1
|
Wunderlich T, Deshpande C, Paasche L, Friedrich T, Diegmüller F, Haddad E, Kreienbaum C, Naseer H, Stebel S, Daus N, Leers J, Lan J, Trinh V, Vázquez O, Butter F, Bartkuhn M, Mackay J, Hake S. ZNF512B binds RBBP4 via a variant NuRD interaction motif and aggregates chromatin in a NuRD complex-independent manner. Nucleic Acids Res 2024; 52:12831-12849. [PMID: 39460621 PMCID: PMC11602157 DOI: 10.1093/nar/gkae926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The evolutionarily conserved histone variant H2A.Z plays a crucial role in various DNA-based processes, but the mechanisms underlying its activity are not completely understood. Recently, we identified the zinc finger (ZF) protein ZNF512B as a protein associated with H2A.Z, HMG20A and PWWP2A. Here, we report that high levels of ZNF512B expression lead to nuclear protein and chromatin aggregation foci that form in a manner that is dependent on the ZF domains of ZNF512B. Notably, we demonstrate ZNF512B binding to the nucleosome remodeling and deacetylase (NuRD) complex. We discover a conserved amino acid sequence within ZNF512B that resembles the NuRD-interaction motif (NIM) previously identified in FOG-1 and other transcriptional regulators. By solving the crystal structure of this motif bound to the NuRD component RBBP4 and by applying several biochemical and biophysical assays, we demonstrate that this internal NIM is both necessary and sufficient for robust and high-affinity NuRD binding. Transcriptome analyses and reporter assays identify ZNF512B as a repressor of gene expression that can act in both NuRD-dependent and -independent ways. Our study might have implications for diseases in which ZNF512B expression is deregulated, such as cancer and neurodegenerative diseases, and hints at the existence of more proteins as potential NuRD interactors.
Collapse
Affiliation(s)
- Tim Marius Wunderlich
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Chandrika Deshpande
- School of Life and Environmental Sciences, Butlin Ave, University of Sydney, Darlington, New South Wales 2006, Australia
| | - Lena W Paasche
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Tobias Friedrich
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus-Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Felix Diegmüller
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Elias Haddad
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Carlotta Kreienbaum
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Haniya Naseer
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Sophie E Stebel
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Nadine Daus
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Jörg Leers
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Jie Lan
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Van Tuan Trinh
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
- Center for Synthetic Microbiology, Philipps University Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus-Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Joel P Mackay
- School of Life and Environmental Sciences, Butlin Ave, University of Sydney, Darlington, New South Wales 2006, Australia
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| |
Collapse
|
2
|
Urushitani M, Warita H, Atsuta N, Izumi Y, Kano O, Shimizu T, Nakayama Y, Narita Y, Nodera H, Fujita T, Mizoguchi K, Morita M, Aoki M. The clinical practice guideline for the management of amyotrophic lateral sclerosis in Japan-update 2023. Rinsho Shinkeigaku 2024; 64:252-271. [PMID: 38522911 DOI: 10.5692/clinicalneurol.cn-001946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset intractable motor neuron disease characterized by selective degeneration of cortical neurons in the frontotemporal lobe and motor neurons in the brainstem and spinal cord. Impairment of these neural networks causes progressive muscle atrophy and weakness that spreads throughout the body, resulting in life-threatening bulbar palsy and respiratory muscle paralysis. However, no therapeutic strategy has yet been established to halt ALS progression. Although evidence for clinical practice in ALS remains insufficient, novel research findings have steadily accumulated in recent years. To provide updated evidence-based or expert consensus recommendations for the diagnosis and management of ALS, the ALS Clinical Practice Guideline Development Committee, approved by the Japanese Society of Neurology, revised and published the Japanese clinical practice guidelines for the management of ALS in 2023. In this guideline, disease-modifying therapies that have accumulated evidence from randomized controlled trials were defined as "Clinical Questions," in which the level of evidence was determined by systematic reviews. In contrast, "Questions and Answers" were defined as issues of clinically important but insufficient evidence, according to reports of a small number of cases, observational studies, and expert opinions. Based on a literature search performed in February 2022, recommendations were reached by consensus, determined by an independent panel, reviewed by external reviewers, and submitted for public comments by Japanese Society of Neurology members before publication. In this article, we summarize the revised Japanese guidelines for ALS, highlighting the regional and cultural diversity of care processes and decision-making. The guidelines cover a broad range of essential topics such as etiology, diagnostic criteria, disease monitoring and treatments, management of symptoms, respiration, rehabilitation, nutrition, metabolism, patient instructions, and various types of care support. We believe that this summary will help improve the daily clinical practice for individuals living with ALS and their caregivers.
Collapse
Affiliation(s)
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine
| | - Naoki Atsuta
- Department of Neurology, Aichi Medical University School of Medicine
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences
| | - Osamu Kano
- Department of Neurology, Toho University Faculty of Medicine
| | - Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital
| | - Yuki Nakayama
- Unit for Intractable Disease Care Unit, Tokyo Metropolitan Institute of Medical Science
| | - Yugo Narita
- Department of Neurology, Mie University Graduate School of Medicine
| | | | | | | | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine
| |
Collapse
|
3
|
Workman MJ, Lim RG, Wu J, Frank A, Ornelas L, Panther L, Galvez E, Perez D, Meepe I, Lei S, Valencia V, Gomez E, Liu C, Moran R, Pinedo L, Tsitkov S, Ho R, Kaye JA, Thompson T, Rothstein JD, Finkbeiner S, Fraenkel E, Sareen D, Thompson LM, Svendsen CN. Large-scale differentiation of iPSC-derived motor neurons from ALS and control subjects. Neuron 2023; 111:1191-1204.e5. [PMID: 36764301 PMCID: PMC10557526 DOI: 10.1016/j.neuron.2023.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023]
Abstract
Using induced pluripotent stem cells (iPSCs) to understand the mechanisms of neurological disease holds great promise; however, there is a lack of well-curated lines from a large array of participants. Answer ALS has generated over 1,000 iPSC lines from control and amyotrophic lateral sclerosis (ALS) patients along with clinical and whole-genome sequencing data. The current report summarizes cell marker and gene expression in motor neuron cultures derived from 92 healthy control and 341 ALS participants using a 32-day differentiation protocol. This is the largest set of iPSCs to be differentiated into motor neurons, and characterization suggests that cell composition and sex are significant sources of variability that need to be carefully controlled for in future studies. These data are reported as a resource for the scientific community that will utilize Answer ALS data for disease modeling using a wider array of omics being made available for these samples.
Collapse
Affiliation(s)
- Michael J Workman
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ryan G Lim
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Aaron Frank
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Loren Ornelas
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lindsay Panther
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erick Galvez
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel Perez
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Imara Meepe
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susan Lei
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Viviana Valencia
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Emilda Gomez
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chunyan Liu
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ruby Moran
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Louis Pinedo
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stanislav Tsitkov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ritchie Ho
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia A Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA; Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA; Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA; Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA; Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dhruv Sareen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Leslie M Thompson
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Department of Psychiatry and Human Behavior and Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA, USA.
| | - Clive N Svendsen
- The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: seeking therapeutic targets in the era of gene therapy. J Hum Genet 2023; 68:131-152. [PMID: 35691950 PMCID: PMC9968660 DOI: 10.1038/s10038-022-01055-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable disease that causes respiratory failure leading to mortality. The main locus of ALS is motor neurons. The success of antisense oligonucleotide (ASO) therapy in spinal muscular atrophy (SMA), a motor neuron disease, has triggered a paradigm shift in developing ALS therapies. The causative genes of ALS and disease-modifying genes, including those of sporadic ALS, have been identified one after another. Thus, the freedom of target choice for gene therapy has expanded by ASO strategy, leading to new avenues for therapeutic development. Tofersen for superoxide dismutase 1 (SOD1) was a pioneer in developing ASO for ALS. Improving protocols and devising early interventions for the disease are vital. In this review, we updated the knowledge of causative genes in ALS. We summarized the genetic mutations identified in familial ALS and their clinical features, focusing on SOD1, fused in sarcoma (FUS), and transacting response DNA-binding protein. The frequency of the C9ORF72 mutation is low in Japan, unlike in Europe and the United States, while SOD1 and FUS are more common, indicating that the target mutations for gene therapy vary by ethnicity. A genome-wide association study has revealed disease-modifying genes, which could be the novel target of gene therapy. The current status and prospects of gene therapy development were discussed, including ethical issues. Furthermore, we discussed the potential of axonal pathology as new therapeutic targets of ALS from the perspective of early intervention, including intra-axonal transcription factors, neuromuscular junction disconnection, dysregulated local translation, abnormal protein degradation, mitochondrial pathology, impaired axonal transport, aberrant cytoskeleton, and axon branching. We simultaneously discuss important pathological states of cell bodies: persistent stress granules, disrupted nucleocytoplasmic transport, and cryptic splicing. The development of gene therapy based on the elucidation of disease-modifying genes and early intervention in molecular pathology is expected to become an important therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| |
Collapse
|
5
|
Barbo M, Ravnik-Glavač M. Extracellular Vesicles as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Genes (Basel) 2023; 14:genes14020325. [PMID: 36833252 PMCID: PMC9956314 DOI: 10.3390/genes14020325] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is described as a fatal and rapidly progressive neurodegenerative disorder caused by the degeneration of upper motor neurons in the primary motor cortex and lower motor neurons of the brainstem and spinal cord. Due to ALS's slowly progressive characteristic, which is often accompanied by other neurological comorbidities, its diagnosis remains challenging. Perturbations in vesicle-mediated transport and autophagy as well as cell-autonomous disease initiation in glutamatergic neurons have been revealed in ALS. The use of extracellular vesicles (EVs) may be key in accessing pathologically relevant tissues for ALS, as EVs can cross the blood-brain barrier and be isolated from the blood. The number and content of EVs may provide indications of the disease pathogenesis, its stage, and prognosis. In this review, we collected a recent study aiming at the identification of EVs as a biomarker of ALS with respect to the size, quantity, and content of EVs in the biological fluids of patients compared to controls.
Collapse
|
6
|
Kreienbaum C, Paasche LW, Hake SB. H2A.Z's 'social' network: functional partners of an enigmatic histone variant. Trends Biochem Sci 2022; 47:909-920. [PMID: 35606214 DOI: 10.1016/j.tibs.2022.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
The histone variant H2A.Z has been extensively studied to understand its manifold DNA-based functions. In the past years, researchers identified its specific binding partners, the 'H2A.Z interactome', that convey H2A.Z-dependent chromatin changes. Here, we summarize the latest findings regarding vertebrate H2A.Z-associated factors and focus on their roles in gene activation and repression, cell cycle regulation, (neuro)development, and tumorigenesis. Additionally, we demonstrate how protein-protein interactions and post-translational histone modifications can fine-tune the complex interplay of H2A.Z-regulated gene expression. Last, we review the most recent results on interactors of the two isoforms H2A.Z.1 and H2A.Z.2.1, which differ in only three amino acids, and focus on cancer-associated mutations of H2A and H2A.Z, which reveal fascinating insights into the functional importance of such minuscule changes.
Collapse
Affiliation(s)
| | - Lena W Paasche
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
7
|
Okano H, Morimoto S. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell 2022; 29:189-208. [PMID: 35120619 DOI: 10.1016/j.stem.2022.01.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been 15 years since the birth of human induced pluripotent stem cell (iPSC) technology in 2007, and the scope of its application has been expanding. In addition to the development of cell therapies using iPSC-derived cells, pathological analyses using disease-specific iPSCs and clinical trials to confirm the safety and efficacy of drugs developed using iPSCs are progressing. With the innovation of related technologies, iPSC applications are about to enter a new stage. This review outlines advances in iPSC modeling and therapeutic development for cardinal neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan.
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
8
|
Rich KA, Roggenbuck J, Kolb SJ. Searching Far and Genome-Wide: The Relevance of Association Studies in Amyotrophic Lateral Sclerosis. Front Neurosci 2021; 14:603023. [PMID: 33584177 PMCID: PMC7873947 DOI: 10.3389/fnins.2020.603023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies (GWAS) and rare variant association studies (RVAS) are applied across many areas of complex disease to analyze variation in whole genomes of thousands of unrelated patients. These approaches are able to identify variants and/or biological pathways which are associated with disease status and, in contrast to traditional linkage studies or candidate gene approaches, do so without requiring multigenerational affected families, prior hypotheses, or known genes of interest. However, the novel associations identified by these methods typically have lower effect sizes than those found in classical family studies. In the motor neuron disease amyotrophic lateral sclerosis (ALS), GWAS, and RVAS have been used to identify multiple disease-associated genes but have not yet resulted in novel therapeutic interventions. There is significant urgency within the ALS community to identify additional genetic markers of disease to uncover novel biological mechanisms, stratify genetic subgroups of disease, and drive drug development. Given the widespread and increasing application of genetic association studies of complex disease, it is important to recognize the strengths and limitations of these approaches. Here, we review ALS gene discovery via GWAS and RVAS.
Collapse
Affiliation(s)
- Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jennifer Roggenbuck
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
9
|
Jiang H, Yang B, Wang F, Li K, Zhu Y, Liu B, Ren H, Tian S, Xu Y, Pang A, Yang X. Association of Single Nucleotide Polymorphism at rs2275294 in the ZNF512B Gene with Prognosis in Amyotrophic Lateral Sclerosis. Neuromolecular Med 2021; 23:242-246. [PMID: 33387304 DOI: 10.1007/s12017-020-08634-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/18/2020] [Indexed: 02/05/2023]
Abstract
The aim of this study is to explore whether the single nucleotide polymorphism rs2275294 in the ZNF512B gene is related to the length of survival of patients with amyotrophic lateral sclerosis (ALS). This prospective study examined 212 patients with ALS, who were genotyped at the rs2275294 locus in ZNF512B using the ligase method. Genotype was compared with clinical data and survival. Kaplan-Meier survival analysis and Cox hazard regression were used to identify risk factors of shorter survival. Our results were meta-analyzed together with previous work in order to examine the potential association between the rs2275294-C allele and survival. Of the 212 patients, 166 carried the CC + CT genotype at the rs2275294 locus, while 46 carried the TT genotype. Patients with the C allele showed significantly shorter survival than those without it (34.13 ± 1.9 vs. 45.32 ± 5.7 months, p = 0.036). Cox analysis identified the C allele and time from symptom onset to diagnosis as risk factors for shorter survival. Meta-analysis of 447 patients in China and Japan confirmed the rs2275294-C allele to be an independent risk factor of shorter survival in ALS patients. The C allele at the rs2275294 locus in ZNF512B is a risk factor for shorter survival in patients with ALS.
Collapse
Affiliation(s)
- Haixia Jiang
- Department of Anesthesia, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China
| | - Baiyuan Yang
- Department of Neurology, Seventh People's Hospital of Chengdu, Chengdu, 690041, Sichuan, People's Republic of China
| | - Fang Wang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China
| | - Kelu Li
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China
| | - Yongyun Zhu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China
| | - Bin Liu
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China
| | - Hui Ren
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China
| | - Sijia Tian
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ailan Pang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China.
| | - Xinglong Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
10
|
McCombe PA, Garton FC, Katz M, Wray NR, Henderson RD. What do we know about the variability in survival of patients with amyotrophic lateral sclerosis? Expert Rev Neurother 2020; 20:921-941. [PMID: 32569484 DOI: 10.1080/14737175.2020.1785873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION ALS is a fatal neurodegenerative disease. However, patients show variability in the length of survival after symptom onset. Understanding the mechanisms of long survival could lead to possible avenues for therapy. AREAS COVERED This review surveys the reported length of survival in ALS, the clinical features that predict survival in individual patients, and possible factors, particularly genetic factors, that could cause short or long survival. The authors also speculate on possible mechanisms. EXPERT OPINION a small number of known factors can explain some variability in ALS survival. However, other disease-modifying factors likely exist. Factors that alter motor neurone vulnerability and immune, metabolic, and muscle function could affect survival by modulating the disease process. Knowing these factors could lead to interventions to change the course of the disease. The authors suggest a broad approach is needed to quantify the proportion of variation survival attributable to genetic and non-genetic factors and to identify and estimate the effect size of specific factors. Studies of this nature could not only identify novel avenues for therapeutic research but also play an important role in clinical trial design and personalized medicine.
Collapse
Affiliation(s)
- Pamela A McCombe
- Centre for Clinical Research, The University of Queensland , Brisbane, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane, Australia
| | - Fleur C Garton
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Australia
| | - Matthew Katz
- Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane, Australia
| | - Naomi R Wray
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Australia.,Queensland Brain Institute, The University of Queensland , Brisbane, Australia
| | - Robert D Henderson
- Centre for Clinical Research, The University of Queensland , Brisbane, Australia
| |
Collapse
|
11
|
Galbiati M, Crippa V, Rusmini P, Cristofani R, Messi E, Piccolella M, Tedesco B, Ferrari V, Casarotto E, Chierichetti M, Poletti A. Multiple Roles of Transforming Growth Factor Beta in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21124291. [PMID: 32560258 PMCID: PMC7352289 DOI: 10.3390/ijms21124291] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor beta (TGFB) is a pleiotropic cytokine known to be dysregulated in many neurodegenerative disorders and particularly in amyotrophic lateral sclerosis (ALS). This motor neuronal disease is non-cell autonomous, as it affects not only motor neurons but also the surrounding glial cells, and the target skeletal muscle fibers. Here, we analyze the multiple roles of TGFB in these cell types, and how TGFB signaling is altered in ALS tissues. Data reported support a crucial involvement of TGFB in the etiology and progression of ALS, leading us to hypothesize that an imbalance of TGFB signaling, diminished at the pre-symptomatic stage and then increased with time, could be linked to ALS progression. A reduced stimulation of the TGFB pathway at the beginning of disease blocks its neuroprotective effects and promotes glutamate excitotoxicity. At later disease stages, the persistent activation of the TGFB pathway promotes an excessive microglial activation and strengthens muscular dysfunction. The therapeutic potential of TGFB is discussed, in order to foster new approaches to treat ALS.
Collapse
|
12
|
Splicing Players Are Differently Expressed in Sporadic Amyotrophic Lateral Sclerosis Molecular Clusters and Brain Regions. Cells 2020; 9:cells9010159. [PMID: 31936368 PMCID: PMC7017305 DOI: 10.3390/cells9010159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
Splicing is a tightly orchestrated process by which the brain produces protein diversity over time and space. While this process specializes and diversifies neurons, its deregulation may be responsible for their selective degeneration. In amyotrophic lateral sclerosis (ALS), splicing defects have been investigated at the singular gene level without considering the higher-order level, involving the entire splicing machinery. In this study, we analyzed the complete spectrum (396) of genes encoding splicing factors in the motor cortex (41) and spinal cord (40) samples from control and sporadic ALS (SALS) patients. A substantial number of genes (184) displayed significant expression changes in tissue types or disease states, were implicated in distinct splicing complexes and showed different topological hierarchical roles based on protein–protein interactions. The deregulation of one of these splicing factors has a central topological role, i.e., the transcription factor YBX1, which might also have an impact on stress granule formation, a pathological marker associated with ALS.
Collapse
|
13
|
Transforming growth factor beta 1 signaling is altered in the spinal cord and muscle of amyotrophic lateral sclerosis mice and patients. Neurobiol Aging 2019; 82:48-59. [PMID: 31394426 DOI: 10.1016/j.neurobiolaging.2019.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022]
Abstract
Gender differences characterize amyotrophic lateral sclerosis (ALS). Because ALS patients have increased circulating levels of transforming growth factor beta 1 (TGFB1), here we analyzed gender and disease progression-related modification of TGFB1 and its related signaling molecules in the spinal cord and skeletal muscle of ALS mice and in muscle biopsies from sporadic ALS patients. At presymptomatic stage, Tgfb1 mRNA expression is reduced in the mouse spinal cord but is increased selectively in the male skeletal muscle. At symptomatic stage, it is induced both in the mouse spinal cord and muscle, as well as in the muscle of ALS patients. Tgfbr2 levels are induced only in the mouse spinal cord. Smad2 and Smad4 mRNAs are decreased in the mouse spinal cord and muscle, but SMAD2 protein levels are augmented selectively in the male mouse muscle. Smad3 mRNA and SMAD3 protein are increased in the mouse muscle. The expression of genes controlled by TGFB1 in the muscle (Pax7, Collagen1a1, and Fibronectin) are reduced both in male and female ALS mice at symptomatic stage. Thus, TGFB1 modulation may serve as a novel therapeutic target for ALS.
Collapse
|
14
|
Naruse H, Matsukawa T, Ishiura H, Mitsui J, Takahashi Y, Takano H, Goto J, Toda T, Tsuji S. Association of ATXN2 intermediate-length CAG repeats with amyotrophic lateral sclerosis correlates with the distributions of normal CAG repeat alleles among individual ethnic populations. Neurogenetics 2019; 20:65-71. [PMID: 30847648 DOI: 10.1007/s10048-019-00570-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
Intermediate-length CAG repeats in ATXN2 have been widely shown to be a risk factor for sporadic amyotrophic lateral sclerosis (SALS). To evaluate the association of ATXN2 intermediate-length CAG repeat alleles with an increased risk of SALS, we investigated distributions of CAG repeat alleles in 394 patients with SALS and 490 control individuals in the Japanese population. In the intermediate-length repeat units of 29 or more, we identified one SALS patient with 31 repeat units and two control individuals with 30 repeat units. Thus, no significant differences in the carrier frequency of intermediate-length CAG repeat alleles were detected between patients with SALS and control individuals. When we investigated the distribution of "large normal alleles" defined as ATXN2 CAG repeats ranging from 24 up to 33 in the Japanese population compared with those in other populations in previous studies, the frequency of large normal alleles was significantly higher in the European and North American series than in the Japanese series. Moreover, these frequencies in the Turkish, Chinese, Korean, and Brazilian (Latin American) series were also higher than that in the Japanese series. These results raise the possibility that the frequencies of large normal alleles in individual populations underlie the frequencies of ALS risk alleles in the corresponding populations.
Collapse
Affiliation(s)
- Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroki Takano
- Department of Neurology, Tachikawa General Hospital, Niigata, Japan
| | - Jun Goto
- Department of Neurology, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan. .,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan.
| |
Collapse
|
15
|
The clinical assessment of amyotrophic lateral sclerosis patients' prognosis by ZNF512B gene, neck flexor muscle power score and body mass index (BMI). BMC Neurol 2018; 18:211. [PMID: 30567526 PMCID: PMC6299516 DOI: 10.1186/s12883-018-1219-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Assessment on the prognosis of amyotrophic lateral sclerosis (ALS) is becoming a focus of research in recent years since there is no effective treatment. The aim of the research is to explore the major factors involving in prognosis of ALS patients through long-term follow-up. METHODS ALS patients' DNA extracted from peripheral blood white cells were detected for the risk allele by single nucleotide polymorphism (SNP) analysis. Neck flexor muscle score and body mass index (BMI) were recorded during Medical Research Council follow-up using manual muscle testing method. RESULTS ALS patients with risk alleles (C) deteriorated rapidly with poor clinical outcome. It seemed that the higher neck flexor muscle strength score in ALS patients with the longer survival time but without significant correlation (p > 0.05). The lower the basal body mass index, the shorter the survival time and the faster deterioration (p < 0.05). The patients with body mass index less than 22.04 seemed to have short survival time than those with BMI more than 22.04 (p < 0.05), however, the speed of deterioration in two groups of patients had no significant difference (p > 0.05). CONCLUSION The risk (C) allele of the SNP (rs2275294) in the ZNF512B gene, cervical flexor muscle power and body weight index might have clinical potential for ALS prognostication, since these indicators is so simple to perform that they might be very suitable for primary clinics and even community medical institutions to carry out.
Collapse
|
16
|
Laboissonniere LA, Smith CL, Mesenbrink J, Chowdhury R, Burney A, Lang M, Sierra M, Stark A, Maldonado-Casalduc G, Muller M, Trimarchi JM. ALS-associated genes display CNS expression in the developing zebrafish. Gene Expr Patterns 2018; 30:14-31. [DOI: 10.1016/j.gep.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022]
|
17
|
Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat Med 2018; 24:1579-1589. [PMID: 30127392 DOI: 10.1038/s41591-018-0140-5] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/11/2018] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous motor neuron disease for which no effective treatment is available, despite decades of research into SOD1-mutant familial ALS (FALS). The majority of ALS patients have no familial history, making the modeling of sporadic ALS (SALS) essential to the development of ALS therapeutics. However, as mutations underlying ALS pathogenesis have not yet been identified, it remains difficult to establish useful models of SALS. Using induced pluripotent stem cell (iPSC) technology to generate stem and differentiated cells retaining the patients' full genetic information, we have established a large number of in vitro cellular models of SALS. These models showed phenotypic differences in their pattern of neuronal degeneration, types of abnormal protein aggregates, cell death mechanisms, and onset and progression of these phenotypes in vitro among cases. We therefore developed a system for case clustering capable of subdividing these heterogeneous SALS models by their in vitro characteristics. We further evaluated multiple-phenotype rescue of these subclassified SALS models using agents selected from non-SOD1 FALS models, and identified ropinirole as a potential therapeutic candidate. Integration of the datasets acquired in this study permitted the visualization of molecular pathologies shared across a wide range of SALS models.
Collapse
|
18
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal degenerative disorder of motor neurons that overlaps clinically with frontotemporal dementia (FTD). Investigations of the 10% of ALS cases that are transmitted as dominant traits have revealed numerous gene mutations and variants that either cause these disorders or influence their clinical phenotype. The evolving understanding of the genetic architecture of ALS has illuminated broad themes in the molecular pathophysiology of both familial and sporadic ALS and FTD. These central themes encompass disturbances of protein homeostasis, alterations in the biology of RNA binding proteins, and defects in cytoskeletal dynamics, as well as numerous downstream pathophysiological events. Together, these findings from ALS genetics provide new insight into therapies that target genetically distinct subsets of ALS and FTD.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
19
|
Ning P, Yang X, Yang B, Zhao Q, Huang H, An R, Chen Y, Hu F, Xu Z, Xu Y. Meta-analysis of the association between ZNF512B polymorphism rs2275294 and risk of amyotrophic lateral sclerosis. Neurol Sci 2018; 39:1261-1266. [PMID: 29713939 DOI: 10.1007/s10072-018-3411-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/07/2018] [Indexed: 02/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), the most common motor neuron disease, appears to result from the combination of genetic and environmental factors. Whether the rs2275294 polymorphism in the ZNF512B gene influences ALS risk is controversial. We meta-analysed the association between rs2275294 and ALS risk based on evidence published in the PubMed database. Five case-control studies involving 2559 patients with sporadic ALS and 5740 controls were analysed. Based on random-effects meta-analysis, the polymorphism rs2275294 was associated with increased risk of ALS disease in an allele model (C vs. T: OR 1.222, 95%CI 1.057 to 1.414, p = 0.007). The available evidence suggests that the ZNF512B polymorphism rs2275294 is associated with ALS risk. These results should be validated in large, well-designed studies, especially in non-Asian populations.
Collapse
Affiliation(s)
- Pingping Ning
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Xinglong Yang
- Department of Geriatric Neurology, First Affiliated Hospital of Kunming Medical University, 295 Xi Change Road, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Baiyuan Yang
- Department of Neurology, Seventh People's Hospital of Chengdu, Chengdu, Sichuan Province, People's Republic of China
| | - Quanzhen Zhao
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Hongyan Huang
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Ran An
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Yalan Chen
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Fayun Hu
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, People's Republic of China.
| |
Collapse
|
20
|
Xu L, Li J, Tian D, Chen L, Tang L, Fan D. The rs696880 Polymorphism in the Nogo-A Receptor Gene ( RTN4R) Is Associated With Susceptibility to Sporadic Amyotrophic Lateral Sclerosis in the Chinese Population. Front Aging Neurosci 2018; 10:108. [PMID: 29706887 PMCID: PMC5906538 DOI: 10.3389/fnagi.2018.00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/29/2018] [Indexed: 12/23/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) in the Nogo-A receptor gene (RTN4R) have been associated with increased risk for sporadic amyotrophic lateral sclerosis (SALS) in the French population. In the present study, we investigated the associations between RTN4R tag SNPs and SALS in a large Chinese population. Four tag SNPs (rs854971, rs887765, rs696880 and rs1567871) in the RTN4R gene with an r2 threshold of 0.8 and a minor allele frequency (MAF) greater than 0.2% were selected based on Chinese population data from HapMap. A total of 499 SALS patients and 503 healthy controls were genotyped for the SNPs by SNaPshot technology. Haplotype analysis of the four SNPs was performed using the SHEsis software platform. The results showed a significant association between the rs696880 risk allele (A) and SALS in the Han Chinese population (P = 0.009, odds ratio (OR) = 1.266 [1.06-1.51]). The allele and genotype frequencies of rs854971, rs887765 and rs1567871 were not associated with SALS. The distribution of the GAAT haplotype was different between the case and control groups (P = 0.008, OR = 1.289 [1.066-1.558]). In conclusion, our study showed an association between the RTN4R SNP rs696880 and the risk of SALS in the Han Chinese population, with the A allele increasing risk.
Collapse
Affiliation(s)
- Lianping Xu
- Department of Neurology, Peking University Third Hospital Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University Beijing, China
| | - Jiao Li
- Department of Neurology, Peking University Third Hospital Beijing, China
| | - Danyang Tian
- Department of Neurology, Peking University Third Hospital Beijing, China
| | - Lu Chen
- Department of Neurology, Peking University Third Hospital Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health & Family Planning Commission, Peking University Beijing, China
| |
Collapse
|
21
|
Murdock BJ, Zhou T, Kashlan SR, Little RJ, Goutman SA, Feldman EL. Correlation of Peripheral Immunity With Rapid Amyotrophic Lateral Sclerosis Progression. JAMA Neurol 2017; 74:1446-1454. [PMID: 28973548 DOI: 10.1001/jamaneurol.2017.2255] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Amyotrophic lateral sclerosis (ALS) has an immune component, but previous human studies have not examined immune changes over time. Objectives To assess peripheral inflammatory markers in participants with ALS and healthy control individuals and to track immune changes in ALS and determine whether these changes correlate with disease progression. Design, Setting, and Participants In this longitudinal cohort study, leukocytes were isolated from peripheral blood samples from 35 controls and 119 participants with ALS at the ALS Clinic of the University of Michigan, Ann Arbor, from June 18, 2014, through May 26, 2016. Follow-up visits occurred every 6 to 12 months. Fifty-one participants with ALS provided samples at multiple points. Immune cell populations were measured and compared between control and ALS groups. Surface marker expression of CD11b+ myeloid cells was also assessed. Changes over time were correlated with disease progression using multivariate regression. Main Outcomes and Measures The number of immune cells per milliliter of blood and the fold expression of cell surface markers. Multivariate regression models were used to correlate changes in immune metrics with changes on the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R). Results Thirty-five controls (17 women [48.6%] and 18 men [51.4%]; mean [SD] age, 63.5 [9.9] years) and 119 participants with ALS (50 women [42.0%] and 69 men [68.0%]; mean [SD] age, 61.4 [11.5] years) were enrolled. Compared with controls, participants with ALS had increased mean (SEM) counts ( × 106/mL) of total leukocytes (4.57 [0.29; 95% CI, 3.94-5.11] vs 5.53 [0.16; 95% CI, 5.21-5.84]), neutrophils (2.87 [0.23; 95% CI, 2.40-3.35] vs 3.80 [0.12; 95% CI, 3.56-4.04]), CD16+ monocytes (0.03 [0.003; 95% CI, 0.02-0.04] vs 0.04 [0.002; 95% CI, 0.03-0.04]), CD16- monocytes (0.25 [0.02; 95% CI, 0.21-0.30] vs 0.29 [0.01; 95% CI, 0.27-0.31]), and natural killer cells (0.13 [0.02; 95% CI, 0.10-0.17] vs 0.18 [0.01; 95% CI, 0.16-0.21]). We also observed an acute, transient increase in a population of CD11b+ myeloid cells expressing HLA-DR, CD11c, and CX3CR1. Finally, early changes in immune cell numbers had a significant correlation with disease progression measured by change in ALSFRS-R score, particularly neutrophils (-4.37 [95% CI, -6.60 to -2.14] per 11.47 × 104/mL [SD, 58.04 × 104/mL] per year) and CD4 T cells (-30.47 [95% CI, -46.02 to -14.94] per -3.72 × 104/mL [SD, 26.21 × 104/mL] per year). Conclusions and Relevance Changes in the immune system occur during ALS and may contribute to the pathologic features of ALS.
Collapse
Affiliation(s)
| | - Tingting Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor
| | - Samy R Kashlan
- Department of Neurology, University of Michigan, Ann Arbor
| | - Roderick J Little
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor.,A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor
| |
Collapse
|
22
|
Yang X, Li S, Xing D, Li P, Li C, Qi L, Xu Y, Ren H. Lack of association between the P413L variant of chromogranin B and ALS risk or age at onset: a meta-analysis. Amyotroph Lateral Scler Frontotemporal Degener 2017; 19:80-86. [PMID: 28795874 DOI: 10.1080/21678421.2017.1361444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS), the most common motor neuron disease, is thought to result from interaction of genetic and environmental risk factors. Whether the potentially functional exonic P413L variant in the chromogranin B gene influences ALS risk and age at onset is controversial. METHOD We meta-analysed or other studies assessing the association between the P413L variant and ALS risk or age at ALS onset indexed in Web of Science, PubMed, Embase, Chinese National Knowledge Infrastructure, Wanfang, and SinoMed databases. RESULTS Five case-control studies were analysed, involving 2639 patients with sporadic ALS, 201 with familial ALS and 3381 controls. No association was detected between risk of either ALS type and the CT + TT genotype or T-allele of the P413L variant. Age at ALS onset was similar between carriers and non-carriers of the T-allele. CONCLUSION The available evidence suggests that the P413L variant of chromogranin B is not associated with ALS risk or age at ALS onset. These results should be validated in large, well-designed studies.
Collapse
Affiliation(s)
- Xinglong Yang
- a Department of Geriatric Neurology , First Affiliated Hospital of Kunming Medical University , Kunming , Yunan Province , P.R. China.,b Department of Neurology , West China Hospital, Sichuan University , Chengdu , Sichuan Province , P.R. China
| | - Shimei Li
- c Department of Anesthesia , Kunming Xishan District People's Hospital , Kunming , Yunnan Province , P.R. China , and
| | - Dongmei Xing
- d Department of Neurology , The Third People's Hospital of Yunnan Province , Kunming , Yunnan Province , P.R. China
| | - Peiyun Li
- d Department of Neurology , The Third People's Hospital of Yunnan Province , Kunming , Yunnan Province , P.R. China
| | - Ci Li
- d Department of Neurology , The Third People's Hospital of Yunnan Province , Kunming , Yunnan Province , P.R. China
| | - Ling Qi
- d Department of Neurology , The Third People's Hospital of Yunnan Province , Kunming , Yunnan Province , P.R. China
| | - Yanming Xu
- b Department of Neurology , West China Hospital, Sichuan University , Chengdu , Sichuan Province , P.R. China
| | - Hui Ren
- a Department of Geriatric Neurology , First Affiliated Hospital of Kunming Medical University , Kunming , Yunan Province , P.R. China
| |
Collapse
|
23
|
Xu L, Tian D, Li J, Chen L, Tang L, Fan D. The Analysis of Two BDNF Polymorphisms G196A/C270T in Chinese Sporadic Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2017; 9:135. [PMID: 28539884 PMCID: PMC5423950 DOI: 10.3389/fnagi.2017.00135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/21/2017] [Indexed: 01/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an ethnically heterogeneous motor neuron disease that results from the selective death of motor neurons in the brain and spinal cord. Brain-derived neurotrophic factor (BDNF) is widely distributed across the central and peripheral nervous systems and plays neurotrophic and other physiological roles in various brain regions. Alterations of neurotrophin availability have been proposed as a pathogenic mechanism underlying ALS neurodegeneration. Several genetic studies have shown a significant association between schizophrenia, Alzheimer's disease, and Parkinson's disease and certain BDNF polymorphisms, specifically G196A (rs6265) and C270T (rs56164415). However, the relationship between the G196A and C270T polymorphisms and ALS has never been investigated. We hypothesized that sporadic ALS (sALS) and disease susceptibility could arise due to BDNF polymorphisms and investigated the relationship between ALS and the BDNF polymorphisms G196A and C270T in a large Chinese cohort. We demonstrate that the frequency of the CT genotype and of the C270T T allele was significantly higher in the ALS group than in controls, although G196A was not associated with sALS. These data provide the first demonstration that the BDNF C270T polymorphism may be a candidate susceptibility locus for sALS, at least in Han Chinese.
Collapse
Affiliation(s)
- Lianping Xu
- Department of Neurology, Peking University Third HospitalBeijing, China
| | - Danyang Tian
- Department of Neurology, Peking University Third HospitalBeijing, China
| | - Jiao Li
- Department of Neurology, Peking University Third HospitalBeijing, China
| | - Lu Chen
- Department of Neurology, Peking University Third HospitalBeijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third HospitalBeijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third HospitalBeijing, China
| |
Collapse
|
24
|
Riva N, Clarelli F, Domi T, Cerri F, Gallia F, Trimarco A, Brambilla P, Lunetta C, Lazzerini A, Lauria G, Taveggia C, Iannaccone S, Nobile-Orazio E, Comi G, D’Antonio M, Martinelli-Boneschi F, Quattrini A. Unraveling gene expression profiles in peripheral motor nerve from amyotrophic lateral sclerosis patients: insights into pathogenesis. Sci Rep 2016; 6:39297. [PMID: 27982123 PMCID: PMC5159906 DOI: 10.1038/srep39297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/21/2016] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study is to investigate the molecular pathways underlying amyotrophic lateral sclerosis (ALS) pathogenesis within the peripheral nervous system. We analyzed gene expression changes in human motor nerve diagnostic biopsies obtained from eight ALS patients and seven patients affected by motor neuropathy as controls. An integrated transcriptomics and system biology approach was employed. We identified alterations in the expression of 815 genes, with 529 up-regulated and 286 down-regulated in ALS patients. Up-regulated genes clustered around biological process involving RNA processing and protein metabolisms. We observed a significant enrichment of up-regulated small nucleolar RNA transcripts (p = 2.68*10-11) and genes related to endoplasmic reticulum unfolded protein response and chaperone activity. We found a significant down-regulation in ALS of genes related to the glutamate metabolism. Interestingly, a network analysis highlighted HDAC2, belonging to the histone deacetylase family, as the most interacting node. While so far gene expression studies in human ALS have been performed in postmortem tissues, here specimens were obtained from biopsy at an early phase of the disease, making these results new in the field of ALS research and therefore appealing for gene discovery studies.
Collapse
Affiliation(s)
- Nilo Riva
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Ferdinando Clarelli
- Laboratory of Genetics of Complex Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cerri
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Gallia
- 2Neurology, IRCCS Istituto Clinico Humanitas, Milano University, Milan, Italy
| | - Amelia Trimarco
- Axo-glia interactions Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Brambilla
- Laboratory of Genetics of Complex Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Niguarda Ca Granda Hospital, Milan, Italy
| | - Alberto Lazzerini
- Hand Surgery and Microsurgery Unit, IRCCS Humanitas Clinical Institute, Milan, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit, IRCCS Foundation “Carlo Besta” Neurological Institute, Milan, Italy
| | - Carla Taveggia
- Axo-glia interactions Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Sandro Iannaccone
- Department of Clinical Neurosciences, San Raffaele Scientific Institute, Milan, Italy
| | | | - Giancarlo Comi
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Universita` Vita e Salute San Raffaele, Milan, Italy
| | - Maurizio D’Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Martinelli-Boneschi
- Laboratory of Genetics of Complex Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
25
|
Madadi F, Khaniani MS, Shandiz EE, Ayromlou H, Najmi S, Emamalizadeh B, Taghavi S, Jamshidi J, Tafakhori A, Shahidi GA, Darvish H. Genetic Analysis of the ZNF512B, SLC41A1, and ALDH2 Polymorphisms in Parkinson's Disease in the Iranian Population. Genet Test Mol Biomarkers 2016; 20:629-632. [PMID: 27612022 DOI: 10.1089/gtmb.2016.0133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS Parkinson's disease (PD) is one of the most common neurodegenerative disorders; its etiology includes both genetic and environmental factors and their interactions. The ZNF512B, SLC41A1, and ALDH2 genes have recently been identified as contributing to PD. In this study we investigated the association of alleles of these genes with PD in the Iranian population. METHODS In a case-control study, rs2275294, rs11240569, and rs4767944, three single nucleotide polymorphisms in ZNF512B, SLC41A1, and ALDH2 genes, respectively, were genotyped in 490 PD patients and 490 controls. The genotype and allele frequencies were compared between the two groups using chi-square and logistic regression tests. RESULTS A significant association between the rs11240569 polymorphism and a reduced risk of PD was found (p = 0.014, OR = 0.76, 95% CI: 0.60-0.94 for allele frequencies). We did not find any associations between PD and the rs2275294 and rs4767944 polymorphisms. CONCLUSION The association of rs11240569 polymorphism in SLC41A1 gene with reduced risk of PD was replicated in our population.
Collapse
Affiliation(s)
- Faranak Madadi
- 1 Neuroscience Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- 2 Department of Medical Genetics, School of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Ehsan Esmaili Shandiz
- 3 Neurology Department, Ganjavian Hospital, Dezful University of Medical Sciences , Dezful, Iran
| | - Hormoz Ayromlou
- 4 Department of Neurology, School of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Safa Najmi
- 4 Department of Neurology, School of Medicine, Tabriz University of Medical Sciences , Tabriz, Iran
| | - Babak Emamalizadeh
- 5 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Shaghayegh Taghavi
- 5 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Javad Jamshidi
- 6 Noncommunicable Diseases Research Center, Fasa University of Medical Sciences , Fasa, Iran
| | - Abbas Tafakhori
- 7 Department of Neurology, School of Medicine, Imam Khomeini Hospital and Iranian Center of Neurological Research, Tehran University of Medical Sciences , Tehran, Iran
| | - Gholam-Ali Shahidi
- 8 Movement Disorders Clinic, Hazrat Rassol Hospital, Iran University of Medical Sciences , Tehran, Iran
| | - Hossein Darvish
- 5 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
26
|
Shahrizaila N, Sobue G, Kuwabara S, Kim SH, Birks C, Fan DS, Bae JS, Hu CJ, Gourie-Devi M, Noto Y, Shibuya K, Goh KJ, Kaji R, Tsai CP, Cui L, Talman P, Henderson RD, Vucic S, Kiernan MC. Amyotrophic lateral sclerosis and motor neuron syndromes in Asia. J Neurol Neurosurg Psychiatry 2016; 87:821-30. [PMID: 27093948 DOI: 10.1136/jnnp-2015-312751] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022]
Abstract
While the past 2 decades have witnessed an increasing understanding of amyotrophic lateral sclerosis (ALS) arising from East Asia, particularly Japan, South Korea, Taiwan and China, knowledge of ALS throughout the whole of Asia remains limited. Asia represents >50% of the world population, making it host to the largest patient cohort of ALS. Furthermore, Asia represents a diverse population in terms of ethnic, social and cultural backgrounds. In this review, an overview is presented that covers what is currently known of ALS in Asia from basic epidemiology and genetic influences, through to disease characteristics including atypical phenotypes which manifest a predilection for Asians. With the recent establishment of the Pan-Asian Consortium for Treatment and Research in ALS to facilitate collaborations between clinicians and researchers across the region, it is anticipated that Asia and the Pacific will contribute to unravelling the uncertainties in ALS.
Collapse
Affiliation(s)
- N Shahrizaila
- Faculty of Medicine, Neurology Unit, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - G Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - S Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S H Kim
- Department of Neurology, Hanyang University Medical Center, Seoul, South Korea
| | - Carol Birks
- International Alliance of ALS/MND Associations, Sydney, New South Wales, Australia
| | - D S Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - J S Bae
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - C J Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - M Gourie-Devi
- Department of Neurology, Institute of Human Behaviour and Allied Sciences (IHBAS), New Delhi, Delhi, India
| | - Y Noto
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - K Shibuya
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - K J Goh
- Faculty of Medicine, Neurology Unit, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - R Kaji
- Department of Clinical Neuroscience, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - C P Tsai
- Department of Neurology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - L Cui
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - P Talman
- Neurology Unit, Calvary Health Care, Bethlehem Hospital, Caulfield, Victoria, Australia
| | - R D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - S Vucic
- The Brain Dynamics Centre, Westmead Millennium Institute, Westmead, NSW and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - M C Kiernan
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
27
|
Watanabe H, Atsuta N, Hirakawa A, Nakamura R, Nakatochi M, Ishigaki S, Iida A, Ikegawa S, Kubo M, Yokoi D, Watanabe H, Ito M, Katsuno M, Izumi Y, Morita M, Kanai K, Taniguchi A, Aiba I, Abe K, Mizoguchi K, Oda M, Kano O, Okamoto K, Kuwabara S, Hasegawa K, Imai T, Kawata A, Aoki M, Tsuji S, Nakashima K, Kaji R, Sobue G. A rapid functional decline type of amyotrophic lateral sclerosis is linked to low expression of TTN. J Neurol Neurosurg Psychiatry 2016; 87:851-8. [PMID: 26746183 DOI: 10.1136/jnnp-2015-311541] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/18/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To classify the patterns of functional decline in patients with sporadic amyotrophic lateral sclerosis (ALS) and explore the genetic backgrounds that modified these patterns. METHODS We included 465 patients with sporadic ALS in the analysis and clustered the longitudinal functional scores in the registered patients, using a mixture approach of a non-linear mixed-effects model. We conducted a genome-wide analysis of 572 983 single nucleotide polymorphisms (SNPs). We then assessed the association between the clusters of longitudinal functional scores and SNPs. RESULTS We identified the following four clusters of longitudinal functional decline in the cases: a rapid decline cluster, an intermediate decline cluster, a sigmoidal decline cluster and a moderate decline cluster. We identified seven SNPs associated with the rapid decline cluster, using a recessive model (p=3.47-8.34×10(-8)). The OR for the probabilities of the rapid decline cluster ranged from 5.5 to 5.84. Homozygosity for the minor alleles in the seven SNPs, which constituted a linkage disequilibrium (LD) block, was associated with decreased expression of TTN (encoding Titin, a large sarcomere protein) in the expression quantitative trait loci database of a large-scale Japanese genetic variation database (p=8.6×10(-10)-1.1×10(-7)). TTN expression in immortalised lymphocyte lines was decreased in patients who were homozygous for the minor alleles compared with those who were homozygous for the major alleles (n=19 in each group, p=0.002). CONCLUSIONS We detected an LD block associated with a rapid functional decline in patients with sporadic ALS, which is linked to decreased expression of TTN.
Collapse
Affiliation(s)
- Hazuki Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Hirakawa
- Biostatistics and Bioinformatics Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Nakatochi
- Biostatistics and Bioinformatics Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aritoshi Iida
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Science, RIKEN, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Science, RIKEN, Tokyo, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Daichi Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mizuki Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazuaki Kanai
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ikuko Aiba
- Department of Neurology, National Hospital Organization, Higashinagoya National Hospital, Nagoya, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Koichi Mizoguchi
- Department of Neurology, National Hospital Organization, Shizuoka-Fuji National Hospital, Fujinomiya, Japan
| | - Masaya Oda
- Department of Neurology, Vihara Hananosato Hospital, Miyoshi, Japan
| | - Osamu Kano
- Department of Neurology, Toho University Omori Medical Center, Tokyo, Japan
| | - Koichi Okamoto
- Department of Neurology, Geriatrics Research Institute, Maebashi, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuko Hasegawa
- Division of Neurology, National Hospital Organization, Sagamihara National Hospital, Sagamihara, Japan
| | - Takashi Imai
- Division of Neurology, National Hospital Organization, Miyagi National Hospital, Miyagi, Japan
| | - Akihiro Kawata
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Nakashima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
28
|
He F, Jones JM, Figueroa-Romero C, Zhang D, Feldman EL, Goutman SA, Meisler MH, Callaghan BC, Todd PK. Screening for novel hexanucleotide repeat expansions at ALS- and FTD-associated loci. NEUROLOGY-GENETICS 2016; 2:e71. [PMID: 27274540 PMCID: PMC4865132 DOI: 10.1212/nxg.0000000000000071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/01/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To determine whether GGGGCC (G4C2) repeat expansions at loci other than C9orf72 serve as common causes of amyotrophic lateral sclerosis (ALS). METHODS We assessed G4C2 repeat number in 28 genes near known ALS and frontotemporal dementia (FTD) loci by repeat-primed PCR coupled with fluorescent fragment analysis in 199 patients with ALS (17 familial, 182 sporadic) and 136 healthy controls. We also obtained blood from patients with ALS4 for evaluation of repeats surrounding the SETX gene locus. C9orf72 expansions were evaluated in parallel. RESULTS Expansions of G4C2 repeats in C9orf72 explained 8.8% of sporadic and 47% of familial ALS cases analyzed. Repeat variance was observed at one other locus, RGS14, but no large expansions were observed, and repeat sizes were not different between cases and controls. No G4C2 repeat expansions were identified at other ALS or FTD risk loci or in ALS4 cases. CONCLUSIONS G4C2 expansions near known ALS and FTD loci other than C9orf72 are not a common cause of ALS.
Collapse
Affiliation(s)
- Fang He
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Julie M Jones
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Claudia Figueroa-Romero
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Dapeng Zhang
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Eva L Feldman
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Stephen A Goutman
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Miriam H Meisler
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Brian C Callaghan
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Peter K Todd
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| |
Collapse
|
29
|
Caballero-Hernandez D, Toscano MG, Cejudo-Guillen M, Garcia-Martin ML, Lopez S, Franco JM, Quintana FJ, Roodveldt C, Pozo D. The ‘Omics’ of Amyotrophic Lateral Sclerosis. Trends Mol Med 2016; 22:53-67. [DOI: 10.1016/j.molmed.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 10/29/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
|
30
|
Zou ZY, Liu CY, Che CH, Huang HP. Toward precision medicine in amyotrophic lateral sclerosis. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:27. [PMID: 26889480 PMCID: PMC4731596 DOI: 10.3978/j.issn.2305-5839.2016.01.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/11/2022]
Abstract
Precision medicine is an innovative approach that uses emerging biomedical technologies to deliver optimally targeted and timed interventions, customized to the molecular drivers of an individual's disease. This approach is only just beginning to be considered for treating amyotrophic lateral sclerosis (ALS). The clinical and biological complexities of ALS have hindered development of effective therapeutic strategies. In this review we consider applying the key elements of precision medicine to ALS: phenotypic classification, comprehensive risk assessment, presymptomatic period detection, potential molecular pathways, disease model development, biomarker discovery and molecularly tailored interventions. Together, these would embody a precision medicine approach, which may provide strategies for optimal targeting and timing of efforts to prevent, stop or slow progression of ALS.
Collapse
Affiliation(s)
- Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
31
|
Ju XD, Liu T, Chen J, Li XG, Liu XX, Liu WC, Wang K, Deng M. Single-nucleotide Polymorphism rs2275294 in ZNF512B is not Associated with Susceptibility to Amyotrophic Lateral Sclerosis in a Large Chinese Cohort. Chin Med J (Engl) 2015; 128:3305-9. [PMID: 26668144 PMCID: PMC4797505 DOI: 10.4103/0366-6999.171421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motor neurons and has no effective treatment. Recently, Iida et al. identified a single-nucleotide polymorphism (SNP) rs2275294 in the ZNF512B gene that is significantly associated with susceptibility to ALS in the Japanese population. Here, we performed a case–control study examining the possible association of rs2275294 with risk of sporadic ALS (SALS) in a large Chinese cohort. Methods: To assess this association, we performed a replication study in 953 SALS patients and 1039 age- and gender-matched healthy control subjects, who were recruited from Peking University Third Hospital and the First Affiliated Hospital of Anhui Medical University from January 2004 to December 2013 throughout China. We genotyped the rs2275294 SNP using polymerase chain reaction and direct sequencing. Results: The allele frequency of rs2275294 in ZNF512B was different between Japanese and Chinese. The association in Chinese between ALS patients and controls did not reach statistical significance (P = 0.54; odds ratio = 0.94; 95% confidence interval = 0.76–1.15). Conclusions: The SNP rs2275294 in ZNF512B is not considered to be associated with ALS susceptibility in the Chinese population. Our study highlights genetic heterogeneity in ALS susceptibility in different population. Given our negative results, further replication study involving larger and more homogeneous samples in different ethnicities should be performed in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Deng
- Medical Research Center, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
32
|
Abstract
Genes linked to amyotrophic lateral sclerosis (ALS) susceptibility are being identified at an increasing rate owing to advances in molecular genetic technology. Genetic mechanisms in ALS pathogenesis seem to exert major effects in about 10% of patients, but genetic factors at some level may be important components of disease risk in most patients with ALS. Identification of gene variants associated with ALS has informed concepts of the pathogenesis of ALS, aided the identification of therapeutic targets, facilitated research to develop new ALS biomarkers, and supported the establishment of clinical diagnostic tests for ALS-linked genes.
Collapse
Affiliation(s)
- Kevin Boylan
- Department of Neurology, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
33
|
Yang X, Zhao Q, An R, Zheng J, Tian S, Xu Y. Association of the functional SNP rs2275294 in ZNF512B with risk of amyotrophic lateral sclerosis and Parkinson's disease in Han Chinese. Amyotroph Lateral Scler Frontotemporal Degener 2015; 17:142-7. [DOI: 10.3109/21678421.2015.1054291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Amy M, Staehlin O, René F, Blasco H, Marouillat S, Daoud H, Vourc'h P, Gordon PH, Camu W, Corcia P, Loeffler JP, Palkovits M, Sommer WH, Andres CR. A common functional allele of the Nogo receptor gene, reticulon 4 receptor (RTN4R), is associated with sporadic amyotrophic lateral sclerosis in a French population. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16:490-6. [PMID: 26083872 DOI: 10.3109/21678421.2015.1051988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis is sporadic (SALS) in 90% of cases and has complex environmental and genetic influences. Nogo protein inhibits neurite outgrowth and is overexpressed in muscle in ALS. Our aims were to study the reticulon 4 receptor gene RTN4R which encodes Nogo 1 receptor (NgR1) in SALS, to test if the variants were associated with variable expression of the gene and whether NgR1 protein expression was modified in a transgenic mouse model of ALS. We genotyped three single nucleotide polymorphisms (SNPs; rs701421, rs701427, and rs1567871) of the RTN4R gene in 364 SALS French patients and 430 controls. We examined expression of RTN4R mRNA by quantitative PCR in control post mortem human brain tissue. We determined the expression of NgR1 protein in spinal motor neurons from a SOD1 G86R ALS mouse model. We observed significant associations between SALS and RTN4R alleles. Messenger RNA expression from RTN4R in human cortical brain tissue correlated significantly with the genotypes of rs701427. NgR1 protein expression was reduced in Nogo A positive motor neurons from diseased transgenic animals. In conclusion, these observations suggest that a functional RTN4R gene variant is associated with SALS. This variant may act in concert with other genetic variants or environmental influences.
Collapse
Affiliation(s)
- Maïté Amy
- a INSERM U930 , Tours , France.,b Université François Rabelais , Tours , France
| | - Oliver Staehlin
- c Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Mannheim , Germany
| | - Frédérique René
- d INSERM U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence , Strasbourg , France.,e Université de Strasbourg, UMRS 1118 , Strasbourg , France
| | - Hélène Blasco
- a INSERM U930 , Tours , France.,b Université François Rabelais , Tours , France.,f Service de Biochimie et Biologie Moléculaire, Hôpital Bretonneau , CHRU de Tours, Tours , France
| | | | | | - Patrick Vourc'h
- a INSERM U930 , Tours , France.,b Université François Rabelais , Tours , France.,f Service de Biochimie et Biologie Moléculaire, Hôpital Bretonneau , CHRU de Tours, Tours , France
| | - Paul H Gordon
- g Northern Navajo Medical Center , Shiprock NM , USA
| | - William Camu
- h ALS Centre, Hôpital Gui de Chauliac, CHU de Montpellier , Montpellier , France
| | - Philippe Corcia
- a INSERM U930 , Tours , France.,b Université François Rabelais , Tours , France.,i ALS Centre, Department of Neurology , CHRU de Tours, France
| | - Jean-Philippe Loeffler
- d INSERM U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence , Strasbourg , France.,e Université de Strasbourg, UMRS 1118 , Strasbourg , France
| | - Miklós Palkovits
- j Laboratory of Neuromorphology, Semmelweis University and the Hungarian Academy of Sciences , Budapest , Hungary
| | - Wolfgang H Sommer
- c Institute of Psychopharmacology at Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg , Mannheim , Germany
| | - Christian R Andres
- a INSERM U930 , Tours , France.,b Université François Rabelais , Tours , France.,f Service de Biochimie et Biologie Moléculaire, Hôpital Bretonneau , CHRU de Tours, Tours , France
| |
Collapse
|
35
|
Marangi G, Traynor BJ. Genetic causes of amyotrophic lateral sclerosis: new genetic analysis methodologies entailing new opportunities and challenges. Brain Res 2015; 1607:75-93. [PMID: 25316630 PMCID: PMC5916786 DOI: 10.1016/j.brainres.2014.10.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 12/11/2022]
Abstract
The genetic architecture of amyotrophic lateral sclerosis (ALS) is being increasingly understood. In this far-reaching review, we examine what is currently known about ALS genetics and how these genes were initially identified. We also discuss the various types of mutations that might underlie this fatal neurodegenerative condition and outline some of the strategies that might be useful in untangling them. These include expansions of short repeat sequences, common and low-frequency genetic variations, de novo mutations, epigenetic changes, somatic mutations, epistasis, oligogenic and polygenic hypotheses. This article is part of a Special Issue entitled ALS complex pathogenesis.
Collapse
Affiliation(s)
- Giuseppe Marangi
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA; Institute of Medical Genetics, Catholic University, Roma, Italy.
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Murdock BJ, Bender DE, Segal BM, Feldman EL. The dual roles of immunity in ALS: Injury overrides protection. Neurobiol Dis 2015; 77:1-12. [DOI: 10.1016/j.nbd.2015.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
|
37
|
Endo F, Komine O, Fujimori-Tonou N, Katsuno M, Jin S, Watanabe S, Sobue G, Dezawa M, Wyss-Coray T, Yamanaka K. Astrocyte-derived TGF-β1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. Cell Rep 2015; 11:592-604. [PMID: 25892237 DOI: 10.1016/j.celrep.2015.03.053] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 02/20/2015] [Accepted: 03/24/2015] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation, which includes both neuroprotective and neurotoxic reactions by activated glial cells and infiltrated immune cells, is involved in the pathomechanism of amyotrophic lateral sclerosis (ALS). However, the cytokines that regulate the neuroprotective inflammatory response in ALS are not clear. Here, we identify transforming growth factor-β1 (TGF-β1), which is upregulated in astrocytes of murine and human ALS, as a negative regulator of neuroprotective inflammatory response. We demonstrate that astrocyte-specific overproduction of TGF-β1 in SOD1(G93A) mice accelerates disease progression in a non-cell-autonomous manner, with reduced IGF-I production in deactivated microglia and fewer T cells with an IFN-γ-dominant milieu. Moreover, expression levels of endogenous TGF-β1 in SOD1(G93A) mice negatively correlate with lifespan. Furthermore, pharmacological administration of a TGF-β signaling inhibitor after disease onset extends survival time of SOD1(G93A) mice. These findings indicate that astrocytic TGF-β1 determines disease progression and is critical to the pathomechanism of ALS.
Collapse
Affiliation(s)
- Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 4648601, Japan; Laboratory for Motor Neuron Disease, RIKEN Brain Science Institute, Wako, Saitama 3510198, Japan; Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 9808575, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 4648601, Japan
| | - Noriko Fujimori-Tonou
- Laboratory for Motor Neuron Disease, RIKEN Brain Science Institute, Wako, Saitama 3510198, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 4668550, Japan
| | - Shijie Jin
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 4648601, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 4648601, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 4668550, Japan; CREST, Japan Science and Technology Agency, Saitama 3320012, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 9808575, Japan
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 4648601, Japan; Laboratory for Motor Neuron Disease, RIKEN Brain Science Institute, Wako, Saitama 3510198, Japan; CREST, Japan Science and Technology Agency, Saitama 3320012, Japan.
| |
Collapse
|
38
|
He J, Mangelsdorf M, Fan D, Bartlett P, Brown MA. Amyotrophic Lateral Sclerosis Genetic Studies: From Genome-wide Association Mapping to Genome Sequencing. Neuroscientist 2014; 21:599-615. [PMID: 25378359 DOI: 10.1177/1073858414555404] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of obscure etiology. Multiple genetic studies have been conducted to advance our understanding of the disease, employing a variety of techniques such as linkage mapping in families, to genome-wide association studies and sequencing based approaches such as whole exome sequencing and whole genome sequencing and a few epigenetic analyses. While major progress has been made, the majority of the genetic variation involved in ALS is yet to be undefined. The optimal study designs to investigate ALS depend on the genetic model for the disease, and it is likely that different approaches will be required to map genes involved in familial and sporadic disease. The potential approaches and their strengths and weaknesses are discussed.
Collapse
Affiliation(s)
- Ji He
- Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Australia Department of Neurology, Peking University Third Hospital, Beijing, China University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Marie Mangelsdorf
- Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Australia
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Perry Bartlett
- Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Australia
| | - Matthew A Brown
- University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| |
Collapse
|
39
|
Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H, Nicholson G, Ravits J, Shaw PJ, Swash M, Talbot K, Traynor BJ, Van den Berg LH, Veldink JH, Vucic S, Kiernan MC. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 2013; 12:310-22. [PMID: 23415570 DOI: 10.1016/s1474-4422(13)70036-x] [Citation(s) in RCA: 398] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two decades after the discovery that 20% of familial amyotrophic lateral sclerosis (ALS) cases were linked to mutations in the superoxide dismutase-1 (SOD1) gene, a substantial proportion of the remainder of cases of familial ALS have now been traced to an expansion of the intronic hexanucleotide repeat sequence in C9orf72. This breakthrough provides an opportunity to re-evaluate longstanding concepts regarding the cause and natural history of ALS, coming soon after the pathological unification of ALS with frontotemporal dementia through a shared pathological signature of cytoplasmic inclusions of the ubiquitinated protein TDP-43. However, with profound clinical, prognostic, neuropathological, and now genetic heterogeneity, the concept of ALS as one disease appears increasingly untenable. This background calls for the development of a more sophisticated taxonomy, and an appreciation of ALS as the breakdown of a wider network rather than a discrete vulnerable population of specialised motor neurons. Identification of C9orf72 repeat expansions in patients without a family history of ALS challenges the traditional division between familial and sporadic disease. By contrast, the 90% of apparently sporadic cases and incomplete penetrance of several genes linked to familial cases suggest that at least some forms of ALS arise from the interplay of multiple genes, poorly understood developmental, environmental, and age-related factors, as well as stochastic events.
Collapse
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The gene expression programs that establish and maintain specific cell states in humans are controlled by thousands of transcription factors, cofactors, and chromatin regulators. Misregulation of these gene expression programs can cause a broad range of diseases. Here, we review recent advances in our understanding of transcriptional regulation and discuss how these have provided new insights into transcriptional misregulation in disease.
Collapse
Affiliation(s)
- Tong Ihn Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts
| |
Collapse
|
41
|
Intricate interplay between astrocytes and motor neurons in ALS. Proc Natl Acad Sci U S A 2013; 110:E756-65. [PMID: 23388633 DOI: 10.1073/pnas.1222361110] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ALS results from the selective and progressive degeneration of motor neurons. Although the underlying disease mechanisms remain unknown, glial cells have been implicated in ALS disease progression. Here, we examine the effects of glial cell/motor neuron interactions on gene expression using the hSOD1(G93A) (the G93A allele of the human superoxide dismutase gene) mouse model of ALS. We detect striking cell autonomous and nonautonomous changes in gene expression in cocultured motor neurons and glia, revealing that the two cell types profoundly affect each other. In addition, we found a remarkable concordance between the cell culture data and expression profiles of whole spinal cords and acutely isolated spinal cord cells during disease progression in the G93A mouse model, providing validation of the cell culture approach. Bioinformatics analyses identified changes in the expression of specific genes and signaling pathways that may contribute to motor neuron degeneration in ALS, among which are TGF-β signaling pathways.
Collapse
|
42
|
Tetsuka S, Morita M, Iida A, Uehara R, Ikegawa S, Nakano I. ZNF512B gene is a prognostic factor in patients with amyotrophic lateral sclerosis. J Neurol Sci 2012; 324:163-6. [PMID: 23168171 DOI: 10.1016/j.jns.2012.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/30/2012] [Accepted: 10/30/2012] [Indexed: 11/28/2022]
Abstract
Recently, Iida et al. discovered a new single-nucleotide polymorphism (SNP) in the ZNF512B gene associated with susceptibility to amyotrophic lateral sclerosis (ALS). The ZNF512B gene was found to be a transcription factor promoting the expression of a downstream gene in the signal transduction pathway of the transforming growth factor-β (TGF-β), which is essential for the protection and survival of neurons but the influence of the new SNP (rs2275294) in actual ALS patients remained unknown. The objective of our study was to examine whether the new SNP in the ZNF512B gene might influence the phenotype of ALS. We conducted a retrospective analysis of the ZNF512B gene in 176 patients diagnosed as having ALS at our hospital. Evaluation of the prognosis after the onset using Kaplan-Meier survival curves in patients with versus without the risk allele (C allele: CC and CT genotypes) revealed a significantly lower survival probability in those with the risk allele (log-rank test, P<0.01), independent of the other prognostic factors in ALS. Our study revealed the influence of the new SNP in actual ALS patients. It would be clinically reasonable to suggest that the ZNF512B gene is a new prognostic factor in ALS. This study is the first, as per our knowledge, to indicate that the association between the new susceptibility gene for ALS and its pathway could be identified.
Collapse
Affiliation(s)
- Syuichi Tetsuka
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Galbiati M, Onesto E, Zito A, Crippa V, Rusmini P, Mariotti R, Bentivoglio M, Bendotti C, Poletti A. The anabolic/androgenic steroid nandrolone exacerbates gene expression modifications induced by mutant SOD1 in muscles of mice models of amyotrophic lateral sclerosis. Pharmacol Res 2011; 65:221-30. [PMID: 22178654 PMCID: PMC3272141 DOI: 10.1016/j.phrs.2011.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 12/14/2022]
Abstract
Anabolic/androgenic steroids (AAS) are drugs that enhance muscle mass, and are often illegally utilized in athletes to improve their performances. Recent data suggest that the increased risk for amyotrophic lateral sclerosis (ALS) in male soccer and football players could be linked to AAS abuse. ALS is a motor neuron disease mainly occurring in sporadic (sALS) forms, but some familial forms (fALS) exist and have been linked to mutations in different genes. Some of these, in their wild type (wt) form, have been proposed as risk factors for sALS, i.e. superoxide dismutase 1 (SOD1) gene, whose mutations are causative of about 20% of fALS. Notably, SOD1 toxicity might occur both in motor neurons and in muscle cells. Using gastrocnemius muscles of mice overexpressing human mutant SOD1 (mutSOD1) at different disease stages, we found that the expression of a selected set of genes associated to muscle atrophy, MyoD, myogenin, atrogin-1, and transforming growth factor (TGF)β1, is up-regulated already at the presymptomatic stage. Atrogin-1 gene expression was increased also in mice overexpressing human wtSOD1. Similar alterations were found in axotomized mouse muscles and in cultured ALS myoblast models. In these ALS models, we then evaluated the pharmacological effects of the synthetic AAS nandrolone on the expression of the genes modified in ALS muscle. Nandrolone administration had no effects on MyoD, myogenin, and atrogin-1 expression, but it significantly increased TGFβ1 expression at disease onset. Altogether, these data suggest that, in fALS, muscle gene expression is altered at early stages, and AAS may exacerbate some of the alterations induced by SOD1 possibly acting as a contributing factor also in sALS.
Collapse
Affiliation(s)
- Mariarita Galbiati
- Dipartimento di Endocrinologia, Fisiopatologia e Biologia Applicata, and Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Katsuno M, Banno H, Suzuki K, Adachi H, Tanaka F, Sobue G. [TGF-beta signaling in neurodegenerative diseases]. Rinsho Shinkeigaku 2011; 51:982-985. [PMID: 22277449 DOI: 10.5692/clinicalneurol.51.982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transforming growth factor beta (TGF-beta), a pleiotropic cytokine, regulates a diverse range of cellular responses, such as proliferation, differentiation, migration, and apoptosis. Recent studies indicate that disruption of TGF-beta signaling due to the transcriptional dysregulation of its receptor is associated with polyglutamine-induced motor neuron damage in spinal and bulbar muscular atrophy. Moreover, a single-nucleotide polymorphism (SNP) in the promoter region of ZNF512B, a putative regulator of TGF-beta signaling, is shown to be associated with susceptibility to amyotrophic lateral sclerosis. Signal transduction by BMP, a member of the TGF-beta super family, is decreased in a fly model of spinal muscular atrophy, while the abnormal activation of this signaling has been reported in animal models of hereditary spastic paraplegia. These findings support the hypothesis that the disruption of TGF-beta signaling is an important molecular event in the pathogenesis of motor neuron diseases, and that the modification of this signaling pathway represents a new therapeutic strategy against these devastating disorders.
Collapse
Affiliation(s)
- Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine
| | | | | | | | | | | |
Collapse
|