, evidence for differential toxicity of mutant huntingtin variants, theories of huntingtin aggregation and the many different mechanisms of Huntington disease pathogenesis. We describe the genetic and clinical diagnosis of the condition, its clinical assessment and the multidisciplinary management of symptoms, given the absence of effective disease-modifying therapies. We review past and present clinical trials and therapeutic strategies under investigation, including impending trials of targeted huntingtin-lowering drugs and the progress in development of biomarkers that will support the next generation of trials. For an illustrated summary of this Primer, visit: http://go.nature.com/hPMENh.
Collapse
Affiliation(s)
- Gillian P Bates
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Ray Dorsey
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Kay
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martha Nance
- Struthers Parkinson's Center, Golden Valley, Minneapolis, Minnesota, USA; and Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachael I Scahill
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edward J Wild
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
25
|
Ghatak S, Raha S. Micro RNA-214 contributes to proteasome independent downregulation of beta catenin in Huntington's disease knock-in striatal cell model STHdhQ111/Q111. Biochem Biophys Res Commun 2015; 459:509-14. [PMID: 25747711 DOI: 10.1016/j.bbrc.2015.02.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/24/2015] [Indexed: 01/31/2023]
Abstract
Role of beta catenin in Huntington's disease (HD) is not clear. Previous studies on HD reported varied levels of beta catenin. In the present study we showed that beta catenin is post transcriptionally down-regulated in mutant huntingtin knock-in cell model STHdhQ111/Q111. This in turn leads to decreased level of wnt/beta catenin responsive genes. We observed that Gsk3beta or Gsk3beta (phospho Ser 9) is unaltered in HD and this down-regulation of beta catenin is independent of proteasomal degradation. Finally, we showed that the overexpression of miR-214 leads to the down-regulation of beta catenin at protein level only and reduces its transcriptional activity. We concluded that, miR-214 contributes to the processes that result in proteasome independent post transcriptional down-regulation of beta catenin in STHdhQ111/Q111, probably through inhibition of protein synthesis from beta catenin mRNA.
Collapse
Affiliation(s)
- Supratim Ghatak
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.
| | - Sanghamitra Raha
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Integrated Science, Education and Research Center and Dept. of Biotechnology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
26
|
Hargus G, Ehrlich M, Hallmann AL, Kuhlmann T. Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathol 2014; 127:151-73. [PMID: 24306942 DOI: 10.1007/s00401-013-1222-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 02/07/2023]
Abstract
The number of patients with neurodegenerative diseases is increasing significantly worldwide. Thus, intense research is being pursued to uncover mechanisms of disease development in an effort to identify molecular targets for therapeutic intervention. Analysis of postmortem tissue from patients has yielded important histological and biochemical markers of disease progression. However, this approach is inherently limited because it is not possible to study patient neurons prior to degeneration. As such, transgenic and knockout models of neurodegenerative diseases are commonly employed. While these animal models have yielded important insights into some molecular mechanisms of disease development, they do not provide the opportunity to study mechanisms of neurodegeneration in human neurons at risk and thus, it is often difficult or even impossible to replicate human pathogenesis with this approach. The generation of patient-specific induced pluripotent stem (iPS) cells offers a unique opportunity to overcome these obstacles. By expanding and differentiating iPS cells, it is possible to generate large numbers of functional neurons in vitro, which can then be used to study the disease of the donating patient. Here, we provide an overview of human stem cell models of neurodegeneration using iPS cells from patients with Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease, spinal muscular atrophy and other neurodegenerative diseases. In addition, we describe how further refinements of reprogramming technology resulted in the generation of patient-specific induced neurons, which have also been used to model neurodegenerative changes in vitro.
Collapse
Affiliation(s)
- Gunnar Hargus
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany,
| | | | | | | |
Collapse
|
27
|
Kwan W, Träger U, Davalos D, Chou A, Bouchard J, Andre R, Miller A, Weiss A, Giorgini F, Cheah C, Möller T, Stella N, Akassoglou K, Tabrizi SJ, Muchowski PJ. Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Invest 2012; 122:4737-47. [PMID: 23160193 DOI: 10.1172/jci64484] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
In Huntington disease (HD), immune cells are activated before symptoms arise; however, it is unclear how the expression of mutant huntingtin (htt) compromises the normal functions of immune cells. Here we report that primary microglia from early postnatal HD mice were profoundly impaired in their migration to chemotactic stimuli, and expression of a mutant htt fragment in microglial cell lines was sufficient to reproduce these deficits. Microglia expressing mutant htt had a retarded response to a laser-induced brain injury in vivo. Leukocyte recruitment was defective upon induction of peritonitis in HD mice at early disease stages and was normalized upon genetic deletion of mutant htt in immune cells. Migration was also strongly impaired in peripheral immune cells from pre-manifest human HD patients. Defective actin remodeling in immune cells expressing mutant htt likely contributed to their migration deficit. Our results suggest that these functional changes may contribute to immune dysfunction and neurodegeneration in HD, and may have implications for other polyglutamine expansion diseases in which mutant proteins are ubiquitously expressed.
Collapse
Affiliation(s)
- Wanda Kwan
- Biomedical Sciences Program, UCSF, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 2012; 11:253-63. [PMID: 22748967 DOI: 10.1016/j.stem.2012.04.026] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/10/2011] [Accepted: 04/27/2012] [Indexed: 12/16/2022]
Abstract
Huntington's disease (HD) is caused by a CAG expansion in the huntingtin gene. Expansion of the polyglutamine tract in the huntingtin protein results in massive cell death in the striatum of HD patients. We report that human induced pluripotent stem cells (iPSCs) derived from HD patient fibroblasts can be corrected by the replacement of the expanded CAG repeat with a normal repeat using homologous recombination, and that the correction persists in iPSC differentiation into DARPP-32-positive neurons in vitro and in vivo. Further, correction of the HD-iPSCs normalized pathogenic HD signaling pathways (cadherin, TGF-β, BDNF, and caspase activation) and reversed disease phenotypes such as susceptibility to cell death and altered mitochondrial bioenergetics in neural stem cells. The ability to make patient-specific, genetically corrected iPSCs from HD patients will provide relevant disease models in identical genetic backgrounds and is a critical step for the eventual use of these cells in cell replacement therapy.
Collapse
|
29
|
Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 2012; 11:264-78. [PMID: 22748968 DOI: 10.1016/j.stem.2012.04.027] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 02/02/2012] [Accepted: 04/19/2012] [Indexed: 01/10/2023]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, The HD Consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG-repeat-expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease-associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal, as assessed using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a human stem cell platform for screening new candidate therapeutics.
Collapse
|
30
|
Lo Sardo V, Zuccato C, Gaudenzi G, Vitali B, Ramos C, Tartari M, Myre MA, Walker JA, Pistocchi A, Conti L, Valenza M, Drung B, Schmidt B, Gusella J, Zeitlin S, Cotelli F, Cattaneo E. An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin. Nat Neurosci 2012; 15:713-21. [PMID: 22466506 DOI: 10.1038/nn.3080] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/05/2012] [Indexed: 02/06/2023]
Abstract
The Huntington's disease gene product, huntingtin, is indispensable for neural tube formation, but its role is obscure. We studied neurulation in htt-null embryonic stem cells and htt-morpholino zebrafish embryos and found a previously unknown, evolutionarily recent function for this ancient protein. We found that htt was essential for homotypic interactions between neuroepithelial cells; it permitted neurulation and rosette formation by regulating metalloprotease ADAM10 activity and Ncadherin cleavage. This function was embedded in the N terminus of htt and was phenocopied by treatment of htt knockdown zebrafish with an ADAM10 inhibitor. Notably, in htt-null cells, reversion of the rosetteless phenotype occurred only with expression of evolutionarily recent htt heterologues from deuterostome organisms. Conversely, all of the heterologues that we tested, including htt from Drosophila melanogaster and Dictyostelium discoideum, exhibited anti-apoptotic activity. Thus, anti-apoptosis may have been one of htt’s ancestral function(s), but, in deuterostomes, htt evolved to acquire a unique regulatory activity for controlling neural adhesion via ADAM10-Ncadherin, with implications for brain evolution and development.
Collapse
Affiliation(s)
- Valentina Lo Sardo
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shaw SY, Brettman AD. Phenotyping patient-derived cells for translational studies in cardiovascular disease. Circulation 2012; 124:2444-55. [PMID: 22125190 DOI: 10.1161/circulationaha.111.043943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Y Shaw
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|