1
|
Tian X, Yao W, Tan J, Hu Z, Liu J. gdf11 is required for pronephros/cloaca development through targeting TGF-β signaling. Sci Rep 2025; 15:8052. [PMID: 40055488 PMCID: PMC11889093 DOI: 10.1038/s41598-025-92571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
The kidney is a vital organ responsible for removing toxins, producing urine, and regulating homeostasis. Developmental defects in the kidney lead to various congenital abnormalities that impair renal function. Gdf11, a member of the transforming growth factor β family, is associated with numerous renal abnormalities. In the early developmental stage, the pronephric duct and hindgut open into the cloaca, and Gdf11 shows significant expression in the hindgut of mice. However, the molecular and cellular roles of gdf11 in kidney and cloaca organogenesis remain unclear. Our study revealed that pronephros and cloaca formation were significantly disrupted upon gdf11 deletion or knockdown in zebrafish. Additionally, we found that the TGF-β pathway acts downstream of Gdf11 in promoting pronephros and cloaca development. Treatment with a TGF-β small molecule activator partially rescued the pronephros and cloaca developmental defects observed in gdf11-/- mutants. In summary, our findings provide strong evidence of a critical link between pronephros/cloaca formation and TGF-β signaling mediated by Gdf11. Our study also provides new insight into diseases related to renal and cloaca development.
Collapse
Affiliation(s)
- Xinning Tian
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Wantao Yao
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Jin Tan
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Zhangle Hu
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jingwen Liu
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
3
|
Wolf MTF, Bonsib SM, Larsen CP, Hildebrandt F. Nephronophthisis: a pathological and genetic perspective. Pediatr Nephrol 2024; 39:1977-2000. [PMID: 37930417 DOI: 10.1007/s00467-023-06174-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 11/07/2023]
Abstract
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most frequent genetic causes for kidney failure (KF) in children and adolescents. Over 20 genes cause NPHP and over 90 genes contribute to renal ciliopathies often involving multiple organs. About 15-20% of NPHP patients have additional extrarenal symptoms affecting other organs than the kidneys. The involvement of additional organ systems in syndromic forms of NPHP is explained by shared expression of most NPHP gene products in centrosomes and primary cilia, a sensory organelle present in most mammalian cells. This finding resulted in the classification of NPHP as a ciliopathy. If extrarenal symptoms are present in addition to NPHP, these disorders are defined as NPHP-related ciliopathies (NPHP-RC) and can involve the retina (e.g., with Senior-Løken syndrome), CNS (central nervous system) (e.g., with Joubert syndrome), liver (e.g., Boichis and Arima syndromes), or bone (e.g., Mainzer-Saldino and Sensenbrenner syndromes). This review focuses on the pathological findings and the recent genetic advances in NPHP and NPHP-RC. Different mechanisms and signaling pathways are involved in NPHP ranging from planar cell polarity, sonic hedgehog signaling (Shh), DNA damage response pathway, Hippo, mTOR, and cAMP signaling. A number of therapeutic interventions appear to be promising, ranging from vasopressin receptor 2 antagonists such as tolvaptan, cyclin-dependent kinase inhibitors such as roscovitine, Hh agonists such as purmorphamine, and mTOR inhibitors such as rapamycin.
Collapse
Affiliation(s)
- Matthias T F Wolf
- Division of Pediatric Nephrology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Division of Pediatric Nephrology, C.S. Mott Children's Hospital, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | | | | | | |
Collapse
|
4
|
Garfa Traoré M, Roccio F, Miceli C, Ferri G, Parisot M, Cagnard N, Lhomme M, Dupont N, Benmerah A, Saunier S, Delous M. Fluid shear stress triggers cholesterol biosynthesis and uptake in inner medullary collecting duct cells, independently of nephrocystin-1 and nephrocystin-4. Front Mol Biosci 2023; 10:1254691. [PMID: 37916190 PMCID: PMC10616263 DOI: 10.3389/fmolb.2023.1254691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Renal epithelial cells are subjected to fluid shear stress of urine flow. Several cellular structures act as mechanosensors-the primary cilium, microvilli and cell adhesion complexes-that directly relay signals to the cytoskeleton to regulate various processes including cell differentiation and renal cell functions. Nephronophthisis (NPH) is an autosomal recessive tubulointerstitial nephropathy leading to end-stage kidney failure before adulthood. NPHP1 and NPHP4 are the major genes which code for proteins that form a complex at the transition zone of the primary cilium, a crucial region required for the maintenance of the ciliary composition integrity. These two proteins also interact with signaling components and proteins associated with the actin cytoskeleton at cell junctions. Due to their specific subcellular localization, we wondered whether NPHP1 and NPHP4 could ensure mechanosensory functions. Using a microfluidic set up, we showed that murine inner medullary collecting ductal cells invalidated for Nphp1 or Nphp4 are more responsive to immediate shear exposure with a fast calcium influx, and upon a prolonged shear condition, an inability to properly regulate cilium length and actin cytoskeleton remodeling. Following a transcriptomic study highlighting shear stress-induced gene expression changes, we showed that prolonged shear triggers both cholesterol biosynthesis pathway and uptake, processes that do not seem to involve neither NPHP1 nor NPHP4. To conclude, our study allowed us to determine a moderate role of NPHP1 and NPHP4 in flow sensation, and to highlight a new signaling pathway induced by shear stress, the cholesterol biosynthesis and uptake pathways, which would allow cells to cope with mechanical stress by strengthening their plasma membrane through the supply of cholesterol.
Collapse
Affiliation(s)
- Meriem Garfa Traoré
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
- Cell Imaging Platform, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Federica Roccio
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Caterina Miceli
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Giulia Ferri
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Université Paris Cité, Paris, France
| | - Marie Lhomme
- ICAN Omics, IHU ICAN Foundation for Innovation in Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151/CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Marion Delous
- Laboratory of Hereditary Kidney Disease, INSERM UMR 1163, Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Wang H, Zaiser F, Eckert P, Ruf J, Kayser N, Veenstra AC, Müller M, Haas R, Walz G, Yakulov TA. Inversin (NPHP2) and Vangl2 are required for normal zebrafish cloaca formation. Biochem Biophys Res Commun 2023; 673:9-15. [PMID: 37352572 DOI: 10.1016/j.bbrc.2023.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Nephronophthisis (NPH), an autosomal recessive ciliopathy, results from mutations in more than 20 different genes (NPHPs). These gene products form protein complexes that regulate trafficking within the cilium, a microtubular structure that plays a crucial role in developmental processes. Several NPHPs, including NPHP2/Inversin, have been linked to extraciliary functions. In addition to defining a specific segment of primary cilia (Inversin compartment), NPHP2 participates in planar cell polarity (PCP) signaling along with Dishevelled and Vangl family members. We used the mutant zebrafish line invssa36157, containing a stop codon at amino acid 314, to characterize tissue-specific functions of zebrafish Nphp2. The invssa36157 line exhibits mild ciliopathy phenotypes and increased glomerular and cloaca cyst formation. These mutants showed enhanced susceptibility to the simultaneous depletion of the nphp1/nphp2/nphp8 module, known to be involved in the cytoskeletal organization of epithelial cells. Notably, simultaneous depletion of zebrafish nphp1 and vangl2 led to a pronounced increase in cloaca malformations in the invssa36157 mutant embryos. Time-lapse imaging showed that the pronephric cells correctly migrated towards the ectodermal cells in these embryos, but failed to form the cloaca opening. Despite these abnormal developments, cellular fate does not seem to be affected in nphp1 and vangl2 MO-depleted invssa36157 mutants, as shown by in situ hybridizations for markers of pronephros and ectodermal cell development. However, significantly reduced apoptotic activity was observed in this double knockdown model, signifying the role of apoptosis in cloacal morphogenesis. Our findings underscore the critical interplay of nphp1, nphp2/Inversin, and vangl2 in orchestrating normal cloaca formation in zebrafish, shedding light on the complex molecular mechanisms underlying ciliopathy-associated phenotypes.
Collapse
Affiliation(s)
- Hui Wang
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Friedemann Zaiser
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Priska Eckert
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Johannes Ruf
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Nicolas Kayser
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Anna C Veenstra
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Merle Müller
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Rebecca Haas
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
| | - Toma A Yakulov
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
6
|
Morleo M, Pezzella N, Franco B. Proteome balance in ciliopathies: the OFD1 protein example. Trends Mol Med 2023; 29:201-217. [PMID: 36494254 DOI: 10.1016/j.molmed.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
The balance of protein synthesis and degradation is finely regulated and influences cellular homeostasis and biological processes (e.g., embryonic development and neuronal plasticity). Recent data demonstrated that centrosomal/ciliary proteins enable proteome control in response to spatial or microenvironmental stimuli. Here, we discuss recent discoveries regarding the role in the balance of the proteome of centrosomal/ciliary proteins associated with genetic disorders known as ciliopathies. In particular, OFD1 was the first example of a ciliopathy protein controlling both protein expression and autophagic/proteasomal degradation. Understanding the role of proteome balance in the pathogenesis of the clinical manifestations of ciliopathies may pave the way to the identification of a wide range of putative novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples 'Federico II', Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
7
|
Vasilyeva TA, Kadyshev VV, Marakhonov AV, Kanivets IV, Korostelev SA, Koshkin PA, Pyankov DV, Petrova NV, Kutsev SI, Zinchenko RA. [Molecular genetics in diagnosis of Coats disease: combination of oligogenic variants associated with different forms of hereditary retinal dystrophy]. Vestn Oftalmol 2023; 139:69-74. [PMID: 36924516 DOI: 10.17116/oftalma202313901169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Coats disease (OMIM 300216) is a form of hereditary retinal dystrophy, which occurs due to congenital abnormality of retinal vessels and features unilateral exudative vitreoretinopathy. Coats disease mostly occurs sporadically; its genetic cause is still undetermined. Molecular genetic research including whole exome sequencing by the NGS method was used to define a genetic cause of the observed phenotype. Two heterozygous variants in different genomic loci associated with other forms of hereditary retinal dystrophy were detected, a rare variant in the HMCN1 gene c.9571C>T, p.(Arg3191Cys), and a known pathogenic variant in the NPHP4 gene c.2930C>T, p.(Thr977Met). The HMCN1 gene is responsible for dominant age-related macular degeneration (OMIM 603075), pathogenic variants in the NPHP4 gene cause recessive Senior-Løken syndrome 4 (OMIM 266900). These genes encode the proteins that are involved in the regulation of integrity of the blood-retinal barrier in the vascular endothelium (NPHP4) and retinal pigment epithelium (HMCN1). The identified mutation in the NPHP4 gene could lead to decreased function of the NPHP4 protein and contribute to the development of retinal degeneration, potentially of oligogenic nature.
Collapse
Affiliation(s)
- T A Vasilyeva
- Research Centre for Medical Genetics, Moscow, Russia
| | - V V Kadyshev
- Research Centre for Medical Genetics, Moscow, Russia
| | | | - I V Kanivets
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia.,OOO Genomed, Moscow, Russia
| | - S A Korostelev
- OOO Genomed, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - N V Petrova
- Research Centre for Medical Genetics, Moscow, Russia
| | - S I Kutsev
- Research Centre for Medical Genetics, Moscow, Russia
| | - R A Zinchenko
- Research Centre for Medical Genetics, Moscow, Russia.,N.A. Semashko National Research Institute of Public Health, Moscow, Russia
| |
Collapse
|
8
|
Wang J, Thomas HR, Thompson RG, Waldrep SC, Fogerty J, Song P, Li Z, Ma Y, Santra P, Hoover JD, Yeo NC, Drummond IA, Yoder BK, Amack JD, Perkins B, Parant JM. Variable phenotypes and penetrance between and within different zebrafish ciliary transition zone mutants. Dis Model Mech 2022; 15:dmm049568. [PMID: 36533556 PMCID: PMC9844136 DOI: 10.1242/dmm.049568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022] Open
Abstract
Meckel syndrome, nephronophthisis, Joubert syndrome and Bardet-Biedl syndrome are caused by mutations in proteins that localize to the ciliary transition zone (TZ). The phenotypically distinct syndromes suggest that these TZ proteins have differing functions. However, mutations in a single TZ gene can result in multiple syndromes, suggesting that the phenotype is influenced by modifier genes. We performed a comprehensive analysis of ten zebrafish TZ mutants, including mks1, tmem216, tmem67, rpgrip1l, cc2d2a, b9d2, cep290, tctn1, nphp1 and nphp4, as well as mutants in ift88 and ift172. Our data indicate that variations in phenotypes exist between different TZ mutants, supporting different tissue-specific functions of these TZ genes. Further, we observed phenotypic variations within progeny of a single TZ mutant, reminiscent of multiple disease syndromes being associated with mutations in one gene. In some mutants, the dynamics of the phenotype became complex with transitory phenotypes that are corrected over time. We also demonstrated that multiple-guide-derived CRISPR/Cas9 F0 'crispant' embryos recapitulate zygotic null phenotypes, and rapidly identified ciliary phenotypes in 11 cilia-associated gene candidates (ankfn1, ccdc65, cfap57, fhad1, nme7, pacrg, saxo2, c1orf194, ttc26, zmynd12 and cfap52).
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Holly R. Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Robert G. Thompson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Stephanie C. Waldrep
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Joseph Fogerty
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ping Song
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Zhang Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Yongjie Ma
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Peu Santra
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jonathan D. Hoover
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Nan Cher Yeo
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Iain A. Drummond
- Davis Center for Aging and Regeneration, Mount Desert Island Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - Bradley K. Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Kayser N, Zaiser F, Veenstra AC, Wang H, Göcmen B, Eckert P, Franz H, Köttgen A, Walz G, Yakulov TA. Clock genes rescue nphp mutations in zebrafish. Hum Mol Genet 2022; 31:4143-4158. [PMID: 35861640 PMCID: PMC9759334 DOI: 10.1093/hmg/ddac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/21/2023] Open
Abstract
The zebrafish pronephros model, using morpholino oligonucleotides (MO) to deplete target genes, has been extensively used to characterize human ciliopathy phenotypes. Recently, discrepancies between MO and genetically defined mutants have questioned this approach. We analyzed zebrafish with mutations in the nphp1-4-8 module to determine the validity of MO-based results. While MO-mediated depletion resulted in glomerular cyst and cloaca malformation, these ciliopathy-typical manifestations were observed at a much lower frequency in zebrafish embryos with defined nphp mutations. All nphp1-4-8 mutant zebrafish were viable and displayed decreased manifestations in the next (F2) generation, lacking maternal RNA contribution. While genetic compensation was further supported by the observation that nphp4-deficient mutants became partially refractory to MO-based nphp4 depletion, zebrafish embryos, lacking one nphp gene, became more sensitive to MO-based depletion of additional nphp genes. Transcriptome analysis of nphp8 mutant embryos revealed an upregulation of the circadian clock genes cry1a and cry5. MO-mediated depletion of cry1a and cry5 caused ciliopathy phenotypes in wild-type embryos, while cry1a and cry5 depletion in maternal zygotic nphp8 mutant embryos increased the frequency of glomerular cysts compared to controls. Importantly, cry1a and cry5 rescued the nephropathy-related phenotypes in nphp1, nphp4 or nphp8-depleted zebrafish embryos. Our results reveal that nphp mutant zebrafish resemble the MO-based phenotypes, albeit at a much lower frequency. Rapid adaption through upregulation of circadian clock genes seems to ameliorate the loss of nphp genes, contributing to phenotypic differences.
Collapse
Affiliation(s)
| | | | | | | | - Burulca Göcmen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79106, Germany
| | - Priska Eckert
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany
| | - Henriette Franz
- Department of Biomedicine, University of Basel, Pestalozzistr. 20, Basel CH-4056, Switzerland
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79106, Germany
| | - Gerd Walz
- Renal Division, University Freiburg Medical Center, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Albertstrasse 19, Freiburg 79104, Germany
| | - Toma A Yakulov
- To whom correspondence should be addressed. Tel: +49 76127063036;
| |
Collapse
|
10
|
Agonists of prostaglandin E 2 receptors as potential first in class treatment for nephronophthisis and related ciliopathies. Proc Natl Acad Sci U S A 2022; 119:e2115960119. [PMID: 35482924 PMCID: PMC9170064 DOI: 10.1073/pnas.2115960119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceJuvenile nephronophthisis (NPH) is a renal ciliopathy due to a dysfunction of primary cilia for which no curative treatment is available. This paper describes the identification of agonists of prostaglandin E2 receptors as a potential therapeutic approach for the most common NPHP1-associated ciliopathies. We demonstrated that prostaglandin E1 rescues defective ciliogenesis and ciliary composition in NPHP1 patient urine-derived renal tubular cells and improves ciliary and kidney phenotypes in our NPH zebrafish and Nphp1-/- mouse models. In addition, Taprenepag alleviates the severe retinopathy observed in Nphp1-/- mice. Finally, transcriptomic analyses pointed out several pathways downstream the prostaglandin receptors as cell cycle progression, extracellular matrix, or actin cytoskeleton organization. Altogether, our findings provide an alternative for treatment of NPH.
Collapse
|
11
|
Comparative characterization of microRNAs of Schistosoma japonicum from SCID mice and BALB/c mice: Clues to the regulation of parasite growth and development. Acta Trop 2022; 225:106200. [PMID: 34740636 DOI: 10.1016/j.actatropica.2021.106200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
Schistosomiasis, caused by a parasite with a wide range of mammalian hosts, remains one of the most prevailing parasitic diseases in the world. While numerous studies have reported that the growth and reproduction of schistosomes in immunodeficient mice was significantly retarded, the underlying molecular mechanisms have yet to be revealed. In this study, we comparatively analyzed the microRNA expression of Schistosoma japonicum derived from SCID and BALB/c mice on the 35th day post-infection by high-throughput RNA sequencing as prominent morphological abnormalities had been observed in schistosomes from SCID mice when compared with those from BALB/c mice. The results revealed that more than 72% and 61% of clean reads in the small RNA libraries of female and male schistosomes, respectively, could be mapped to the selected miRs in the miRBase or the sequences of species-specific genomes. Further analysis identified 122 miRNAs using TPM >0.01 as the threshold value, including 75 known and 47 novel miRNAs, 96 of which were commonly expressed across all the four tested schistosome libraries. Comparative analysis of the libraries of schistosomes from SCID and BALB/c mice identified 15 differentially expressed miRNAs (5 up-regulated and 10 down-regulated) among females and 16 among males (9 up-regulated and 7 down-regulated). Integrated analysis of the two sets of differentially expressed miRNAs of female and male worms identified 2 miRNAs (sja-miR-3488 and sja-miR-novel_29) that overlapped between female and male datasets. Prediction of miRNA targets and Gene Ontology (GO) term enrichment analysis of the predicted target genes revealed that these genes were involved in some important biological processes, such as nucleic acid metabolic process, macromolecule modification, and cellular aromatic compound metabolic process. The predicted target genes were further matched to the differentially expressed genes in male and female schistosomes from the above two hosts, obtaining 7 genes that may be responsible for regulating the growth, development and sex maturation of schistosomes. Taken together, this study provides the first identification of differentially expressed miRNAs in schistosomes from SCID and BALB/c mice. These miRNAs and their predicted target mRNAs are probably involved in the regulation of development, growth, and maturation of schistosomes. Therefore, this study expands our understanding of schistosome development regulation and host-parasite relationship, and also provides a valuable set of potential anti-schistosomal targets for prevention and control of schistosomiasis.
Collapse
|
12
|
Łysyganicz PK, Pooranachandran N, Liu X, Adamson KI, Zielonka K, Elworthy S, van Eeden FJ, Grierson AJ, Malicki JJ. Loss of Deacetylation Enzymes Hdac6 and Sirt2 Promotes Acetylation of Cytoplasmic Tubulin, but Suppresses Axonemal Acetylation in Zebrafish Cilia. Front Cell Dev Biol 2021; 9:676214. [PMID: 34268305 PMCID: PMC8276265 DOI: 10.3389/fcell.2021.676214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/13/2021] [Indexed: 01/26/2023] Open
Abstract
Cilia are evolutionarily highly conserved organelles with important functions in many organs. The extracellular component of the cilium protruding from the plasma membrane comprises an axoneme composed of microtubule doublets, arranged in a 9 + 0 conformation in primary cilia or 9 + 2 in motile cilia. These microtubules facilitate transport of intraflagellar cargoes along the axoneme. They also provide structural stability to the cilium, which may play an important role in sensory cilia, where signals are received from the movement of extracellular fluid. Post-translational modification of microtubules in cilia is a well-studied phenomenon, and acetylation on lysine 40 (K40) of alpha tubulin is prominent in cilia. It is believed that this modification contributes to the stabilization of cilia. Two classes of enzymes, histone acetyltransferases and histone deacetylases, mediate regulation of tubulin acetylation. Here we use a genetic approach, immunocytochemistry and behavioral tests to investigate the function of tubulin deacetylases in cilia in a zebrafish model. By mutating three histone deacetylase genes (Sirt2, Hdac6, and Hdac10), we identify an unforeseen role for Hdac6 and Sirt2 in cilia. As expected, mutation of these genes leads to increased acetylation of cytoplasmic tubulin, however, surprisingly it caused decreased tubulin acetylation in cilia in the developing eye, ear, brain and kidney. Cilia in the ear and eye showed elevated levels of mono-glycylated tubulin suggesting a compensatory mechanism. These changes did not affect the length or morphology of cilia, however, functional defects in balance was observed, suggesting that the level of tubulin acetylation may affect function of the cilium.
Collapse
Affiliation(s)
- Paweł K Łysyganicz
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Xinming Liu
- The School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Kathryn I Adamson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Zielonka
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Stone Elworthy
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Fredericus J van Eeden
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J Grierson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Jarema J Malicki
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
14
|
The Role of Wnt Signalling in Chronic Kidney Disease (CKD). Genes (Basel) 2020; 11:genes11050496. [PMID: 32365994 PMCID: PMC7290783 DOI: 10.3390/genes11050496] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease (CKD) encompasses a group of diverse diseases that are associated with accumulating kidney damage and a decline in glomerular filtration rate (GFR). These conditions can be of an acquired or genetic nature and, in many cases, interactions between genetics and the environment also play a role in disease manifestation and severity. In this review, we focus on genetically inherited chronic kidney diseases and dissect the links between canonical and non-canonical Wnt signalling, and this umbrella of conditions that result in kidney damage. Most of the current evidence on the role of Wnt signalling in CKD is gathered from studies in polycystic kidney disease (PKD) and nephronophthisis (NPHP) and reveals the involvement of β-catenin. Nevertheless, recent findings have also linked planar cell polarity (PCP) signalling to CKD, with further studies being required to fully understand the links and molecular mechanisms.
Collapse
|
15
|
Abstract
Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical Hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this Review, we highlight central mechanisms by which primary cilia coordinate HH, G protein-coupled receptor, WNT, receptor tyrosine kinase and transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) signalling and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.
Collapse
|
16
|
Reilly ML, Stokman MF, Magry V, Jeanpierre C, Alves M, Paydar M, Hellinga J, Delous M, Pouly D, Failler M, Martinovic J, Loeuillet L, Leroy B, Tantau J, Roume J, Gregory-Evans CY, Shan X, Filges I, Allingham JS, Kwok BH, Saunier S, Giles RH, Benmerah A. Loss-of-function mutations in KIF14 cause severe microcephaly and kidney development defects in humans and zebrafish. Hum Mol Genet 2019; 28:778-795. [PMID: 30388224 PMCID: PMC6381319 DOI: 10.1093/hmg/ddy381] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022] Open
Abstract
Mutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions. Here, we analysed four families with fetuses presenting with the syndromic form and harbouring biallelic variants in KIF14. Our functional analyses showed that the identified variants severely impact the activity of KIF14 and likely correspond to loss-of-function mutations. Analysis in human fetal tissues further revealed the accumulation of KIF14-positive midbody remnants in the lumen of ureteric bud tips indicating a shared function of KIF14 during brain and kidney development. Subsequently, analysis of a kif14 mutant zebrafish line showed a conserved role for this mitotic kinesin. Interestingly, ciliopathy-associated phenotypes were also present in mutant embryos, supporting a potential direct or indirect role for KIF14 at cilia. However, our in vitro and in vivo analyses did not provide evidence of a direct role for KIF14 in ciliogenesis and suggested that loss of kif14 causes ciliopathy-like phenotypes through an accumulation of mitotic cells in ciliated tissues. Altogether, our results demonstrate that KIF14 mutations result in a severe syndrome associating microcephaly and RHD through its conserved function in cytokinesis during kidney and brain development.
Collapse
Affiliation(s)
- Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
- Paris Diderot University, Department of Life Sciences, Paris, France
| | - Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht University, JE Utrecht, Netherlands
| | - Virginie Magry
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Cecile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marine Alves
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Mohammadjavad Paydar
- Institute for Research in Immunology and Cancer, Département de médecine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Jacqueline Hellinga
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Marion Delous
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Daniel Pouly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marion Failler
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Antoine Béclère Hospital, AP-HP, Clamart, France
- INSERM U-788, Génétique/Neurogénétique, 94270 Le Kremlin-Bicêtre, France
| | - Laurence Loeuillet
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker–Enfants Malades, AP-HP, Paris, France
| | - Brigitte Leroy
- Service d'Anatomie et de Cytologie Pathologiques, Centre hospitalier intercommunal de Poissy, Saint Germain en Laye, France
| | - Julia Tantau
- Service d'Anatomie et de Cytologie Pathologiques, Centre hospitalier intercommunal de Poissy, Saint Germain en Laye, France
| | - Joelle Roume
- Service de Génétique, Centre hospitalier intercommunal de Poissy, 78100 Saint Germain en Laye, France
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xianghong Shan
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital of Basel, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
- Department of Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John S Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Benjamin H Kwok
- Institute for Research in Immunology and Cancer, Département de médecine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, 3512 JE Utrecht, Netherlands
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| |
Collapse
|
17
|
Hoff S, Epting D, Falk N, Schroda S, Braun DA, Halbritter J, Hildebrandt F, Kramer-Zucker A, Bergmann C, Walz G, Lienkamp SS. The nucleoside-diphosphate kinase NME3 associates with nephronophthisis proteins and is required for ciliary function during renal development. J Biol Chem 2018; 293:15243-15255. [PMID: 30111592 PMCID: PMC6166740 DOI: 10.1074/jbc.ra117.000847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 08/07/2018] [Indexed: 01/12/2023] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive renal disease leading to kidney failure in children and young adults. The protein products of the corresponding genes (NPHPs) are localized in primary cilia or their appendages. Only about 70% of affected individuals have a mutation in one of 100 renal ciliopathy genes, and no unifying pathogenic mechanism has been identified. Recently, some NPHPs, including NIMA-related kinase 8 (NEK8) and centrosomal protein 164 (CEP164), have been found to act in the DNA-damage response pathway and to contribute to genome stability. Here, we show that NME/NM23 nucleoside-diphosphate kinase 3 (NME3) that has recently been found to facilitate DNA-repair mechanisms binds to several NPHPs, including NEK8, CEP164, and ankyrin repeat and sterile α motif domain-containing 6 (ANKS6). Depletion of nme3 in zebrafish and Xenopus resulted in typical ciliopathy-associated phenotypes, such as renal malformations and left-right asymmetry defects. We further found that endogenous NME3 localizes to the basal body and that it associates also with centrosomal proteins, such as NEK6, which regulates cell cycle arrest after DNA damage. The ciliopathy-typical manifestations of NME3 depletion in two vertebrate in vivo models, the biochemical association of NME3 with validated NPHPs, and its localization to the basal body reveal a role for NME3 in ciliary function. We conclude that mutations in the NME3 gene may aggravate the ciliopathy phenotypes observed in humans.
Collapse
Affiliation(s)
- Sylvia Hoff
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniel Epting
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Nathalie Falk
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sophie Schroda
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jan Halbritter
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Albrecht Kramer-Zucker
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Carsten Bergmann
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Human Genetics, Bioscientia, 55218 Ingelheim, Germany, and
| | - Gerd Walz
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), 79104 Freiburg, Germany
| | - Soeren S Lienkamp
- From the Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany,
- Center for Biological Signaling Studies (BIOSS), 79104 Freiburg, Germany
| |
Collapse
|
18
|
Patnaik SR, Zhang X, Biswas L, Akhtar S, Zhou X, Kusuluri DK, Reilly J, May-Simera H, Chalmers S, McCarron JG, Shu X. RPGR protein complex regulates proteasome activity and mediates store-operated calcium entry. Oncotarget 2018; 9:23183-23197. [PMID: 29796181 PMCID: PMC5955404 DOI: 10.18632/oncotarget.25259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/07/2018] [Indexed: 11/25/2022] Open
Abstract
Ciliopathies are a group of genetically heterogeneous disorders, characterized by defects in cilia genesis or maintenance. Mutations in the RPGR gene and its interacting partners, RPGRIP1 and RPGRIP1L, cause ciliopathies, but the function of their proteins remains unclear. Here we show that knockdown (KD) of RPGR, RPGRIP1 or RPGRIP1L in hTERT-RPE1 cells results in abnormal actin cytoskeleton organization. The actin cytoskeleton rearrangement is regulated by the small GTPase RhoA via the planar cell polarity (PCP) pathway. RhoA activity was upregulated in the absence of RPGR, RPGRIP1 or RPGRIP1L proteins. In RPGR, RPGRIP1 or RPGRIP1L KD cells, we observed increased levels of DVl2 and DVl3 proteins, the core components of the PCP pathway, due to impaired proteasomal activity. RPGR, RPGRIP1 or RPGRIP1L KD cells treated with thapsigargin (TG), an inhibitor of sarcoendoplasmic reticulum Ca2+- ATPases, showed impaired store-operated Ca2+ entry (SOCE), which is mediated by STIM1 and Orai1 proteins. STIM1 was not localized to the ER-PM junction upon ER store depletion in RPGR, RPGRIP1 or RPGRIP1L KD cells. Our results demonstrate that the RPGR protein complex is required for regulating proteasomal activity and for modulating SOCE, which may contribute to the ciliopathy phenotype.
Collapse
Affiliation(s)
- Sarita Rani Patnaik
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - Xun Zhang
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Lincoln Biswas
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Saeed Akhtar
- Cornea Research Chair, Department of Optometry, King Saud University, Riyadh 11433, Kingdom of Saudi Arabia
| | - Xinzhi Zhou
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - James Reilly
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, Scotland
| |
Collapse
|
19
|
Gehrig J, Pandey G, Westhoff JH. Zebrafish as a Model for Drug Screening in Genetic Kidney Diseases. Front Pediatr 2018; 6:183. [PMID: 30003073 PMCID: PMC6031734 DOI: 10.3389/fped.2018.00183] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
Abstract
Genetic disorders account for a wide range of renal diseases emerging during childhood and adolescence. Due to the utilization of modern biochemical and biomedical techniques, the number of identified disease-associated genes is increasing rapidly. Modeling of congenital human disease in animals is key to our understanding of the biological mechanism underlying pathological processes and thus developing novel potential treatment options. The zebrafish (Danio rerio) has been established as a versatile small vertebrate organism that is widely used for studying human inherited diseases. Genetic accessibility in combination with elegant experimental methods in zebrafish permit modeling of human genetic diseases and dissecting the perturbation of underlying cellular networks and physiological processes. Beyond its utility for genetic analysis and pathophysiological and mechanistic studies, zebrafish embryos, and larvae are amenable for phenotypic screening approaches employing high-content and high-throughput experiments using automated microscopy. This includes large-scale chemical screening experiments using genetic models for searching for disease-modulating compounds. Phenotype-based approaches of drug discovery have been successfully performed in diverse zebrafish-based screening applications with various phenotypic readouts. As a result, these can lead to the identification of candidate substances that are further examined in preclinical and clinical trials. In this review, we discuss zebrafish models for inherited kidney disease as well as requirements and considerations for the technical realization of drug screening experiments in zebrafish.
Collapse
Affiliation(s)
- Jochen Gehrig
- Acquifer is a Division of Ditabis, Digital Biomedical Imaging Systems AG, Pforzheim, Germany
| | - Gunjan Pandey
- Acquifer is a Division of Ditabis, Digital Biomedical Imaging Systems AG, Pforzheim, Germany.,Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Jens H Westhoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis. Proc Natl Acad Sci U S A 2017; 114:E7341-E7347. [PMID: 28808027 DOI: 10.1073/pnas.1709255114] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-syndromic craniosynostosis (NSC) is a frequent congenital malformation in which one or more cranial sutures fuse prematurely. Mutations causing rare syndromic craniosynostoses in humans and engineered mouse models commonly increase signaling of the Wnt, bone morphogenetic protein (BMP), or Ras/ERK pathways, converging on shared nuclear targets that promote bone formation. In contrast, the genetics of NSC is largely unexplored. More than 95% of NSC is sporadic, suggesting a role for de novo mutations. Exome sequencing of 291 parent-offspring trios with midline NSC revealed 15 probands with heterozygous damaging de novo mutations in 12 negative regulators of Wnt, BMP, and Ras/ERK signaling (10.9-fold enrichment, P = 2.4 × 10-11). SMAD6 had 4 de novo and 14 transmitted mutations; no other gene had more than 1. Four familial NSC kindreds had mutations in genes previously implicated in syndromic disease. Collectively, these mutations contribute to 10% of probands. Mutations are predominantly loss-of-function, implicating haploinsufficiency as a frequent mechanism. A common risk variant near BMP2 increased the penetrance of SMAD6 mutations and was overtransmitted to patients with de novo mutations in other genes in these pathways, supporting a frequent two-locus pathogenesis. These findings implicate new genes in NSC and demonstrate related pathophysiology of common non-syndromic and rare syndromic craniosynostoses. These findings have implications for diagnosis, risk of recurrence, and risk of adverse neurodevelopmental outcomes. Finally, the use of pathways identified in rare syndromic disease to find genes accounting for non-syndromic cases may prove broadly relevant to understanding other congenital disorders featuring high locus heterogeneity.
Collapse
|
21
|
Walz G. Role of primary cilia in non-dividing and post-mitotic cells. Cell Tissue Res 2017; 369:11-25. [PMID: 28361305 PMCID: PMC5487853 DOI: 10.1007/s00441-017-2599-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
The essential role of primary (non-motile) cilia during the development of multi-cellular tissues and organs is well established and is underlined by severe disease manifestations caused by mutations in cilia-associated molecules that are collectively termed ciliopathies. However, the role of primary cilia in non-dividing and terminally differentiated, post-mitotic cells is less well understood. Although the prevention of cells from re-entering the cell cycle may represent a major chore, primary cilia have recently been linked to DNA damage responses, autophagy and mitochondria. Given this connectivity, primary cilia in non-dividing cells are well positioned to form a signaling hub outside of the nucleus. Such a center could integrate information to initiate responses and to maintain cellular homeostasis if cell survival is jeopardized. These more discrete functions may remain undetected until differentiated cells are confronted with emergencies.
Collapse
Affiliation(s)
- Gerd Walz
- Renal Division, Department of Medicine, University Freiburg Medical Center, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
22
|
McClure-Begley TD, Klymkowsky MW. Nuclear roles for cilia-associated proteins. Cilia 2017; 6:8. [PMID: 28560031 PMCID: PMC5445336 DOI: 10.1186/s13630-017-0052-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023] Open
Abstract
Cilia appear to be derived, evolutionarily, from structures present in the ancestral (pre-ciliary) eukaryote, such as microtubule-based vesicle trafficking and chromosome segregation systems. Experimental observations suggest that the ciliary gate, the molecular complex that mediates the selective molecular movement between cytoplasmic and ciliary compartments, shares features with nuclear pores. Our hypothesis is that this shared transport machinery is at least partially responsible for the observation that a number of ciliary and ciliogenesis-associated proteins are found within nuclei where they play roles in the regulation of gene expression, DNA repair, and nuclear import and export. Recognizing the potential for such nuclear roles is critical when considering the phenotypic effects that arise from the mutational modification of ciliary proteins.
Collapse
Affiliation(s)
- Tristan D McClure-Begley
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Michael W Klymkowsky
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 USA
| |
Collapse
|
23
|
Pronephric tubule formation in zebrafish: morphogenesis and migration. Pediatr Nephrol 2017; 32:211-216. [PMID: 26942753 DOI: 10.1007/s00467-016-3353-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/14/2023]
Abstract
The nephron is the functional subunit of the vertebrate kidney and plays important osmoregulatory and excretory roles during embryonic development and in adulthood. Despite its central role in kidney function, surprisingly little is known about the molecular and cellular processes that control nephrogenesis. The zebrafish pronephric kidney, comprising two nephrons, provides a visually accessible and genetically tractable model system for a better understanding of nephron formation. Using this system, various developmental processes, including the commitment of mesoderm to a kidney fate, renal tubule proliferation, and migration, can be studied during nephrogenesis. Here, we discuss some of these processes in zebrafish with a focus on the pathways that influence renal tubule cell morphogenesis.
Collapse
|
24
|
Abstract
The pronephros is the first kidney type to form in vertebrate embryos. The first step of pronephrogenesis in the zebrafish is the formation of the intermediate mesoderm during gastrulation, which occurs in response to secreted morphogens such as BMPs and Nodals. Patterning of the intermediate mesoderm into proximal and distal cell fates is induced by retinoic acid signaling with downstream transcription factors including wt1a, pax2a, pax8, hnf1b, sim1a, mecom, and irx3b. In the anterior intermediate mesoderm, progenitors of the glomerular blood filter migrate and fuse at the midline and recruit a blood supply. More posteriorly localized tubule progenitors undergo epithelialization and fuse with the cloaca. The Notch signaling pathway regulates the formation of multi-ciliated cells in the tubules and these cells help propel the filtrate to the cloaca. The lumenal sheer stress caused by flow down the tubule activates anterior collective migration of the proximal tubules and induces stretching and proliferation of the more distal segments. Ultimately these processes create a simple two-nephron kidney that is capable of reabsorbing and secreting solutes and expelling excess water-processes that are critical to the homeostasis of the body fluids. The zebrafish pronephric kidney provides a simple, yet powerful, model system to better understand the conserved molecular and cellular progresses that drive nephron formation, structure, and function.
Collapse
Affiliation(s)
- Richard W Naylor
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sarah S Qubisi
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
25
|
Blanco-Sánchez B, Clément A, Phillips JB, Westerfield M. Zebrafish models of human eye and inner ear diseases. Methods Cell Biol 2016; 138:415-467. [PMID: 28129854 DOI: 10.1016/bs.mcb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies.
Collapse
Affiliation(s)
| | - A Clément
- University of Oregon, Eugene, OR, United States
| | | | | |
Collapse
|
26
|
Naylor RW, Dodd RC, Davidson AJ. Caudal migration and proliferation of renal progenitors regulates early nephron segment size in zebrafish. Sci Rep 2016; 6:35647. [PMID: 27759103 PMCID: PMC5069491 DOI: 10.1038/srep35647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
The nephron is the functional unit of the kidney and is divided into distinct proximal and distal segments. The factors determining nephron segment size are not fully understood. In zebrafish, the embryonic kidney has long been thought to differentiate in situ into two proximal tubule segments and two distal tubule segments (distal early; DE, and distal late; DL) with little involvement of cell movement. Here, we overturn this notion by performing lineage-labelling experiments that reveal extensive caudal movement of the proximal and DE segments and a concomitant compaction of the DL segment as it fuses with the cloaca. Laser-mediated severing of the tubule, such that the DE and DL are disconnected or that the DL and cloaca do not fuse, results in a reduction in tubule cell proliferation and significantly shortens the DE segment while the caudal movement of the DL is unaffected. These results suggest that the DL mechanically pulls the more proximal segments, thereby driving both their caudal extension and their proliferation. Together, these data provide new insights into early nephron morphogenesis and demonstrate the importance of cell movement and proliferation in determining initial nephron segment size.
Collapse
Affiliation(s)
- Richard W Naylor
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Rachel C Dodd
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
27
|
Abstract
The kidney of the zebrafish shares many features with other vertebrate kidneys including the human kidney. Similar cell types and shared developmental and patterning mechanisms make the zebrafish pronephros a valuable model for kidney organogenesis. Here we review recent advances in studies of zebrafish pronephric development and provide experimental protocols to analyze kidney cell types and structures, measure nephron function, live image kidney cells in vivo, and probe mechanisms of kidney regeneration after injury.
Collapse
Affiliation(s)
- I A Drummond
- Massachusetts General Hospital, Charlestown, MA, United States
| | - A J Davidson
- The University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Yasunaga T, Hoff S, Schell C, Helmstädter M, Kretz O, Kuechlin S, Yakulov TA, Engel C, Müller B, Bensch R, Ronneberger O, Huber TB, Lienkamp SS, Walz G. The polarity protein Inturned links NPHP4 to Daam1 to control the subapical actin network in multiciliated cells. J Cell Biol 2016; 211:963-73. [PMID: 26644512 PMCID: PMC4674276 DOI: 10.1083/jcb.201502043] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inturned-mediated complex formation of NPHP4 and DAAM1 is important for ciliogenesis and ciliary function in multiciliated cells, presumably because of its requirement for the local rearrangement of actin cytoskeleton. Motile cilia polarization requires intracellular anchorage to the cytoskeleton; however, the molecular machinery that supports this process remains elusive. We report that Inturned plays a central role in coordinating the interaction between cilia-associated proteins and actin-nucleation factors. We observed that knockdown of nphp4 in multiciliated cells of the Xenopus laevis epidermis compromised ciliogenesis and directional fluid flow. Depletion of nphp4 disrupted the subapical actin layer. Comparison to the structural defects caused by inturned depletion revealed striking similarities. Furthermore, coimmunoprecipitation assays demonstrated that the two proteins interact with each other and that Inturned mediates the formation of ternary protein complexes between NPHP4 and DAAM1. Knockdown of daam1, but not formin-2, resulted in similar disruption of the subapical actin web, whereas nphp4 depletion prevented the association of Inturned with the basal bodies. Thus, Inturned appears to function as an adaptor protein that couples cilia-associated molecules to actin-modifying proteins to rearrange the local actin cytoskeleton.
Collapse
Affiliation(s)
- Takayuki Yasunaga
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Sylvia Hoff
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Christoph Schell
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Martin Helmstädter
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Oliver Kretz
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany Neuroanatomy, University of Freiburg, 79104 Freiburg, Germany
| | - Sebastian Kuechlin
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Toma A Yakulov
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Christina Engel
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Barbara Müller
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Robert Bensch
- Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany Centre for Biological Signaling Studies, 79104 Freiburg, Germany
| | - Olaf Ronneberger
- Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany Centre for Biological Signaling Studies, 79104 Freiburg, Germany
| | - Tobias B Huber
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany Centre for Biological Signaling Studies, 79104 Freiburg, Germany
| | - Soeren S Lienkamp
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany Centre for Biological Signaling Studies, 79104 Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, University of Freiburg Medical Center, 79106 Freiburg, Germany Centre for Biological Signaling Studies, 79104 Freiburg, Germany
| |
Collapse
|
29
|
Song Z, Zhang X, Jia S, Yelick PC, Zhao C. Zebrafish as a Model for Human Ciliopathies. J Genet Genomics 2016; 43:107-20. [DOI: 10.1016/j.jgg.2016.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
|
30
|
The Role of RPGR and Its Interacting Proteins in Ciliopathies. J Ophthalmol 2015; 2015:414781. [PMID: 26124960 PMCID: PMC4466403 DOI: 10.1155/2015/414781] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/13/2015] [Accepted: 04/19/2015] [Indexed: 11/28/2022] Open
Abstract
Ciliopathies encompass a group of genetic disorders characterized by defects in the formation, maintenance, or function of cilia. Retinitis pigmentosa (RP) is frequently one of the clinical features presented in diverse ciliopathies. RP is a heterogeneous group of inherited retinal disorders, characterized by the death of photoreceptors and affecting more than one million individuals worldwide. The retinitis pigmentosa GTPase regulator (RPGR) gene is mutated in up to 20% of all RP patients. RPGR protein has different interacting partners to function in ciliary protein trafficking. In this review, we specifically focus on RPGR and its two interacting proteins: RPGRIP1 and RPGRIP1L. We summarize the function of the three proteins and highlight recent studies that provide insight into the cellular function of those proteins.
Collapse
|
31
|
Rachel RA, Yamamoto EA, Dewanjee MK, May-Simera HL, Sergeev YV, Hackett AN, Pohida K, Munasinghe J, Gotoh N, Wickstead B, Fariss RN, Dong L, Li T, Swaroop A. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum Mol Genet 2015; 24:3775-91. [PMID: 25859007 DOI: 10.1093/hmg/ddv123] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
Distinct mutations in the centrosomal-cilia protein CEP290 lead to diverse clinical findings in syndromic ciliopathies. We show that CEP290 localizes to the transition zone in ciliated cells, precisely to the region of Y-linkers between central microtubules and plasma membrane. To create models of CEP290-associated ciliopathy syndromes, we generated Cep290(ko/ko) and Cep290(gt/gt) mice that produce no or a truncated CEP290 protein, respectively. Cep290(ko/ko) mice exhibit early vision loss and die from hydrocephalus. Retinal photoreceptors in Cep290(ko/ko) mice lack connecting cilia, and ciliated ventricular ependyma fails to mature. The minority of Cep290(ko/ko) mice that escape hydrocephalus demonstrate progressive kidney pathology. Cep290(gt/gt) mice die at mid-gestation, and the occasional Cep290(gt/gt) mouse that survives shows hydrocephalus and severely cystic kidneys. Partial loss of CEP290-interacting ciliopathy protein MKKS mitigates lethality and renal pathology in Cep290(gt/gt) mice. Our studies demonstrate domain-specific functions of CEP290 and provide novel therapeutic paradigms for ciliopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeeva Munasinghe
- National Institute of Neurological Disease and Stroke, National Institutes of Health, Bethesda, MD 20892, USA and
| | | | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most common genetic disorders causing end-stage renal disease (ESRD) in children and adolescents. NPHP is a genetically heterogenous disorder with 20 identified genes. NPHP occurs as an isolated kidney disease, but approximately 15% of NPHP patients have additional extrarenal symptoms affecting other organs [e.g. eyes, liver, bones and central nervous system (CNS)]. The pleiotropy in NPHP is explained by the finding that almost all NPHP gene products share expression in primary cilia, a sensory organelle present in most mammalian cells. If extrarenal symptoms are present in addition to NPHP, these disorders are classified as NPHP-related ciliopathies (NPHP-RC). This review provides an update about recent advances in the field of NPHP-RC. RECENT FINDINGS The identification of novel disease-causing genes has improved our understanding of the pathomechanisms contributing to NPHP-RC. Multiple interactions between different NPHP-RC gene products have been published and outline the interconnectivity of the affected proteins and shared pathways. SUMMARY The significance of recently identified genes for NPHP-RC is discussed and the complex role and interaction of NPHP proteins in ciliary function and cellular signalling pathways is highlighted.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adolescent
- Child
- Cilia/pathology
- Cilia/physiology
- Cytoskeletal Proteins
- Genes, Recessive
- Humans
- Kidney/pathology
- Kidney Diseases, Cystic/complications
- Kidney Diseases, Cystic/congenital
- Kidney Diseases, Cystic/pathology
- Kidney Diseases, Cystic/physiopathology
- Kidney Failure, Chronic/etiology
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/pathology
- Kidney Failure, Chronic/physiopathology
- Membrane Proteins/metabolism
- Mutation/genetics
- Phenotype
- Signal Transduction
Collapse
Affiliation(s)
- Matthias T F Wolf
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
33
|
|
34
|
Awata J, Takada S, Standley C, Lechtreck KF, Bellvé KD, Pazour GJ, Fogarty KE, Witman GB. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J Cell Sci 2014; 127:4714-27. [PMID: 25150219 DOI: 10.1242/jcs.155275] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein nephrocystin-4 (NPHP4) is widespread in ciliated organisms, and defects in NPHP4 cause nephronophthisis and blindness in humans. To learn more about the function of NPHP4, we have studied it in Chlamydomonas reinhardtii. NPHP4 is stably incorporated into the distal part of the flagellar transition zone, close to the membrane and distal to CEP290, another transition zone protein. Therefore, these two proteins, which are incorporated into the transition zone independently of each other, define different domains of the transition zone. An nphp4-null mutant forms flagella with nearly normal length, ultrastructure and intraflagellar transport. When fractions from isolated wild-type and nphp4 flagella were compared, few differences were observed between the axonemes, but the amounts of certain membrane proteins were greatly reduced in the mutant flagella, and cellular housekeeping proteins >50 kDa were no longer excluded from mutant flagella. Therefore, NPHP4 functions at the transition zone as an essential part of a barrier that regulates both membrane and soluble protein composition of flagella. The phenotypic consequences of NPHP4 mutations in humans likely follow from protein mislocalization due to defects in the transition zone barrier.
Collapse
Affiliation(s)
- Junya Awata
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Saeko Takada
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clive Standley
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karl F Lechtreck
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Karl D Bellvé
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kevin E Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
35
|
Abstract
Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.
Collapse
|
36
|
Veland IR, Montjean R, Eley L, Pedersen LB, Schwab A, Goodship J, Kristiansen K, Pedersen SF, Saunier S, Christensen ST. Inversin/Nephrocystin-2 is required for fibroblast polarity and directional cell migration. PLoS One 2013; 8:e60193. [PMID: 23593172 PMCID: PMC3620528 DOI: 10.1371/journal.pone.0060193] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/22/2013] [Indexed: 12/30/2022] Open
Abstract
Inversin is a ciliary protein that critically regulates developmental processes and tissue homeostasis in vertebrates, partly through the degradation of Dishevelled (Dvl) proteins to coordinate Wnt signaling in planar cell polarity (PCP). Here, we investigated the role of Inversin in coordinating cell migration, which highly depends on polarity processes at the single-cell level, including the spatial and temporal organization of the cytoskeleton as well as expression and cellular localization of proteins in leading edge formation of migrating cells. Using cultures of mouse embryonic fibroblasts (MEFs) derived from inv(-/-) and inv(+/+) animals, we confirmed that both inv(-/-) and inv(+/+) MEFs form primary cilia, and that Inversin localizes to the primary cilium in inv(+/+) MEFs. In wound healing assays, inv(-/-) MEFs were severely compromised in their migratory ability and exhibited cytoskeletal rearrangements, including distorted lamellipodia formation and cilia orientation. Transcriptome analysis revealed dysregulation of Wnt signaling and of pathways regulating actin organization and focal adhesions in inv(-/-) MEFs as compared to inv(+/+) MEFs. Further, Dvl-1 and Dvl-3 localized to MEF primary cilia, and β-catenin/Wnt signaling was elevated in inv(-/-) MEFs, which moreover showed reduced ciliary localization of Dvl-3. Finally, inv(-/-) MEFs displayed dramatically altered activity and localization of RhoA, Rac1, and Cdc42 GTPases, and aberrant expression and targeting of the Na(+)/H(+) exchanger NHE1 and ezrin/radixin/moesin (ERM) proteins to the edge of cells facing the wound. Phosphorylation of β-catenin at the ciliary base and formation of well-defined lamellipodia with localization and activation of ERM to the leading edge of migrating cells were restored in inv(-/-) MEFs expressing Inv-GFP. Collectively, our findings point to the significance of Inversin in controlling cell migration processes, at least in part through transcriptional regulation of genes involved in Wnt signaling and pathways that control cytoskeletal organization and ion transport.
Collapse
Affiliation(s)
- Iben R. Veland
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rodrick Montjean
- Inserm U-983, Imagine Institut, Paris Descartes-Sorbonne Paris Cité University, Necker Hospital, Paris, France
| | - Lorraine Eley
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lotte B. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Albrecht Schwab
- Institute of Physiology II, Münster University, Münster, Germany
| | - Judith Goodship
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Stine F. Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Saunier
- Inserm U-983, Imagine Institut, Paris Descartes-Sorbonne Paris Cité University, Necker Hospital, Paris, France
| | | |
Collapse
|
37
|
Yengkopiong JP, Lako JDW. Genetic background of nonmutant Piebald-Virol-Glaxo rats does not influence nephronophthisis phenotypes. Int J Nephrol Renovasc Dis 2013; 6:39-46. [PMID: 23549608 PMCID: PMC3579405 DOI: 10.2147/ijnrd.s39295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nephronophthisis (NPHP), which affects multiple organs, is a hereditary cystic kidney disease (CKD), characterized by interstitial fibrosis and numerous fluid-filled cysts in the kidneys. It is caused by mutations in NPHP genes, which encode for ciliary proteins known as nephrocystins. The disorder affects many people across the world and leads to end-stage renal disease. The aim of this study was to determine if the genetic background of the nonmutant female Piebald-Virol-Glaxo (PVG/Seac(-/-)) rat influences phenotypic inheritance of NPHP from mutant male Lewis polycystic kidney rats. METHODS Mating experiments were performed between mutant Lewis polycystic kidney male rats with CKD and nonmutant PVG and Wistar Kyoto female rats without cystic kidney disease to raise second filial and backcross 1 progeny, respectively. Rats that developed cystic kidneys were identified. Systolic blood pressure was determined in each rat at 12 weeks of age using the tail and cuff method. After euthanasia, blood samples were collected and chemistry was determined. Histological examination of the kidneys, pancreas, and liver of rats with and without cystic kidney disease was performed. RESULTS It was established that the genetic background of nonmutant female PVG rats did not influence the phenotypic inheritance of the CKD from mutant male Lewis polycystic kidney rats. The disease arose as a result of a recessive mutation in a single gene (second filial generation, CKD = 13, non-CKD = 39, χ (2) = 0.00, P ≥ 0.97; backcross 1 generation, CKD = 67, non-CKD = 72, χ (2) = 0.18, P > 0.05) and inherited as NPHP. The rats with CKD developed larger fluid-filled cystic kidneys, higher systolic blood pressure, and anemia, but there were no extrarenal cysts and disease did not lead to early pup mortality. CONCLUSION The genetic background of the nonmutant PVG rats does not influence the genetic and phenotypic inheritance of CKD from mutant Lewis polycystic kidney rats. A single recessive mutation incapacitated the gene, which relaxed its functional constraints, and led to formation of multiple cysts in the kidneys of the homozygous mutant rats.
Collapse
Affiliation(s)
- Jada Pasquale Yengkopiong
- John Garang Memorial University of Science and Technology, Faculty of Science and Technology, Bor, Jonglei State, Republic of South Sudan
| | | |
Collapse
|
38
|
Leightner AC, Hommerding CJ, Peng Y, Salisbury JL, Gainullin VG, Czarnecki PG, Sussman CR, Harris PC. The Meckel syndrome protein meckelin (TMEM67) is a key regulator of cilia function but is not required for tissue planar polarity. Hum Mol Genet 2013; 22:2024-40. [PMID: 23393159 DOI: 10.1093/hmg/ddt054] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meckel syndrome (MKS) is a lethal disorder associated with renal cystic disease, encephalocele, ductal plate malformation and polydactyly. MKS is genetically heterogeneous and part of a growing list of syndromes called ciliopathies, disorders resulting from defective cilia. TMEM67 mutation (MKS3) is a major cause of MKS and the related ciliopathy Joubert syndrome, although the complete etiology of the disease is not well understood. To further investigate MKS3, we analyzed phenotypes in the Tmem67 null mouse (bpck) and in zebrafish tmem67 morphants. Phenotypes similar to those in human MKS and other ciliopathy models were observed, with additional eye, skeletal and inner ear abnormalities characterized in the bpck mouse. The observed disorganized stereociliary bundles in the bpck inner ear and the convergent extension defects in zebrafish morphants are similar to those found in planar cell polarity (PCP) mutants, a pathway suggested to be defective in ciliopathies. However, analysis of classical vertebrate PCP readouts in the bpck mouse and ciliary organization analysis in tmem67 morphants did not support a global loss of planar polarity. Canonical Wnt signaling was upregulated in cyst linings and isolated fibroblasts from the bpck mouse, but was unchanged in the retina and cochlea tissue, suggesting that increased Wnt signaling may only be linked to MKS3 phenotypes associated with elevated proliferation. Together, these data suggest that defective cilia loading, but not a global loss of ciliogenesis, basal body docking or PCP signaling leads to dysfunctional cilia in MKS3 tissues.
Collapse
Affiliation(s)
- Amanda C Leightner
- Department of Biochemistry and Molecular Biology, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Oh EC, Katsanis N. Context-dependent regulation of Wnt signaling through the primary cilium. J Am Soc Nephrol 2012; 24:10-8. [PMID: 23123400 DOI: 10.1681/asn.2012050526] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The primary cilium is a highly conserved environmental sensor and modulator of fluid movement in tubular structures. The growing recognition of mutations among its many components has led to the discovery of new disorders collectively called ciliopathies. Ciliary dysfunction disturbs a variety of signaling pathways along its basal body and axoneme that are critical for embryonic development and cell and organ homeostasis. Among the many pathways, here we discuss the emerging role of Wnt proteins in morphogenic signaling and ciliary biology during health and disease.
Collapse
Affiliation(s)
- Edwin C Oh
- Center for Human Disease Modeling, Department of Cell Biology, 466 Nanaline Building, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
40
|
Gerlach GF, Wingert RA. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:559-85. [PMID: 24014448 DOI: 10.1002/wdev.92] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vertebrates form a progressive series of up to three kidney organs during development-the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways.
Collapse
Affiliation(s)
- Gary F Gerlach
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
41
|
Mahuzier A, Gaudé HM, Grampa V, Anselme I, Silbermann F, Leroux-Berger M, Delacour D, Ezan J, Montcouquiol M, Saunier S, Schneider-Maunoury S, Vesque C. Dishevelled stabilization by the ciliopathy protein Rpgrip1l is essential for planar cell polarity. ACTA ACUST UNITED AC 2012; 198:927-40. [PMID: 22927466 PMCID: PMC3432770 DOI: 10.1083/jcb.201111009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rpgrip1l is required for planar localization of the basal body and acts within a ciliopathy protein complex by stabilizing dishevelled. Cilia are at the core of planar polarity cellular events in many systems. However, the molecular mechanisms by which they influence the polarization process are unclear. Here, we identify the function of the ciliopathy protein Rpgrip1l in planar polarity. In the mouse cochlea and in the zebrafish floor plate, Rpgrip1l was required for positioning the basal body along the planar polarity axis. Rpgrip1l was also essential for stabilizing dishevelled at the cilium base in the zebrafish floor plate and in mammalian renal cells. In rescue experiments, we showed that in the zebrafish floor plate the function of Rpgrip1l in planar polarity was mediated by dishevelled stabilization. In cultured cells, Rpgrip1l participated in a complex with inversin and nephrocystin-4, two ciliopathy proteins known to target dishevelled to the proteasome, and, in this complex, Rpgrip1l prevented dishevelled degradation. We thus uncover a ciliopathy protein complex that finely tunes dishevelled levels, thereby modulating planar cell polarity processes.
Collapse
Affiliation(s)
- Alexia Mahuzier
- Centre National de la Recherche Scientifique UMR 7622, Institut National de la Santé et de la Recherche Médicale U969, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pizzatti L, Panis C, Lemos G, Rocha M, Cecchini R, Souza GHMF, Abdelhay E. Label-free MSE
proteomic analysis of chronic myeloid leukemia bone marrow plasma: disclosing new insights from therapy resistance. Proteomics 2012; 12:2618-31. [DOI: 10.1002/pmic.201200066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/22/2012] [Accepted: 06/11/2012] [Indexed: 01/11/2023]
Affiliation(s)
- Luciana Pizzatti
- Divisão de Laboratórios do CEMO; Instituto Nacional do Câncer; Rio de Janeiro Brazil
- Rede Proteômica do Rio de Janeiro; RJ Brazil
| | - Carolina Panis
- Divisão de Laboratórios do CEMO; Instituto Nacional do Câncer; Rio de Janeiro Brazil
- Laboratório de Fisiopatologia de Radicais Livres; UEL; Londrina PR Brazil
| | - Gabriela Lemos
- Divisão de Laboratórios do CEMO; Instituto Nacional do Câncer; Rio de Janeiro Brazil
| | - Moisés Rocha
- Divisão de Laboratórios do CEMO; Instituto Nacional do Câncer; Rio de Janeiro Brazil
| | - Rubens Cecchini
- Laboratório de Fisiopatologia de Radicais Livres; UEL; Londrina PR Brazil
| | | | - Eliana Abdelhay
- Divisão de Laboratórios do CEMO; Instituto Nacional do Câncer; Rio de Janeiro Brazil
- Rede Proteômica do Rio de Janeiro; RJ Brazil
| |
Collapse
|
43
|
Ronquillo CC, Bernstein PS, Baehr W. Senior-Løken syndrome: a syndromic form of retinal dystrophy associated with nephronophthisis. Vision Res 2012; 75:88-97. [PMID: 22819833 DOI: 10.1016/j.visres.2012.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023]
Abstract
Senior-Løken syndrome (SLS) is an autosomal recessive disease characterized by development of a retinitis pigmentosa (RP)- or Leber congenital amaurosis (LCA)-like retinal dystrophy and a medullary cystic kidney disease, nephronophthisis. Mutations in several genes (called nephrocystins) have been shown to cause SLS. The proteins encoded by these genes are localized in the connecting cilium of photoreceptor cells and in the primary cilium of kidney cells. Nephrocystins are thought to have a role in regulating transport of proteins bound to the outer segment/primary cilium; however, the precise molecular mechanisms are largely undetermined. This review will survey the biochemistry, cell biology and existing animal models for each of the nephrocystins as it relates to photoreceptor biology and pathogenesis of retinal degeneration.
Collapse
Affiliation(s)
- C C Ronquillo
- Program in Neuroscience, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
44
|
Borgal L, Habbig S, Hatzold J, Liebau MC, Dafinger C, Sacarea I, Hammerschmidt M, Benzing T, Schermer B. The ciliary protein nephrocystin-4 translocates the canonical Wnt regulator Jade-1 to the nucleus to negatively regulate β-catenin signaling. J Biol Chem 2012; 287:25370-80. [PMID: 22654112 DOI: 10.1074/jbc.m112.385658] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal-recessive cystic kidney disease and represents the most common genetic cause for end-stage renal disease in children and adolescents. It can be caused by the mutation of genes encoding for the nephrocystin proteins (NPHPs). All NPHPs localize to primary cilia, classifying this disease as a "ciliopathy." The primary cilium is a critical regulator of several cell signaling pathways. Cystogenesis in the kidney is thought to involve overactivation of canonical Wnt signaling, which is negatively regulated by the primary cilium and several NPH proteins, although the mechanism remains unclear. Jade-1 has recently been identified as a novel ubiquitin ligase targeting the canonical Wnt downstream effector β-catenin for proteasomal degradation. Here, we identify Jade-1 as a novel component of the NPHP protein complex. Jade-1 colocalizes with NPHP1 at the transition zone of primary cilia and interacts with NPHP4. Furthermore, NPHP4 stabilizes protein levels of Jade-1 and promotes the translocation of Jade-1 to the nucleus. Finally, NPHP4 and Jade-1 additively inhibit canonical Wnt signaling, and this genetic interaction is conserved in zebrafish. The stabilization and nuclear translocation of Jade-1 by NPHP4 enhances the ability of Jade-1 to negatively regulate canonical Wnt signaling. Loss of this repressor function in nephronophthisis might be an important factor promoting Wnt activation and contributing to cyst formation.
Collapse
Affiliation(s)
- Lori Borgal
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bubenshchikova E, Ichimura K, Fukuyo Y, Powell R, Hsu C, Morrical SO, Sedor JR, Sakai T, Obara T. Wtip and Vangl2 are required for mitotic spindle orientation and cloaca morphogenesis. Biol Open 2012; 1:588-96. [PMID: 23213452 PMCID: PMC3509438 DOI: 10.1242/bio.20121016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defects in cilia and basal bodies function are linked to ciliopathies, which result in kidney cyst formation. Recently, cell division defects have been observed in cystic kidneys, but the underlying mechanisms of such defects remain unclear. Wtip is an LIM domain protein of the Ajuba/Zyxin family, but its role in ciliogenesis during embryonic development has not been previously described. We report Wtip is enriched in the basal body and knockdown of wtip leads to pronephric cyst formation, cloaca malformation, hydrocephalus, body curvature, and pericardial edema. We additionally show that wtip knockdown embryos display segment-specific defects in the pronephros: mitotic spindle orientation defects are observed only in the anterior and middle pronephros; cloaca malformation is accompanied by a reduced number of ciliated cells; and ciliated cells lack the striated rootlet that originates from basal bodies, which results in a lack of cilia motility. Our data suggest that loss of Wtip function phenocopies Vangl2 loss of function, a core planar cell polarity (PCP) protein located in the basal body protein. Furthermore, we demonstrate that wtip and vangl2 interact genetically. Taken together, our results indicate that in zebrafish, Wtip is required for mitotic spindle orientation in the anterior and middle of the pronephros, cloaca morphogenesis, and PCP, which may underlie the molecular etiology of ciliopathies.
Collapse
Affiliation(s)
- Ekaterina Bubenshchikova
- Department of Cell Biology, University of Oklahoma Health Science Center , Oklahoma City, OK 73104 , USA ; Department of Medicine and Rammelkamp Center for Education and Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine , Cleveland, OH 44109 , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
French VM, van de Laar IMBH, Wessels MW, Rohe C, Roos-Hesselink JW, Wang G, Frohn-Mulder IME, Severijnen LA, de Graaf BM, Schot R, Breedveld G, Mientjes E, van Tienhoven M, Jadot E, Jiang Z, Verkerk A, Swagemakers S, Venselaar H, Rahimi Z, Najmabadi H, Meijers-Heijboer H, de Graaff E, Helbing WA, Willemsen R, Devriendt K, Belmont JW, Oostra BA, Amack JD, Bertoli-Avella AM. NPHP4 variants are associated with pleiotropic heart malformations. Circ Res 2012; 110:1564-74. [PMID: 22550138 DOI: 10.1161/circresaha.112.269795] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Congenital heart malformations are a major cause of morbidity and mortality, especially in young children. Failure to establish normal left-right (L-R) asymmetry often results in cardiovascular malformations and other laterality defects of visceral organs. OBJECTIVE To identify genetic mutations causing cardiac laterality defects. METHODS AND RESULTS We performed a genome-wide linkage analysis in patients with cardiac laterality defects from a consanguineous family. The patients had combinations of defects that included dextrocardia, transposition of great arteries, double-outlet right ventricle, atrioventricular septal defects, and caval vein abnormalities. Sequencing of positional candidate genes identified mutations in NPHP4. We performed mutation analysis of NPHP4 in 146 unrelated patients with similar cardiac laterality defects. Forty-one percent of these patients also had laterality defects of the abdominal organs. We identified 8 additional missense variants that were absent or very rare in control subjects. To study the role of nphp4 in establishing L-R asymmetry, we used antisense morpholinos to knockdown nphp4 expression in zebrafish. Depletion of nphp4 disrupted L-R patterning as well as cardiac and gut laterality. Cardiac laterality defects were partially rescued by human NPHP4 mRNA, whereas mutant NPHP4 containing genetic variants found in patients failed to rescue. We show that nphp4 is involved in the formation of motile cilia in Kupffer's vesicle, which generate asymmetrical fluid flow necessary for normal L-R asymmetry. CONCLUSIONS NPHP4 mutations are associated with cardiac laterality defects and heterotaxy. In zebrafish, nphp4 is essential for the development and function of Kupffer's vesicle cilia and is required for global L-R patterning.
Collapse
Affiliation(s)
- Vanessa M French
- Department of Clinical Genetics, Erasmus MC Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Moro E, Ozhan-Kizil G, Mongera A, Beis D, Wierzbicki C, Young RM, Bournele D, Domenichini A, Valdivia LE, Lum L, Chen C, Amatruda JF, Tiso N, Weidinger G, Argenton F. In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev Biol 2012; 366:327-40. [PMID: 22546689 DOI: 10.1016/j.ydbio.2012.03.023] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 03/09/2012] [Accepted: 03/21/2012] [Indexed: 11/30/2022]
Abstract
The creation of molecular tools able to unravel in vivo spatiotemporal activation of specific cell signaling events during cell migration, differentiation and morphogenesis is of great relevance to developmental cell biology. Here, we describe the generation, validation and applications of two transgenic reporter lines for Wnt/β-catenin signaling, named TCFsiam, and show that they are reliable and sensitive Wnt biosensors for in vivo studies. We demonstrate that these lines sensitively detect Wnt/β-catenin pathway activity in several cellular contexts, from sensory organs to cardiac valve patterning. We provide evidence that Wnt/β-catenin activity is involved in the formation and maintenance of the zebrafish CNS blood vessel network, on which sox10 neural crest-derived cells migrate and proliferate. We finally show that these transgenic lines allow for screening of Wnt signaling modifying compounds, tissue regeneration assessment as well as evaluation of potential Wnt/β-catenin genetic modulators.
Collapse
Affiliation(s)
- Enrico Moro
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lienkamp S, Ganner A, Walz G. Inversin, Wnt signaling and primary cilia. Differentiation 2012; 83:S49-55. [DOI: 10.1016/j.diff.2011.11.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 12/28/2022]
|