1
|
Clément AE, Merdrignac C, Puiggros SR, Sévère D, Brionne A, Lafond T, Nguyen T, Montfort J, Guyomar C, Dauvé A, Herpin A, Jabaudon D, Colson V, Murat F, Bobe J. Parent-of-origin regulation by maternal auts2 shapes neurodevelopment and behavior in fish. Genome Biol 2025; 26:125. [PMID: 40346605 PMCID: PMC12063280 DOI: 10.1186/s13059-025-03600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Parental experience can influence progeny behavior through gamete-mediated non-genetic inheritance, that is, mechanisms that do not involve changes in inherited DNA sequence. However, underlying mechanisms remain poorly understood in vertebrates, especially for maternal effects. Here, we use the medaka, a model fish species, to investigate the role of auts2a, the ortholog of human AUTS2, a gene repressed in the fish oocyte following maternal stress and associated with neurodevelopmental disorders. RESULTS We show that auts2a expression in the oocyte influences long-term progeny behavior, including anxiety-like behavior and environment recognition capabilities. Using single-nuclei RNA-sequencing, we reveal that maternal auts2a influences gene expression in neural cell populations during neurodevelopment. We also show that maternal auts2a knock-out triggers differences in maternally inherited factors, including early embryonic transcriptional and post-transcriptional regulators. CONCLUSIONS Together, our results reveal the unsuspected role of an autism-related gene expressed in the mother's oocyte in shaping progeny neurodevelopment and behavior. Finally, we report that auts2a/AUTS2 is part of a group of evolutionarily conserved genes associated with human neurodevelopmental disorders and expressed in oocytes across species, from fish to mammals. These findings raise important questions about their potential role in the non-genetic regulation of progeny neurodevelopment and behavior in vertebrates.
Collapse
Affiliation(s)
| | | | - Sergi Roig Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Dorine Sévère
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Aurélien Brionne
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Thomas Lafond
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Thaovi Nguyen
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Jérôme Montfort
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Cervin Guyomar
- Sigenae, GenPhySE, INRAE, ENVT, Université de Toulouse, Toulouse, Castanet Tolosan, France
| | - Alexandra Dauvé
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Amaury Herpin
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Violaine Colson
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Florent Murat
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Julien Bobe
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France.
| |
Collapse
|
2
|
Geaghan MP, Reay WR, Cairns MJ. MicroRNA binding site variation is enriched in psychiatric disorders. Hum Mutat 2022; 43:2153-2169. [PMID: 36217923 PMCID: PMC10947041 DOI: 10.1002/humu.24481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023]
Abstract
Psychiatric disorders have a polygenic architecture, often associated with dozens or hundreds of independent genomic loci. Most associated loci impact noncoding regions of the genome, suggesting that the majority of disease heritability originates from the disruption of regulatory sequences. While most research has focused on variants that modify regulatory DNA elements, those affecting cis-acting RNA sequences, such as miRNA binding sites, are also likely to have a significant impact. We intersected genome-wide association study (GWAS) summary statistics with the dbMTS database of predictions for miRNA binding site variants (MBSVs). We compared the distributions of MBSV association statistics to non-MBSVs within brain-expressed 3'UTR regions. We aggregated GWAS p values at the gene, pathway, and miRNA family levels to investigate cellular functions and miRNA families strongly associated with each trait. We performed these analyses in several psychiatric disorders as well as nonpsychiatric traits for comparison. We observed significant enrichment of MBSVs in schizophrenia, depression, bipolar disorder, and anorexia nervosa, particularly in genes targeted by several miRNA families, including miR-335-5p, miR-21-5p/590-5p, miR-361-5p, and miR-557, and a nominally significant association between miR-323b-3p MBSVs and schizophrenia risk. We identified evidence for the association between MBSVs in synaptic gene sets in schizophrenia and bipolar disorder. We also observed a significant association of MBSVs in other complex traits including type 2 diabetes. These observations support the role of miRNA in the pathophysiology of psychiatric disorders and suggest that MBSVs are an important class of regulatory variants that have functional implications for many disorders, as well as other complex human traits.
Collapse
Affiliation(s)
- Michael P. Geaghan
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - William R. Reay
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Murray J. Cairns
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
3
|
Kanlayaprasit S, Thongkorn S, Panjabud P, Jindatip D, Hu VW, Kikkawa T, Osumi N, Sarachana T. Autism-Related Transcription Factors Underlying the Sex-Specific Effects of Prenatal Bisphenol A Exposure on Transcriptome-Interactome Profiles in the Offspring Prefrontal Cortex. Int J Mol Sci 2021; 22:13201. [PMID: 34947998 PMCID: PMC8708761 DOI: 10.3390/ijms222413201] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is an environmental risk factor for autism spectrum disorder (ASD). BPA exposure dysregulates ASD-related genes in the hippocampus and neurological functions of offspring. However, whether prenatal BPA exposure has an impact on genes in the prefrontal cortex, another brain region highly implicated in ASD, and through what mechanisms have not been investigated. Here, we demonstrated that prenatal BPA exposure disrupts the transcriptome-interactome profiles of the prefrontal cortex of neonatal rats. Interestingly, the list of BPA-responsive genes was significantly enriched with known ASD candidate genes, as well as genes that were dysregulated in the postmortem brain tissues of ASD cases from multiple independent studies. Moreover, several differentially expressed genes in the offspring's prefrontal cortex were the targets of ASD-related transcription factors, including AR, ESR1, and RORA. The hypergeometric distribution analysis revealed that BPA may regulate the expression of such genes through these transcription factors in a sex-dependent manner. The molecular docking analysis of BPA and ASD-related transcription factors revealed novel potential targets of BPA, including RORA, SOX5, TCF4, and YY1. Our findings indicated that prenatal BPA exposure disrupts ASD-related genes in the offspring's prefrontal cortex and may increase the risk of ASD through sex-dependent molecular mechanisms, which should be investigated further.
Collapse
Grants
- FRB65_hea(80)_175_37_05 Fundamental Fund, Chulalongkorn University
- AHS-CU 61004 Faculty of Allied Health Sciences Research Fund, Chulalongkorn University
- GRU 6300437001-1 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- GRU_64_033_37_004 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship, Graduate School, Chulalongkorn University
- The Overseas Research Experience Scholarship for Graduate Students from Graduate School, Chulalongkorn University
- PHD/0029/2561 The Royal Golden Jubilee Ph.D. Programme Scholarship, Thailand Research Fund and National Research Council of Thailand
- National Research Council of Thailand (NRCT)
- GCUGR1125623067D-67 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125632108D-108 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- 2073011 Chulalongkorn University Laboratory Animal Center (CULAC) Grant
Collapse
Affiliation(s)
- Songphon Kanlayaprasit
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Surangrat Thongkorn
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Pawinee Panjabud
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Depicha Jindatip
- Systems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Valerie W. Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai 980-8577, Miyagi, Japan; (T.K.); (N.O.)
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai 980-8577, Miyagi, Japan; (T.K.); (N.O.)
| | - Tewarit Sarachana
- Systems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
4
|
Sanchez-Jimeno C, Blanco-Kelly F, López-Grondona F, Losada-Del Pozo R, Moreno B, Rodrigo-Moreno M, Martinez-Cayuelas E, Riveiro-Alvarez R, Fenollar-Cortés M, Ayuso C, Rodríguez de Alba M, Lorda-Sanchez I, Almoguera B. Attention Deficit Hyperactivity and Autism Spectrum Disorders as the Core Symptoms of AUTS2 Syndrome: Description of Five New Patients and Update of the Frequency of Manifestations and Genotype-Phenotype Correlation. Genes (Basel) 2021; 12:genes12091360. [PMID: 34573342 PMCID: PMC8471078 DOI: 10.3390/genes12091360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Haploinsufficiency of AUTS2 has been associated with a syndromic form of neurodevelopmental delay characterized by intellectual disability, autistic features, and microcephaly, also known as AUTS2 syndrome. While the phenotype associated with large deletions and duplications of AUTS2 is well established, clinical features of patients harboring AUTS2 sequence variants have not been extensively described. In this study, we describe the phenotype of five new patients with AUTS2 pathogenic variants, three of them harboring loss-of-function sequence variants. The phenotype of the patients was characterized by attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) or autistic features and mild global developmental delay (GDD) or intellectual disability (ID), all in 4/5 patients (80%), a frequency higher than previously reported for ADHD and autistic features. Microcephaly and short stature were found in 60% of the patients; and feeding difficulties, generalized hypotonia, and ptosis, were each found in 40%. We also provide the aggregated frequency of the 32 items included in the AUTS2 syndrome severity score (ASSS) in patients currently reported in the literature. The main characteristics of the syndrome are GDD/ID in 98% of patients, microcephaly in 65%, feeding difficulties in 62%, ADHD or hyperactivity in 54%, and autistic traits in 52%. Finally, using the location of 31 variants from the literature together with variants from the five patients, we found significantly higher ASSS values in patients with pathogenic variants affecting the 3′ end of the gene, confirming the genotype-phenotype correlation initially described.
Collapse
Affiliation(s)
- Carolina Sanchez-Jimeno
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Fermina López-Grondona
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Rebeca Losada-Del Pozo
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - Beatriz Moreno
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - María Rodrigo-Moreno
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - Elena Martinez-Cayuelas
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - Rosa Riveiro-Alvarez
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - María Fenollar-Cortés
- Clinical Genetics Unit, Department of Clinical Analysis, Clínico San Carlos University Hospital, 28040 Madrid, Spain;
- IIS-Clínico San Carlos University Hospital (IsISSC), 28040 Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Marta Rodríguez de Alba
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Isabel Lorda-Sanchez
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Berta Almoguera
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
5
|
Erotomania and phenotypic continuum in a family frameshift variant of AUTS2: a case report and review. BMC Psychiatry 2021; 21:360. [PMID: 34273950 PMCID: PMC8285776 DOI: 10.1186/s12888-021-03342-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pathogenic variants of the AUTS2 (Autism Susceptibility candidate 2) gene predispose to intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, facial dysmorphism and short stature. This phenotype is therefore associated with neurocognitive disturbances and social cognition, indicating potential functional maladjustment in the affected subjects, and a potentially significant impact on quality of life. Although many isolated cases have been reported in the literature, to date no families have been described. This case reports on a family (three generations) with a frameshift variant in the AUTS2 gene. CASE PRESENTATION The proband is 13 years old with short stature, dysmorphic features, moderate intellectual disability and autism spectrum disorder. His mother is 49 years old and also has short stature and similar dysmorphic features. She does not have autism disorder but presents an erotomaniac delusion. Her cognitive performance is heterogeneous. The two aunts are also of short stature. The 50-year-old aunt has isolated social cognition disorders. The 45-year-old aunt has severe cognitive impairment and autism spectrum disorder. The molecular analysis of the three sisters and the proband shows the same AUTS2 heterozygous duplication leading to a frame shift expected to produce a premature stop codon, p.(Met593Tyrfs*85). Previously reported isolated cases revealed phenotypic and cognitive impairment variability. In this case report, these variabilities are present within the same family, presenting the same variant. CONCLUSIONS The possibility of a phenotypic spectrum within the same family highlights the need for joint psychiatry and genetics research.
Collapse
|
6
|
Wang H, Avillach P. Retracted: Diagnostic Classification and Prognostic Prediction Using Common Genetic Variants in Autism Spectrum Disorder: Genotype-Based Deep Learning. JMIR Med Inform 2021; 9:e24754. [PMID: 33714937 PMCID: PMC8060867 DOI: 10.2196/24754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/18/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In the United States, about 3 million people have autism spectrum disorder (ASD), and around 1 out of 59 children are diagnosed with ASD. People with ASD have characteristic social communication deficits and repetitive behaviors. The causes of this disorder remain unknown; however, in up to 25% of cases, a genetic cause can be identified. Detecting ASD as early as possible is desirable because early detection of ASD enables timely interventions in children with ASD. Identification of ASD based on objective pathogenic mutation screening is the major first step toward early intervention and effective treatment of affected children. OBJECTIVE Recent investigation interrogated genomics data for detecting and treating autism disorders, in addition to the conventional clinical interview as a diagnostic test. Since deep neural networks perform better than shallow machine learning models on complex and high-dimensional data, in this study, we sought to apply deep learning to genetic data obtained across thousands of simplex families at risk for ASD to identify contributory mutations and to create an advanced diagnostic classifier for autism screening. METHODS After preprocessing the genomics data from the Simons Simplex Collection, we extracted top ranking common variants that may be protective or pathogenic for autism based on a chi-square test. A convolutional neural network-based diagnostic classifier was then designed using the identified significant common variants to predict autism. The performance was then compared with shallow machine learning-based classifiers and randomly selected common variants. RESULTS The selected contributory common variants were significantly enriched in chromosome X while chromosome Y was also discriminatory in determining the identification of autistic individuals from nonautistic individuals. The ARSD, MAGEB16, and MXRA5 genes had the largest effect in the contributory variants. Thus, screening algorithms were adapted to include these common variants. The deep learning model yielded an area under the receiver operating characteristic curve of 0.955 and an accuracy of 88% for identifying autistic individuals from nonautistic individuals. Our classifier demonstrated a considerable improvement of ~13% in terms of classification accuracy compared to standard autism screening tools. CONCLUSIONS Common variants are informative for autism identification. Our findings also suggest that the deep learning process is a reliable method for distinguishing the diseased group from the control group based on the common variants of autism.
Collapse
Affiliation(s)
- Haishuai Wang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
- Department of Computer Science and Engineering, Fairfield University, Fairfield, CT, United States
| | - Paul Avillach
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Whole Exome Sequencing Reveals a Novel AUTS2 In-Frame Deletion in a Boy with Global Developmental Delay, Absent Speech, Dysmorphic Features, and Cerebral Anomalies. Genes (Basel) 2021; 12:genes12020229. [PMID: 33562463 PMCID: PMC7915150 DOI: 10.3390/genes12020229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of highly prevalent, clinically and genetically heterogeneous pediatric disorders comprising, according to the Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-V), intellectual disability, developmental delay, autism spectrum disorders, and other neurological and cognitive disorders manifesting in the developmental age. To date, more than 1000 genes have been implicated in the etiopathogenesis of NNDs. Among them, AUTS2 (OMIM # 607270) encodes a protein involved in neural migration and neuritogenesis, and causes NNDs with different molecular mechanisms including copy number variations, single or multiple exonic deletion and single nucleotide variants. We describes a 9-year-old boy with global developmental delay, absent speech, minor craniofacial anomalies, hypoplasia of the cerebellar vermis and thinning of the corpus callosum, resulted carrier of the de novo AUTS2 c.1603_1626del deletion at whole exome sequencing (WES) predicted to cause the loss of eight amino acids [p.(His535_Thr542del)]. Notably, our patient is the first reported so far in medical literature carrying an in-frame deletion and the first in which absent language, hypoplasia of the cerebellar vermis and thinning of the corpus callosum has been observed thus useful to expand the molecular spectrum of AUTS2 pathogenic variants and to broaden our knowledge on the clinical phenotype associated.
Collapse
|
8
|
AUTS2 isoforms control neuronal differentiation. Mol Psychiatry 2021; 26:666-681. [PMID: 30953002 DOI: 10.1038/s41380-019-0409-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023]
Abstract
Mutations in AUTS2 are associated with autism, intellectual disability, and microcephaly. AUTS2 is expressed in the brain and interacts with polycomb proteins, yet it is still unclear how mutations in AUTS2 lead to neurodevelopmental phenotypes. Here we report that when neuronal differentiation is initiated, there is a shift in expression from a long isoform to a short AUTS2 isoform. Yeast two-hybrid screen identified the splicing factor SF3B1 as an interactor of both isoforms, whereas the polycomb group proteins, PCGF3 and PCGF5, were found to interact exclusively with the long AUTS2 isoform. Reporter assays showed that the first exons of the long AUTS2 isoform function as a transcription repressor, but the part that consist of the short isoform acts as a transcriptional activator, both influenced by the cellular context. The expression levels of PCGF3 influenced the ability of the long AUTS2 isoform to activate or repress transcription. Mouse embryonic stem cells (mESCs) with heterozygote mutations in Auts2 had an increase in cell death during in vitro corticogenesis, which was significantly rescued by overexpressing the human AUTS2 transcripts. mESCs with a truncated AUTS2 protein (missing exons 12-20) showed premature neuronal differentiation, whereas cells overexpressing AUTS2, especially the long transcript, showed increase in expression of pluripotency markers and delayed differentiation. Taken together, our data suggest that the precise expression of AUTS2 isoforms is essential for regulating transcription and the timing of neuronal differentiation.
Collapse
|
9
|
Sellers RA, Robertson DL, Tassabehji M. Ancestry of the AUTS2 family-A novel group of polycomb-complex proteins involved in human neurological disease. PLoS One 2020; 15:e0232101. [PMID: 33306672 PMCID: PMC7732068 DOI: 10.1371/journal.pone.0232101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/07/2020] [Indexed: 01/10/2023] Open
Abstract
Autism susceptibility candidate 2 (AUTS2) is a neurodevelopmental regulator associated with an autosomal dominant intellectual disability syndrome, AUTS2 syndrome, and is implicated as an important gene in human-specific evolution. AUTS2 exists as part of a tripartite gene family, the AUTS2 family, which includes two relatively undefined proteins, Fibrosin (FBRS) and Fibrosin-like protein 1 (FBRSL1). Evolutionary ancestors of AUTS2 have not been formally identified outside of the Animalia clade. A Drosophila melanogaster protein, Tay bridge, with a role in neurodevelopment, has been shown to display limited similarity to the C-terminal of AUTS2, suggesting that evolutionary ancestors of the AUTS2 family may exist within other Protostome lineages. Here we present an evolutionary analysis of the AUTS2 family, which highlights ancestral homologs of AUTS2 in multiple Protostome species, implicates AUTS2 as the closest human relative to the progenitor of the AUTS2 family, and demonstrates that Tay bridge is a divergent ortholog of the ancestral AUTS2 progenitor gene. We also define regions of high relative sequence identity, with potential functional significance, shared by the extended AUTS2 protein family. Using structural predictions coupled with sequence conservation and human variant data from 15,708 individuals, a putative domain structure for AUTS2 was produced that can be used to aid interpretation of the consequences of nucleotide variation on protein structure and function in human disease. To assess the role of AUTS2 in human-specific evolution, we recalculated allele frequencies at previously identified human derived sites using large population genome data, and show a high prevalence of ancestral alleles, suggesting that AUTS2 may not be a rapidly evolving gene, as previously thought.
Collapse
Affiliation(s)
- Robert A. Sellers
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, United Kingdom
| | - May Tassabehji
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Patak J, Faraone SV, Zhang-James Y. Sodium hydrogen exchanger 9 NHE9 (SLC9A9) and its emerging roles in neuropsychiatric comorbidity. Am J Med Genet B Neuropsychiatr Genet 2020; 183:289-305. [PMID: 32400953 DOI: 10.1002/ajmg.b.32787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/09/2019] [Accepted: 02/22/2020] [Indexed: 12/16/2022]
Abstract
Variations in SLC9A9 gene expression and protein function are associated with multiple human diseases, which range from Attention-deficit/hyperactivity disorder (ADHD) to glioblastoma multiforme. In an effort to determine the full spectrum of human disease associations with SLC9A9, we performed a systematic review of the literature. We also review SLC9A9's biochemistry, protein structure, and function, as well as its interacting partners with the goal of identifying mechanisms of disease and druggable targets. We report gaps in the literature regarding the genes function along with consistent trends in disease associations that can be used to further research into treating the respective diseases. We report that SLC9A9 has strong associations with neuropsychiatric diseases and various cancers. Interestingly, we find strong overlap in SLC9A9 disease associations and propose a novel role for SLC9A9 in neuropsychiatric comorbidity. In conclusion, SLC9A9 is a multifunctional protein that, through both its endosome regulatory function and its protein-protein interaction network, has the ability to modulate signaling axes, such as the PI3K pathway, among others.
Collapse
Affiliation(s)
- Jameson Patak
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, MD Program, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Stephen V Faraone
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yanli Zhang-James
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
11
|
Ozsoy F, Karakus NB, Yigit S, Kulu M. Effect of AUTS2 gene rs6943555 variant in male patients with schizophrenia in a Turkish population. Gene 2020; 756:144913. [PMID: 32574757 DOI: 10.1016/j.gene.2020.144913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Schizophreniais a severe brain disease seen all over the world. There are studies showing that activator of transcription and developmental regulator AUTS2 (AUTS2) gene is involved in the predisposition to schizophrenia. In this study, we aimed to analyze the correlation between rs6943555 variant of AUTS2 gene and schizophrenia in a Turkish population. This study include 100 schizophrenia patients and 152 unrelated healthy controls. The AUTS2 genotypes were determined by the polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) tests. Chi-square and Anova tests were used for statistical analyses. According to results, although the A allele frequency was higher in schizophrenia patients, we didn't detect statistically significant correlation between schizophrenia and the AUTS2 gene rs6943555 variant (p = 0.057). However after adjusting for gender, significant effects of genotype and allele were detected among males (p = 0.039 and p = 0.049, respectively). Also we observed a statistically significant correlation between HDL cholesterol values of patients and genotypes of rs6943555 variant (p = 0.016). As a result, rs6943555 variant of AUTS2 gene might affect the predisposition to schizophrenia especially in male patients.
Collapse
Affiliation(s)
- Filiz Ozsoy
- Tokat State Hospital, Psychiatry Clinic, Tokat, Turkey.
| | - Nevin Balci Karakus
- Department of Medical Biology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey.
| | - Serbulent Yigit
- Department of Genetics, Faculty of Veterinary, Ondokuz Mayis University, Samsun, Turkey.
| | - Muberra Kulu
- Tokat Dr. Cevdet Aykan Mental Health and Diseases Hospital, Psychiatry Clinic, Tokat, Turkey.
| |
Collapse
|
12
|
AUTS2 Regulation of Synapses for Proper Synaptic Inputs and Social Communication. iScience 2020; 23:101183. [PMID: 32498016 PMCID: PMC7267731 DOI: 10.1016/j.isci.2020.101183] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 01/11/2023] Open
Abstract
Impairments in synapse development are thought to cause numerous psychiatric disorders. Autism susceptibility candidate 2 (AUTS2) gene has been associated with various psychiatric disorders, such as autism and intellectual disabilities. Although roles for AUTS2 in neuronal migration and neuritogenesis have been reported, its involvement in synapse regulation remains unclear. In this study, we found that excitatory synapses were specifically increased in the Auts2-deficient primary cultured neurons as well as Auts2 mutant forebrains. Electrophysiological recordings and immunostaining showed increases in excitatory synaptic inputs as well as c-fos expression in Auts2 mutant brains, suggesting that an altered balance of excitatory and inhibitory inputs enhances brain excitability. Auts2 mutant mice exhibited autistic-like behaviors including impairments in social interaction and altered vocal communication. Together, these findings suggest that AUTS2 regulates excitatory synapse number to coordinate E/I balance in the brain, whose impairment may underlie the pathology of psychiatric disorders in individuals with AUTS2 mutations. AUTS2 regulates excitatory synapse number in forebrain pyramidal neurons Loss of Auts2 leads to increased spine formation in development and adulthood Loss of Auts2 alters the balance of excitatory and inhibitory synaptic inputs Auts2 mutant mice exhibit cognitive and sociobehavioral deficits
Collapse
|
13
|
Kerner-Rossi M, Gulinello M, Walkley S, Dobrenis K. Pathobiology of Christianson syndrome: Linking disrupted endosomal-lysosomal function with intellectual disability and sensory impairments. Neurobiol Learn Mem 2019; 165:106867. [PMID: 29772390 PMCID: PMC6235725 DOI: 10.1016/j.nlm.2018.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 11/18/2022]
Abstract
Christianson syndrome (CS) is a recently described rare neurogenetic disorder presenting early in life with a broad range of neurological symptoms, including severe intellectual disability with nonverbal status, hyperactivity, epilepsy, and progressive ataxia due to cerebellar atrophy. CS is due to loss-of-function mutations in SLC9A6, encoding NHE6, a sodium-hydrogen exchanger involved in the regulation of early endosomal pH. Here we review what is currently known about the neuropathogenesis of CS, based on insights from experimental models, which to date have focused on mechanisms that affect the CNS, specifically the brain. In addition, parental reports of sensory disturbances in their children with CS, including an apparent insensitivity to pain, led us to explore sensory function and related neuropathology in Slc9a6 KO mice. We present new data showing sensory deficits in Slc9a6 KO mice, which had reduced behavioral responses to noxious thermal and mechanical stimuli (Hargreaves and Von Frey assays, respectively) compared to wild type (WT) littermates. Immunohistochemical and ultrastructural analysis of the spinal cord and peripheral nervous system revealed intracellular accumulation of the glycosphingolipid GM2 ganglioside in KO but not WT mice. This cellular storage phenotype was most abundant in neurons of lamina I-II of the dorsal horn, a major relay site in the processing of painful stimuli. Spinal cords of KO mice also exhibited changes in astroglial and microglial populations throughout the gray matter suggestive of a neuroinflammatory process. Our findings establish the Slc9a6 KO mouse as a relevant tool for studying the sensory deficits in CS, and highlight selective vulnerabilities in relevant cell populations that may contribute to this phenotype. How NHE6 loss of function leads to such a multifaceted neurological syndrome is still undefined, and it is likely that NHE6 is involved with many cellular processes critical to normal nervous system development and function. In addition, the sensory issues exhibited by Slc9a6 KO mice, in combination with our neuropathological findings, are consistent with NHE6 loss of function impacting the entire nervous system. Sensory dysfunction in intellectually disabled individuals is challenging to assess and may impair patient safety and quality of life. Further mechanistic studies of the neurological impairments underlying CS and other genetic intellectual disability disorders must also take into account mechanisms affecting broader nervous system function in order to understand the full range of associated disabilities.
Collapse
Affiliation(s)
- Mallory Kerner-Rossi
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Gulinello
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; IDDRC Behavioral Core Facility, Neuroscience Department, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven Walkley
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Kostantin Dobrenis
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
14
|
Piontkivska H, Plonski NM, Miyamoto MM, Wayne ML. Explaining Pathogenicity of Congenital Zika and Guillain-Barré Syndromes: Does Dysregulation of RNA Editing Play a Role? Bioessays 2019; 41:e1800239. [PMID: 31106880 PMCID: PMC6699488 DOI: 10.1002/bies.201800239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2019] [Indexed: 12/11/2022]
Abstract
Previous studies of Zika virus (ZIKV) pathogenesis have focused primarily on virus-driven pathology and neurotoxicity, as well as host-related changes in cell proliferation, autophagy, immunity, and uterine function. It is now hypothesized that ZIKV pathogenesis arises instead as an (unintended) consequence of host innate immunity, specifically, as the side effect of an otherwise well-functioning machine. The hypothesis presented here suggests a new way of thinking about the role of host immune mechanisms in disease pathogenesis, focusing on dysregulation of post-transcriptional RNA editing as a candidate driver of a broad range of observed neurodevelopmental defects and neurodegenerative clinical symptoms in both infants and adults linked with ZIKV infections. The authors collect and synthesize existing evidence of ZIKV-mediated changes in the expression of adenosine deaminases acting on RNA (ADARs), known links between abnormal RNA editing and pathogenesis, as well as ideas for future research directions, including potential treatment strategies.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences and University, Kent, OH
44242, USA
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | - Noel-Marie Plonski
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | | | - Marta L. Wayne
- Department of Biology, University of Florida, Gainesville,
FL 32611, USA
- Emerging Pathogens Institute, University of Florida,
Gainesville, FL 32611, USA
| |
Collapse
|
15
|
Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres-Benito L, Mendoza-Ferreira N, Overhoff M, Rombo R, Grysko V, Kye MJ, Kononenko NL, Wirth B. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci 2019; 12:19. [PMID: 30853885 PMCID: PMC6396726 DOI: 10.3389/fnmol.2019.00019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022] Open
Abstract
Neurocalcin delta (NCALD) is a brain-enriched neuronal calcium sensor and its reduction acts protective against spinal muscular atrophy (SMA). However, the physiological function of NCALD and implications of NCALD reduction are still elusive. Here, we analyzed the ubiquitous Ncald knockout in homozygous (NcaldKO/KO) and heterozygous (NcaldKO/WT) mice to unravel the physiological role of NCALD in the brain and to study whether 50% NCALD reduction is a safe option for SMA therapy. We found that NcaldKO/KO but not NcaldKO/WT mice exhibit significant changes in the hippocampal morphology, likely due to impaired generation and migration of newborn neurons in the dentate gyrus (DG). To understand the mechanism behind, we studied the NCALD interactome and identified mitogen-activated protein kinase kinase kinase 10 (MAP3K10) as a novel NCALD interacting partner. MAP3K10 is an upstream activating kinase of c-Jun N-terminal kinase (JNK), which regulates adult neurogenesis. Strikingly, the JNK activation was significantly upregulated in the NcaldKO/KO brains. Contrary, neither adult neurogenesis nor JNK activation were altered by heterozygous Ncald deletion. Taken together, our study identifies a novel link between NCALD and adult neurogenesis in the hippocampus, possibly via a MAP3K10-JNK pathway and emphasizes the safety of using NCALD reduction as a therapeutic option for SMA.
Collapse
Affiliation(s)
- Aaradhita Upadhyay
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Svenja Schneider
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Anna Kaczmarek
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Laura Torres-Benito
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Melina Overhoff
- Institute for Genetics, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Roman Rombo
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Vanessa Grysko
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Min Jeong Kye
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- Institute for Genetics, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Zhao D, Lin M, Pedrosa E, Lachman HM, Zheng D. Characteristics of allelic gene expression in human brain cells from single-cell RNA-seq data analysis. BMC Genomics 2017; 18:860. [PMID: 29126398 PMCID: PMC5681780 DOI: 10.1186/s12864-017-4261-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022] Open
Abstract
Background Monoallelic expression of autosomal genes has been implicated in human psychiatric disorders. However, there is a paucity of allelic expression studies in human brain cells at the single cell and genome wide levels. Results In this report, we reanalyzed a previously published single-cell RNA-seq dataset from several postmortem human brains and observed pervasive monoallelic expression in individual cells, largely in a random manner. Examining single nucleotide variants with a predicted functional disruption, we found that the “damaged” alleles were overall expressed in fewer brain cells than their counterparts, and at a lower level in cells where their expression was detected. We also identified many brain cell type-specific monoallelically expressed genes. Interestingly, many of these cell type-specific monoallelically expressed genes were enriched for functions important for those brain cell types. In addition, function analysis showed that genes displaying monoallelic expression and correlated expression across neuronal cells from different individual brains were implicated in the regulation of synaptic function. Conclusions Our findings suggest that monoallelic gene expression is prevalent in human brain cells, which may play a role in generating cellular identity and neuronal diversity and thus increasing the complexity and diversity of brain cell functions. Electronic supplementary material The online version of this article (10.1186/s12864-017-4261-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dejian Zhao
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.,Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.,Present address: Department of Neuroscience, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu, 21166, China
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Herbert M Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.,Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA. .,Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA. .,Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.
| |
Collapse
|
17
|
Narita S, Ikeda K, Nishizawa D, Yoshihara E, Numajiri M, Onozawa Y, Ohtani N, Iwahashi K. No Association between the Polymorphism rs6943555 in the AUTS2 Gene and Personality Traits in Japanese University Students. Psychiatry Investig 2017; 14:681-686. [PMID: 29042895 PMCID: PMC5639138 DOI: 10.4306/pi.2017.14.5.681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/01/2016] [Accepted: 09/06/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The autism susceptibility candidate 2 (AUTS2) gene has been implicated in multiple neurological disorders. Several recent studies have revealed that the polymorphism rs6943555 in the AUTS2 gene is broadly associated with human mental function and behavior. Therefore, in the present study we investigated whether the polymorphism rs6943555 is associated with human personality traits in Japanese university students. In addition, our previous study reported that the AUTS2 rs6943555-rs9886351 haplotype is associated with alcohol dependence. As a preliminary analysis, we also examined whether the AUTS2 haplotypes are related to personality traits. METHODS After written informed consent had been obtained from the participants, two AUTS2 polymorphisms were analyzed, and personality was assessed using the Temperament and Character Inventory (TCI) in 190 university students. In addition, in order to exclude the influence of the results for students with mental health problems, we gave the Patient Health Questionnaire-9 (PHQ-9) to all subjects. RESULTS In all the subjects, there was a main effect of the polymorphism rs6943555 genotype on reward dependence (p=0.038) and cooperativeness (p=0.031), although the significance was lost on Bonferroni correction. Similarly, on analysis that excluded the subjects with PHQ-9 scores≥10, no significant association with any TCI dimension score among the rs6943555 genotypes was seen. There was no effect of the rs6943555-rs9886351 haplotypes on the TCI dimension scores. CONCLUSION This study suggests that the polymorphism AUTS2 rs6943555 is not associated with personality traits. Further large-scale studies with more subjects using other self-report questionnaires are needed.
Collapse
Affiliation(s)
- Shin Narita
- Laboratory of Physiology (Project of Neurophysiology), Course of Environmental Health Science, Graduate School of Environmental Health, Azabu University, Kanagawa, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Eiji Yoshihara
- Laboratory of Physiology (Project of Neurophysiology), Course of Environmental Health Science, Graduate School of Environmental Health, Azabu University, Kanagawa, Japan
| | - Maki Numajiri
- Laboratory of Physiology (Project of Neurophysiology), Course of Environmental Health Science, Graduate School of Environmental Health, Azabu University, Kanagawa, Japan
| | - Yuuya Onozawa
- Laboratory of Physiology (Project of Neurophysiology), Course of Environmental Health Science, Graduate School of Environmental Health, Azabu University, Kanagawa, Japan
| | - Nobuyo Ohtani
- Laboratory of Effective Animals for Human Health, Azabu University, Kanagawa, Japan
| | - Kazuhiko Iwahashi
- Laboratory of Physiology (Project of Neurophysiology), Course of Environmental Health Science, Graduate School of Environmental Health, Azabu University, Kanagawa, Japan
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Health Administration Center, Azabu University, Kanagawa, Japan
| |
Collapse
|
18
|
Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism 2017; 8:21. [PMID: 28540026 PMCID: PMC5441062 DOI: 10.1186/s13229-017-0137-9] [Citation(s) in RCA: 375] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 04/05/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Over the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15). METHODS We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls). RESULTS We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10-6). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23. CONCLUSIONS This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.
Collapse
|
19
|
Sivanesan S, Tan A, Jeyaraj R, Lam J, Gole M, Hardan A, Ashkan K, Rajadas J. Pharmaceuticals and Stem Cells in Autism Spectrum Disorders: Wishful Thinking? World Neurosurg 2017; 98:659-672. [DOI: 10.1016/j.wneu.2016.09.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
|
20
|
Abstract
OBJECTIVE Recent genome-wide analysis has indicated that the autism susceptibility candidate 2 (AUTS2) gene is involved in the regulation of alcohol consumption. We hypothesised that AUTS2 might be associated with the development of alcohol dependence. Therefore, in this exploratory study, we compared the genotype and allele frequencies of the polymorphisms rs6943555 and rs9886351 in the AUTS2 gene between patients with alcohol dependence and healthy control subjects living in a Japanese provincial prefecture. We also examined whether or not the haplotypes consisting of these polymorphisms are related to alcohol dependence. METHODS The subjects of this study consisted of 64 patients with alcohol dependence and 75 unrelated healthy people. The AUTS2 genotypes were determined by the polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method. RESULTS No significant differences in the genotype and allele frequencies of the polymorphisms AUTS2 rs6943555 and rs9886351 were found between alcohol dependence and control subjects. On the other hand, the frequencies of the AUTS2 haplotypes were significantly different between them, and the rs6943555 and rs9886351 A-A haplotype was associated with alcohol dependence (p=0.0187). CONCLUSION This suggests that the rs6943555 and rs9886351 A-A haplotype might affect the vulnerability to alcohol dependence pathogenesis. Further studies are needed to confirm the reproducibility of the results of this study with increased numbers of subjects.
Collapse
|
21
|
Patak J, Hess JL, Zhang-James Y, Glatt SJ, Faraone SV. SLC9A9 Co-expression modules in autism-associated brain regions. Autism Res 2016; 10:414-429. [PMID: 27439572 DOI: 10.1002/aur.1670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/27/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022]
Abstract
SLC9A9 is a sodium hydrogen exchanger present in the recycling endosome and highly expressed in the brain. It is implicated in neuropsychiatric disorders, including autism spectrum disorders (ASDs). Little research concerning its gene expression patterns and biological pathways has been conducted. We sought to investigate its possible biological roles in autism-associated brain regions throughout development. We conducted a weighted gene co-expression network analysis on RNA-seq data downloaded from Brainspan. We compared prenatal and postnatal gene expression networks for three ASD-associated brain regions known to have high SLC9A9 gene expression. We also performed an ASD-associated single nucleotide polymorphism enrichment analysis and a cell signature enrichment analysis. The modules showed differences in gene constituents (membership), gene number, and connectivity throughout time. SLC9A9 was highly associated with immune system functions, metabolism, apoptosis, endocytosis, and signaling cascades. Gene list comparison with co-immunoprecipitation data was significant for multiple modules. We found a disproportionately high autism risk signal among genes constituting the prenatal hippocampal module. The modules were enriched with astrocyte and oligodendrocyte markers. SLC9A9 is potentially involved in the pathophysiology of ASDs. Our investigation confirmed proposed functions for SLC9A9, such as endocytosis and immune regulation, while also revealing potential roles in mTOR signaling and cell survival.. By providing a concise molecular map and interactions, evidence of cell type and implicated brain regions we hope this will guide future research on SLC9A9. Autism Res 2017, 10: 414-429. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jameson Patak
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York
| | - Jonathan L Hess
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York
| | - Yanli Zhang-James
- Department of Psychiatry, Upstate Medical University, Syracuse, New York
| | - Stephen J Glatt
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York.,Department of Psychiatry, Upstate Medical University, Syracuse, New York
| | - Stephen V Faraone
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York.,Department of Psychiatry, Upstate Medical University, Syracuse, New York.,Department of Biomedicine, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Reiner O, Karzbrun E, Kshirsagar A, Kaibuchi K. Regulation of neuronal migration, an emerging topic in autism spectrum disorders. J Neurochem 2015; 136:440-56. [PMID: 26485324 DOI: 10.1111/jnc.13403] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/04/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorders (ASD) encompass a group of neurodevelopmental diseases that demonstrate strong heritability, however, the inheritance is not simple and many genes have been associated with these disorders. ASD is regarded as a neurodevelopmental disorder, and abnormalities at different developmental stages are part of the disease etiology. This review provides a general background on neuronal migration during brain development and discusses recent advancements in the field connecting ASD and aberrant neuronal migration. We propose that neuronal migration impairment may be an important common pathophysiology in autism spectrum disorders (ASD). This review provides a general background on neuronal migration during brain development and discusses recent advancements in the field connecting ASD and aberrant neuronal migration.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Karzbrun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Japan
| |
Collapse
|
23
|
Subramanian M, Timmerman CK, Schwartz JL, Pham DL, Meffert MK. Characterizing autism spectrum disorders by key biochemical pathways. Front Neurosci 2015; 9:313. [PMID: 26483618 PMCID: PMC4586332 DOI: 10.3389/fnins.2015.00313] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Christina K Timmerman
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Joshua L Schwartz
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Daniel L Pham
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Mollie K Meffert
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
24
|
Yanovsky-Dagan S, Avitzour M, Altarescu G, Renbaum P, Eldar-Geva T, Schonberger O, Mitrani-Rosenbaum S, Levy-Lahad E, Birnbaum RY, Gepstein L, Epsztejn-Litman S, Eiges R. Uncovering the Role of Hypermethylation by CTG Expansion in Myotonic Dystrophy Type 1 Using Mutant Human Embryonic Stem Cells. Stem Cell Reports 2015; 5:221-31. [PMID: 26190529 PMCID: PMC4618658 DOI: 10.1016/j.stemcr.2015.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 12/28/2022] Open
Abstract
CTG repeat expansion in DMPK, the cause of myotonic dystrophy type 1 (DM1), frequently results in hypermethylation and reduced SIX5 expression. The contribution of hypermethylation to disease pathogenesis and the precise mechanism by which SIX5 expression is reduced are unknown. Using 14 different DM1-affected human embryonic stem cell (hESC) lines, we characterized a differentially methylated region (DMR) near the CTGs. This DMR undergoes hypermethylation as a function of expansion size in a way that is specific to undifferentiated cells and is associated with reduced SIX5 expression. Using functional assays, we provide evidence for regulatory activity of the DMR, which is lost by hypermethylation and may contribute to DM1 pathogenesis by causing SIX5 haplo-insufficiency. This study highlights the power of hESCs in disease modeling and describes a DMR that functions both as an exon coding sequence and as a regulatory element whose activity is epigenetically hampered by a heritable mutation. We identify a disease-associated, differentially methylated region in DM1 hESCs CTG expansion size correlates with the degree of methylation specifically in DM1 hESCs DMPK hypermethylation hampers the activity of a regulatory element for SIX5 DM1 hESCs provide an opportunity to study diseased cardiomyocytes in vitro
Collapse
Affiliation(s)
- Shira Yanovsky-Dagan
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Michal Avitzour
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Gheona Altarescu
- Zohar PGD Lab, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Paul Renbaum
- Zohar PGD Lab, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Talia Eldar-Geva
- IVF Unit, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Oshrat Schonberger
- IVF Unit, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Stella Mitrani-Rosenbaum
- Goldyne Savad Institute for Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem 91240, Israel
| | - Ephrat Levy-Lahad
- Zohar PGD Lab, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Ramon Y Birnbaum
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Lior Gepstein
- Sohnis Family Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Silvina Epsztejn-Litman
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel.
| |
Collapse
|
25
|
Han Y, Ru GQ, Mou X, Wang HJ, Ma Y, He XL, Yan Z, Huang D. AUTS2 is a potential therapeutic target for pancreatic cancer patients with liver metastases. Med Hypotheses 2015; 85:203-6. [PMID: 25962312 DOI: 10.1016/j.mehy.2015.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
Abstract
Liver metastasis is a common event at the advanced stage of pancreatic malignancies. Identification of effective therapeutic targets is crucial for the management of pancreatic cancer patients with liver metastases. In this study, we show that (A) AUTS2 is overexpressed in liver metastases of pancreatic cancer and could be a biomarker for defining cancer subtypes. (B) AUTS2 expression is positively correlated with Docetaxel resistance, TGF-beta pathway activation, HEDGEHOG and WNT signaling pathway. (C) By building an AUTS2 centered protein-drug interaction network, we show that AUTS2 might promote chemotherapeutic resistance and metastasis by exerting its effect on epithelial-mesenchymal transition and WNT signaling pathway. (D) Five drugs that could down regulate the expression of AUTS2 were also suggested. These drugs might help in the treatment of pancreatic cancer patients at the stage of liver metastasis. In summary, our results indicate that AUTS2 is a candidate biomarker for defining liver metastasis of pancreatic cancer and directing personalized therapies.
Collapse
Affiliation(s)
- Yong Han
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Guo-Qing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, PR China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Hui-ju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Yingyu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| | - Xiang-Lei He
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, PR China
| | - Zhilong Yan
- Department of General Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, PR China
| | - Dongsheng Huang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China; Department of General Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, PR China.
| |
Collapse
|
26
|
Codina-Solà M, Rodríguez-Santiago B, Homs A, Santoyo J, Rigau M, Aznar-Laín G, Del Campo M, Gener B, Gabau E, Botella MP, Gutiérrez-Arumí A, Antiñolo G, Pérez-Jurado LA, Cuscó I. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders. Mol Autism 2015; 6:21. [PMID: 25969726 PMCID: PMC4427998 DOI: 10.1186/s13229-015-0017-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/19/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. METHODS We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. RESULTS We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. CONCLUSIONS Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.
Collapse
Affiliation(s)
- Marta Codina-Solà
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | | | - Aïda Homs
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | - Javier Santoyo
- Medical Genome Project, Genomics and Bioinformatics Platform of Andalusia (GBPA), C/Albert Einstein, Cartuja Scientific and Technology Park, INSUR Builiding, Sevilla, 41092 Spain
| | - Maria Rigau
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain
| | - Gemma Aznar-Laín
- Pediatric Neurology, Hospital del Mar, Passeig Marítim 25-29, Barcelona, 08003 Spain
| | - Miguel Del Campo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain ; Servicio de Genética, Hospital Vall d'Hebron, Passeig Vall d'Hebron, 119-129, Barcelona, 08015 Spain
| | - Blanca Gener
- Genetics Service, BioCruces Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, Barakaldo, Bizkaia 48093 Spain
| | - Elisabeth Gabau
- Pediatrics Service, Corporació Sanitària Parc Taulí, Parc Taulí 1, Sabadell, 08208 Spain
| | - María Pilar Botella
- Pediatric Neurology, Hospital de Txagorritxu, C/José de Atxotegui s/n, Victoria-Gasteiz, 01009 Spain
| | - Armand Gutiérrez-Arumí
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | - Guillermo Antiñolo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain ; Medical Genome Project, Genomics and Bioinformatics Platform of Andalusia (GBPA), C/Albert Einstein, Cartuja Scientific and Technology Park, INSUR Builiding, Sevilla, 41092 Spain ; Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Avda Manuel Siurot s/n, Sevilla, 41013 Spain
| | - Luis Alberto Pérez-Jurado
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | - Ivon Cuscó
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| |
Collapse
|
27
|
Liu Y, Zhao D, Dong R, Yang X, Zhang Y, Tammimies K, Uddin M, Scherer SW, Gai Z. De novo exon 1 deletion ofAUTS2gene in a patient with autism spectrum disorder and developmental delay: A case report and a brief literature review. Am J Med Genet A 2015; 167:1381-5. [PMID: 25851617 DOI: 10.1002/ajmg.a.37050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/20/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Yi Liu
- Pediatric Research Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
| | - Dongmei Zhao
- Pediatric Health Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
| | - Rui Dong
- Pediatric Research Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
| | - Xiaomeng Yang
- Pediatric Research Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
| | - Yanqing Zhang
- Pediatric Health Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
| | - Kristiina Tammimies
- The Centre for Applied Genomics; The Hospital for Sick Children; Toronto Canada
| | - Mohammed Uddin
- The Centre for Applied Genomics; The Hospital for Sick Children; Toronto Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics; The Hospital for Sick Children; Toronto Canada
- McLaughlin Centre and Department of Molecular Genetics; University of Toronto; Toronto Canada
| | - Zhongtao Gai
- Pediatric Research Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
- Pediatric Health Institute; Qilu Children's Hospital of Shandong University; Ji'nan China
| |
Collapse
|
28
|
Cytoskeletal regulation by AUTS2 in neuronal migration and neuritogenesis. Cell Rep 2014; 9:2166-79. [PMID: 25533347 DOI: 10.1016/j.celrep.2014.11.045] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 10/07/2014] [Accepted: 11/25/2014] [Indexed: 12/26/2022] Open
Abstract
Mutations in the Autism susceptibility candidate 2 gene (AUTS2), whose protein is believed to act in neuronal cell nuclei, have been associated with multiple psychiatric illnesses, including autism spectrum disorders, intellectual disability, and schizophrenia. Here we show that cytoplasmic AUTS2 is involved in the regulation of the cytoskeleton and neural development. Immunohistochemistry and fractionation studies show that AUTS2 localizes not only in nuclei, but also in the cytoplasm, including in the growth cones in the developing brain. AUTS2 activates Rac1 to induce lamellipodia but downregulates Cdc42 to suppress filopodia. Our loss-of-function and rescue experiments show that a cytoplasmic AUTS2-Rac1 pathway is involved in cortical neuronal migration and neuritogenesis in the developing brain. These findings suggest that cytoplasmic AUTS2 acts as a regulator of Rho family GTPases to contribute to brain development and give insight into the pathology of human psychiatric disorders with AUTS2 mutations.
Collapse
|
29
|
Zhang B, Xu YH, Wei SG, Zhang HB, Fu DK, Feng ZF, Guan FL, Zhu YS, Li SB. Association study identifying a new susceptibility gene (AUTS2) for schizophrenia. Int J Mol Sci 2014; 15:19406-16. [PMID: 25347278 PMCID: PMC4264119 DOI: 10.3390/ijms151119406] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/23/2014] [Accepted: 10/10/2014] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SCZ) is a severe and debilitating mental disorder, and the specific genetic factors that underlie the risk for SCZ remain elusive. The autism susceptibility candidate 2 (AUTS2) gene has been reported to be associated with autism, suicide, alcohol consumption, and heroin dependence. We hypothesized that AUTS2 might be associated with SCZ. In the present study, three polymorphisms (rs6943555, rs7459368, and rs9886351) in the AUTS2 gene were genotyped in 410 patients with SCZ and 435 controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and forced PCR-RFLP methods. We detected an association between SCZ and the rs6943555 genotype distribution (odds ratio (OR)=1.363, 95% confidence interval (CI): 0.848-2.191, p=0.001). The association remained significant after adjusting for gender, and a significant effect (p=0.001) was observed among the females. In the present study, rs6943555 was determined to be associated with female SCZ. Our results confirm previous reports which have suggested that rs6943555 might elucidate the pathogenesis of schizophrenia and play an important role in its etiology.
Collapse
Affiliation(s)
- Bao Zhang
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yue-Hong Xu
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Shu-Guang Wei
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Hong-Bo Zhang
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Dong-Ke Fu
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Zu-Fei Feng
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Fang-Lin Guan
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yong-Sheng Zhu
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Sheng-Bin Li
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
30
|
Shohat S, Shifman S. Bias towards large genes in autism. Nature 2014; 512:E1-2. [PMID: 25100484 DOI: 10.1038/nature13583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/23/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Shahar Shohat
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sagiv Shifman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
31
|
Oksenberg N, Haliburton GDE, Eckalbar WL, Oren I, Nishizaki S, Murphy K, Pollard KS, Birnbaum RY, Ahituv N. Genome-wide distribution of Auts2 binding localizes with active neurodevelopmental genes. Transl Psychiatry 2014; 4:e431. [PMID: 25180570 PMCID: PMC4199417 DOI: 10.1038/tp.2014.78] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/14/2014] [Accepted: 07/26/2014] [Indexed: 12/16/2022] Open
Abstract
The autism susceptibility candidate 2 gene (AUTS2) has been associated with multiple neurological diseases including autism spectrum disorders (ASDs). Previous studies showed that AUTS2 has an important neurodevelopmental function and is a suspected master regulator of genes implicated in ASD-related pathways. However, the regulatory role and targets of Auts2 are not well known. Here, by using ChIP-seq (chromatin immunoprecipitation followed by deep sequencing) and RNA-seq on mouse embryonic day 16.5 forebrains, we elucidated the gene regulatory networks of Auts2. We find that the majority of promoters bound by Auts2 belong to genes highly expressed in the developing forebrain, suggesting that Auts2 is involved in transcriptional activation. Auts2 non-promoter-bound regions significantly overlap developing brain-associated enhancer marks and are located near genes involved in neurodevelopment. Auts2-marked sequences are enriched for binding site motifs of neurodevelopmental transcription factors, including Pitx3 and TCF3. In addition, we characterized two functional brain enhancers marked by Auts2 near NRXN1 and ATP2B2, both ASD-implicated genes. Our results implicate Auts2 as an active regulator of important neurodevelopmental genes and pathways and identify novel genomic regions that could be associated with ASD and other neurodevelopmental diseases.
Collapse
Affiliation(s)
- N Oksenberg
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - G D E Haliburton
- Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Gladstone Institutes, San
Francisco, CA, USA
| | - W L Eckalbar
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - I Oren
- Department of Life Sciences, Ben Gurion University of
the Negev, Beer Sheva, Israel
| | - S Nishizaki
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - K Murphy
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA
| | - K S Pollard
- Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Gladstone Institutes, San
Francisco, CA, USA,Division of Biostatistics, University of California
San Francisco, San Francisco, CA, USA
| | - R Y Birnbaum
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Department of Life Sciences, Ben Gurion University of
the Negev, Beer Sheva, Israel,Department of Bioengineering and Therapeutic Sciences, University of
California San Francisco, 1550 4th Street, Rock Hall, RH584C, San Francisco,
CA
94158, USA. E-mails: or
| | - N Ahituv
- Department of Bioengineering and Therapeutic
Sciences, University of California San Francisco,
San Francisco, CA, USA,Institute for Human Genetics, University of
California San Francisco, San Francisco, CA, USA,Department of Bioengineering and Therapeutic Sciences, University of
California San Francisco, 1550 4th Street, Rock Hall, RH584C, San Francisco,
CA
94158, USA. E-mails: or
| |
Collapse
|
32
|
Kondapalli KC, Prasad H, Rao R. An inside job: how endosomal Na(+)/H(+) exchangers link to autism and neurological disease. Front Cell Neurosci 2014; 8:172. [PMID: 25002837 PMCID: PMC4066934 DOI: 10.3389/fncel.2014.00172] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/04/2014] [Indexed: 12/02/2022] Open
Abstract
Autism imposes a major impediment to childhood development and a huge emotional and financial burden on society. In recent years, there has been rapidly accumulating genetic evidence that links the eNHE, a subset of Na(+)/H(+) exchangers that localize to intracellular vesicles, to a variety of neurological conditions including autism, attention deficit hyperactivity disorder (ADHD), intellectual disability, and epilepsy. By providing a leak pathway for protons pumped by the V-ATPase, eNHE determine luminal pH and regulate cation (Na(+), K(+)) content in early and recycling endosomal compartments. Loss-of-function mutations in eNHE cause hyperacidification of endosomal lumen, as a result of imbalance in pump and leak pathways. Two isoforms, NHE6 and NHE9 are highly expressed in brain, including hippocampus and cortex. Here, we summarize evidence for the importance of luminal cation content and pH on processing, delivery and fate of cargo. Drawing upon insights from model organisms and mammalian cells we show how eNHE affect surface expression and function of membrane receptors and neurotransmitter transporters. These studies lead to cellular models of eNHE activity in pre- and post-synaptic neurons and astrocytes, where they could impact synapse development and plasticity. The study of eNHE has provided new insight on the mechanism of autism and other debilitating neurological disorders and opened up new possibilities for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
33
|
Ben-David E, Shohat S, Shifman S. Allelic expression analysis in the brain suggests a role for heterogeneous insults affecting epigenetic processes in autism spectrum disorders. Hum Mol Genet 2014; 23:4111-24. [PMID: 24659497 DOI: 10.1093/hmg/ddu128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monoallelic expression, including genomic imprinting, X-chromosome inactivation and random monoallelic expression of autosomal genes are epigenetic phenomena. Genes that are expressed in a monoallelic way may be more vulnerable to genetic or epigenetic mutations. Thus, comprehensive exploration of monoallelic expression in human brains may shed light on complex brain disorders. Autism-related disorders are known to be associated with imprinted genes on chromosome 15. However, it is not clear whether other imprinted regions or other types of monoallelic expression are associated with autism spectrum disorder (ASD). Here, we performed a genome-wide survey of allele expression imbalance (AEI) in the human brain using single-nucleotide polymorphisms (SNPs), in 18 individuals with ASD and 15 controls. Individuals with ASD had the most extreme number of monoallelic expressed SNPs in both the autosomes and the X chromosome. In two cases that were studied in detail, the monoallelic expression was confined to specific brain region or cell type. Using these data, we were also able to define the allelic expression status of known imprinted genes in the human brain and to identify abnormal imprinting in an individual with ASD. Lastly, we developed an analysis of individual-level expression, focusing on the difference of each individual from the mean. We found that individuals with ASD had more genes that were up- or down-regulated in an individual-specific manner. We also identified pathways perturbed in specific individuals. These results underline the heterogeneity in gene regulation in ASD, at the level of both allelic and total expression.
Collapse
Affiliation(s)
- Eyal Ben-David
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Shohat
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sagiv Shifman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
34
|
Amarillo IE, Li WL, Li X, Vilain E, Kantarci S. De novo single exon deletion of AUTS2 in a patient with speech and language disorder: a review of disrupted AUTS2 and further evidence for its role in neurodevelopmental disorders. Am J Med Genet A 2014; 164A:958-65. [PMID: 24459036 DOI: 10.1002/ajmg.a.36393] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/09/2013] [Indexed: 01/03/2023]
Abstract
The autism susceptibility candidate 2 (AUTS2) gene is suggested to play a critical role in early brain development, and its association with intellectual disability (ID), autism spectrum disorders, and other neurodevelopmental disorders (NDDs) has recently gained more attention. Genomic rearrangements and copy number variations (CNVs) involving AUTS2 have been implicated in a range of NDDs with or without congenital malformations and dysmorphic features. Here we report a 62 kb de novo deletion encompassing exon 6 of AUTS2 detected by chromosomal microarray analysis (CMA) in a 4.5 year-old female patient with severe speech and language disorder, history of tonic-clonic movements, and pes planus with eversion of the feet. This is one of the smallest de novo intragenic deletions of AUTS2 described in patients with NDDs. We reviewed previously reported small pathogenic CNVs (<300 kb) in 19 cases, and correlated their specific locations within AUTS2 as well as presence of enhancers, regulatory elements, and CpG islands with the clinical findings of these cases and our patient. Our report provides additional insight into the clinical spectrum of AUTS2 disruptions.
Collapse
Affiliation(s)
- Ina E Amarillo
- Departments of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | | | | | | | | |
Collapse
|
35
|
Jeffries AR, Collier DA, Vassos E, Curran S, Ogilvie CM, Price J. Random or stochastic monoallelic expressed genes are enriched for neurodevelopmental disorder candidate genes. PLoS One 2013; 8:e85093. [PMID: 24386451 PMCID: PMC3874034 DOI: 10.1371/journal.pone.0085093] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/22/2013] [Indexed: 11/30/2022] Open
Abstract
Random or stochastic monoallelic expressed genes (StMA genes) represent a unique form of monoallelic expression where allelic choice is made at random early in development. The consequential clonal diversity provides opportunity for functional heterozygosity in tissues such as the brain, and can impact on both development and disease. We investigate the relationship of StMA expressed genes previously identified in clonal neural stem cells with the neurodevelopmental disorders autism and schizophrenia. We found that StMA genes show an overrepresentation of schizophrenia risk candidates identified by genome wide association studies from the genetic association database. Similar suggestive enrichment was also found for genes from the NHGRI genome-wide association study catalog and a psychiatric genetics consortium schizophrenia dataset although these latter more robust gene lists did not achieve statistical significance. We also examined multiple sources of copy number variation (CNV) datasets from autism and schizophrenia cohorts. After taking into account total gene numbers and CNV size, both autism and schizophrenia associated CNVs appeared to show an enrichment of StMA genes relative to the control CNV datasets. Since the StMA genes were originally identified in neural stem cells, bias due to the neural transcriptome is possible. To address this, we randomly sampled neural stem cell expressed genes and repeated the tests. After a significant number of iterations, neural stem cell expressed genes did not show an overrepresentation in autism or schizophrenia CNV datasets. Therefore, irrespective of the neural derived transcriptome, StMA genes originally identified in neural stem cells show an overrepresentation in CNVs associated with autism and schizophrenia. If this association is functional, then the regulation (or dysregulation) of this form of allelic expression status within tissues such as the brain may be a contributory risk factor for neurodevelopmental disorders and may also influence disease discordance sometimes observed in monozygotic twins.
Collapse
Affiliation(s)
- Aaron R. Jeffries
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - David A. Collier
- Discovery Neuroscience Research, Eli Lilly and Company Limited, Surrey, United Kingdom
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Sarah Curran
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom
| | - Caroline M. Ogilvie
- Cytogenetics Department, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jack Price
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, Institute of Psychiatry, King’s College London, London, United Kingdom
| |
Collapse
|
36
|
Structural variation-associated expression changes are paralleled by chromatin architecture modifications. PLoS One 2013; 8:e79973. [PMID: 24265791 PMCID: PMC3827143 DOI: 10.1371/journal.pone.0079973] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 10/07/2013] [Indexed: 01/04/2023] Open
Abstract
Copy number variants (CNVs) influence the expression of genes that map not only within the rearrangement, but also to its flanks. To assess the possible mechanism(s) underlying this “neighboring effect”, we compared intrachromosomal interactions and histone modifications in cell lines of patients affected by genomic disorders and control individuals. Using chromosome conformation capture (4C-seq), we observed that a set of genes flanking the Williams-Beuren Syndrome critical region (WBSCR) were often looping together. The newly identified interacting genes include AUTS2, mutations of which are associated with autism and intellectual disabilities. Deletion of the WBSCR disrupts the expression of this group of flanking genes, as well as long-range interactions between them and the rearranged interval. We also pinpointed concomitant changes in histone modifications between samples. We conclude that large genomic rearrangements can lead to chromatin conformation changes that extend far away from the structural variant, thereby possibly modulating expression globally and modifying the phenotype. GEO Series accession number: GSE33784, GSE33867.
Collapse
|
37
|
Oksenberg N, Ahituv N. The role of AUTS2 in neurodevelopment and human evolution. Trends Genet 2013; 29:600-8. [PMID: 24008202 DOI: 10.1016/j.tig.2013.08.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 12/31/2022]
Abstract
The autism susceptibility candidate 2 (AUTS2) gene is associated with multiple neurological diseases, including autism, and has been implicated as an important gene in human-specific evolution. Recent functional analysis of this gene has revealed a potential role in neuronal development. Here, we review the literature regarding AUTS2, including its discovery, expression, association with autism and other neurological and non-neurological traits, implication in human evolution, function, regulation, and genetic pathways. Through progress in clinical genomic analysis, the medical importance of this gene is becoming more apparent, as highlighted in this review, but more work needs to be done to discover the precise function and the genetic pathways associated with AUTS2.
Collapse
Affiliation(s)
- Nir Oksenberg
- Department of Bioengineering and Therapeutic Sciences, and Institute for Human Genetics, University of California, San Francisco (UCSF), 1550 4th Street, San Francisco, CA 94158, USA
| | | |
Collapse
|
38
|
Jolley A, Corbett M, McGregor L, Waters W, Brown S, Nicholl J, Yu S. De novo intragenic deletion of the autism susceptibility candidate 2 (AUTS2) gene in a patient with developmental delay: a case report and literature review. Am J Med Genet A 2013; 161A:1508-12. [PMID: 23650183 DOI: 10.1002/ajmg.a.35922] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/31/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Alexandra Jolley
- Department of Genetic Medicine, Directorate of Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, and School of Paediatrics and Reproductive Health, The University of Adelaide, North Adelaide, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Chen YH, Liao DL, Lai CH, Chen CH. Genetic analysis of AUTS2 as a susceptibility gene of heroin dependence. Drug Alcohol Depend 2013; 128:238-42. [PMID: 22995765 DOI: 10.1016/j.drugalcdep.2012.08.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/29/2012] [Accepted: 08/29/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Both alcoholism and heroin dependence are common substance use disorders with a high genetic basis. A recent genetic study reported that the autism susceptibility candidate 2 gene (AUTS2) was involved in regulating the alcohol drinking behavior. In our previous total gene expression profiling study, we found that the AUTS2 transcript was significantly down-regulated in lymphoblastoid cell lines (LCL) in heroin dependent individuals compared with control subjects, which prompted us to investigate whether AUTS2 is associated with heroin dependence. METHODS We compared the AUTS2 transcript level of LCL between 124 heroin dependent males and 116 control males using real-time quantitative PCR, and conducted a genetic association study of the rs6943555 of AUTS2 with heroin dependence using a sample of 546 heroin dependent males and 373 control males. RESULTS We first verified that the average transcript level of AUTS2 in the heroin dependent group was significantly lower than that in the control group (p=0.017). In the genetic association analysis, we found that AA homozygotes of rs6943555 were significantly over-represented in the heroin dependent subjects compared with the control subjects (odds ratio=1.7, 95% confidence interval: 1.08-2.74, p=0.017). Analyzing the sample from the AUTS2 transcript experiment, we found that AA carriers (n=19) had significantly lower AUTS2 mRNA levels in their LCL compared to TT carriers (n=97, p=0.002) and AT carriers (n=91, p=0.005). CONCLUSIONS Our data indicate that the AUTS2 gene might be associated with heroin dependence, and reduced AUTS2 gene expression might confer increased susceptibility to heroin dependence.
Collapse
Affiliation(s)
- Yun-Hsiang Chen
- Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | |
Collapse
|
40
|
Possible association between suicide committed under influence of ethanol and a variant in the AUTS2 gene. PLoS One 2013; 8:e57199. [PMID: 23437340 PMCID: PMC3577719 DOI: 10.1371/journal.pone.0057199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 01/23/2013] [Indexed: 12/30/2022] Open
Abstract
Background rs6943555 in AUTS2 has been shown to modulate ethanol consumption. We hypothesized that rs6943555 might be associated with completed suicide. Methods We genotyped rs6943555 in 625 completed suicides and 3861 controls using real-time TaqMan Allelic Discrimination Assay. All individuals were Polish Caucasians. Results We detected an association between suicide and rs6943555 A allele (OR = 1.17, P = 0.018 for allelic comparison, OR = 1.24, P = 0.013 for dominant, and OR = 1.18, P = 0.020 for co-dominant model of inheritance). The association remained significant after adjusting for age and gender (co-dominant: P = 0.002 and dominant model: P = 0.001). After stratifying suicides according to blood ethanol concentration (BAC≤ 20 mg/dl and BAC > 20 mg/dl) the association remained significant only for cases who committed suicide under influence of alcohol (co-dominant: OR = 1.37, P = 0.004 and dominant model: OR = 1.45, P = 0.006). To validate this finding we genotyped another cohort of 132 cases. We reproduced the association between rs6943555 A allele and suicide under influence of ethanol (allelic comparison: OR = 1.55, P = 0.023; co-dominant : OR = 1.54, P = 0.031; dominant model: OR = 1.84, P = 0.015). Analyzing pooled suicides with BAC >20 mg/dl (N = 300) we found the association of rs6943555 A allele not only vs. controls (allelic OR = 1.41, P = 0.00029) but also vs. cases with BAC ≤ 20 mg/dl (N = 449, allelic OR = 1.33, P = 0.019). Conclusions In our study rs6943555 A allele is associated with suicide committed after drinking ethanol shortly before death. The rs6943555 A allele may be linked to adverse emotional reaction to ethanol, which could explain the association with lower consumption in general population as well as the predisposition to suicide under influence of ethanol.
Collapse
|
41
|
Oksenberg N, Stevison L, Wall JD, Ahituv N. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genet 2013; 9:e1003221. [PMID: 23349641 PMCID: PMC3547868 DOI: 10.1371/journal.pgen.1003221] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/20/2012] [Indexed: 12/13/2022] Open
Abstract
Nucleotide changes in the AUTS2 locus, some of which affect only noncoding regions, are associated with autism and other neurological disorders, including attention deficit hyperactivity disorder, epilepsy, dyslexia, motor delay, language delay, visual impairment, microcephaly, and alcohol consumption. In addition, AUTS2 contains the most significantly accelerated genomic region differentiating humans from Neanderthals, which is primarily composed of noncoding variants. However, the function and regulation of this gene remain largely unknown. To characterize auts2 function, we knocked it down in zebrafish, leading to a smaller head size, neuronal reduction, and decreased mobility. To characterize AUTS2 regulatory elements, we tested sequences for enhancer activity in zebrafish and mice. We identified 23 functional zebrafish enhancers, 10 of which were active in the brain. Our mouse enhancer assays characterized three mouse brain enhancers that overlap an ASD-associated deletion and four mouse enhancers that reside in regions implicated in human evolution, two of which are active in the brain. Combined, our results show that AUTS2 is important for neurodevelopment and expose candidate enhancer sequences in which nucleotide variation could lead to neurological disease and human-specific traits.
Collapse
Affiliation(s)
- Nir Oksenberg
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Laurie Stevison
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffrey D. Wall
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
42
|
Kwan KY. Transcriptional dysregulation of neocortical circuit assembly in ASD. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:167-205. [PMID: 24290386 DOI: 10.1016/b978-0-12-418700-9.00006-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorders (ASDs) impair social cognition and communication, key higher-order functions centered in the human neocortex. The assembly of neocortical circuitry is a precisely regulated developmental process susceptible to genetic alterations that can ultimately affect cognitive abilities. Because ASD is an early onset neurodevelopmental disorder that disrupts functions executed by the neocortex, miswiring of neocortical circuits has been hypothesized to be an underlying mechanism of ASD. This possibility is supported by emerging genetic findings and data from imaging studies. Recent research on neocortical development has identified transcription factors as key determinants of neocortical circuit assembly, mediating diverse processes including neuronal specification, migration, and wiring. Many of these TFs (TBR1, SOX5, FEZF2, and SATB2) have been implicated in ASD. Here, I will discuss the functional roles of these transcriptional programs in neocortical circuit development and their neurobiological implications for the emerging etiology of ASD.
Collapse
Affiliation(s)
- Kenneth Y Kwan
- Department of Human Genetics, Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
43
|
Wei Y, Li X, Wang QF, Ji H. iASeq: integrative analysis of allele-specificity of protein-DNA interactions in multiple ChIP-seq datasets. BMC Genomics 2012. [PMID: 23194258 PMCID: PMC3576346 DOI: 10.1186/1471-2164-13-681] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND ChIP-seq provides new opportunities to study allele-specific protein-DNA binding (ASB). However, detecting allelic imbalance from a single ChIP-seq dataset often has low statistical power since only sequence reads mapped to heterozygote SNPs are informative for discriminating two alleles. RESULTS We develop a new method iASeq to address this issue by jointly analyzing multiple ChIP-seq datasets. iASeq uses a Bayesian hierarchical mixture model to learn correlation patterns of allele-specificity among multiple proteins. Using the discovered correlation patterns, the model allows one to borrow information across datasets to improve detection of allelic imbalance. Application of iASeq to 77 ChIP-seq samples from 40 ENCODE datasets and 1 genomic DNA sample in GM12878 cells reveals that allele-specificity of multiple proteins are highly correlated, and demonstrates the ability of iASeq to improve allelic inference compared to analyzing each individual dataset separately. CONCLUSIONS iASeq illustrates the value of integrating multiple datasets in the allele-specificity inference and offers a new tool to better analyze ASB.
Collapse
Affiliation(s)
- Yingying Wei
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe StreetBaltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
44
|
Balestrieri E, Arpino C, Matteucci C, Sorrentino R, Pica F, Alessandrelli R, Coniglio A, Curatolo P, Rezza G, Macciardi F, Garaci E, Gaudi S, Sinibaldi-Vallebona P. HERVs expression in Autism Spectrum Disorders. PLoS One 2012; 7:e48831. [PMID: 23155411 PMCID: PMC3498248 DOI: 10.1371/journal.pone.0048831] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 10/05/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Autistic Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder, resulting from complex interactions among genetic, genomic and environmental factors. Here we have studied the expression of Human Endogenous Retroviruses (HERVs), non-coding DNA elements with potential regulatory functions, and have tested their possible implication in autism. METHODS The presence of retroviral mRNAs from four HERV families (E, H, K and W), widely implicated in complex diseases, was evaluated in peripheral blood mononuclear cells (PBMCs) from ASD patients and healthy controls (HCs) by qualitative RT-PCR. We also analyzed the expression of the env sequence from HERV-H, HERV-W and HERV-K families in PBMCs at the time of sampling and after stimulation in culture, in both ASD and HC groups, by quantitative Real-time PCR. Differences between groups were evaluated using statistical methods. RESULTS The percentage of HERV-H and HERV-W positive samples was higher among ASD patients compared to HCs, while HERV-K was similarly represented and HERV-E virtually absent in both groups. The quantitative evaluation shows that HERV-H and HERV-W are differentially expressed in the two groups, with HERV-H being more abundantly expressed and, conversely, HERV-W, having lower abundance, in PBMCs from ASDs compared to healthy controls. PMBCs from ASDs also showed an increased potential to up-regulate HERV-H expression upon stimulation in culture, unlike HCs. Furthermore we report a negative correlation between expression levels of HERV-H and age among ASD patients and a statistically significant higher expression in ASD patients with Severe score in Communication and Motor Psychoeducational Profile-3. CONCLUSIONS Specific HERV families have a distinctive expression profile in ASD patients compared to HCs. We propose that HERV-H expression be explored in larger samples of individuals with autism spectrum in order to determine its utility as a novel biological trait of this complex disorder.
Collapse
Affiliation(s)
- Emanuela Balestrieri
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Rome, Italy
| | - Carla Arpino
- Pediatric Neurology Unit, Neuroscience Department, University of Rome “Tor Vergata”, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberta Sorrentino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Pica
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Rome, Italy
| | - Riccardo Alessandrelli
- Pediatric Neurology Unit, Neuroscience Department, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonella Coniglio
- Pediatric Neurology Unit, Neuroscience Department, University of Rome “Tor Vergata”, Rome, Italy
| | - Paolo Curatolo
- Pediatric Neurology Unit, Neuroscience Department, University of Rome “Tor Vergata”, Rome, Italy
| | - Giovanni Rezza
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Italian National Institute of Health, Rome, Italy
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine at University of Southern California, Los Angeles, California, United States of America
- Department of Medicine, Surgery and Dentistry, University of Milan, Milan, Italy
| | - Enrico Garaci
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Rome, Italy
| | - Simona Gaudi
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Italian National Institute of Health, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Rome, Italy
- * E-mail:
| |
Collapse
|
45
|
De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 2012; 44:1365-9. [PMID: 23042115 PMCID: PMC3556813 DOI: 10.1038/ng.2446] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 09/26/2012] [Indexed: 12/17/2022]
Abstract
To evaluate evidence for de novo etiologies in schizophrenia, we sequenced at high coverage the exomes of families recruited from two populations with distinct demographic structure and history. We sequenced a total of 795 exomes from 231 parent-proband trios enriched for sporadic schizophrenia cases, as well as 34 unaffected trios. We observed in cases an excess of non-synonymous single nucleotide variants as well as a higher prevalence of gene-disruptive de novo mutations. We found four genes (LAMA2, DPYD, TRRAP and VPS39) affected by recurrent de novo events within or across the two populations, a finding unlikely to have occurred by chance. We show that de novo mutations affect genes with diverse functions and developmental profiles but we also find a substantial contribution of mutations in genes with higher expression in early fetal life. Our results help define the pattern of genomic and neural architecture of schizophrenia.
Collapse
|
46
|
Nagamani SCS, Erez A, Ben-Zeev B, Frydman M, Winter S, Zeller R, El-Khechen D, Escobar L, Stankiewicz P, Patel A, Cheung SW. Detection of copy-number variation in AUTS2 gene by targeted exonic array CGH in patients with developmental delay and autistic spectrum disorders. Eur J Hum Genet 2012; 21:343-6. [PMID: 22872102 DOI: 10.1038/ejhg.2012.157] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Small genomic rearrangements and copy-number variations (CNVs) involving a single gene have been associated recently with many neurocognitive phenotypes, including intellectual disability (ID), behavioral abnormalities, and autistic spectrum disorders (ASDs). Such small CNVs in the Autism susceptibility candidate 2 (AUTS2) gene have been shown to be associated with seizures, ID, and ASDs. We report four patients with small CNVs ranging in size between 133-319 kb that disrupt AUTS2. Two patients have duplications involving single exons, whereas two have deletions that removed multiple exons. All patients had developmental delay, whereas two patients had a diagnosis of ASDs. The CNVs were detected by an exon-targeted array CGH with dense oligonucleotide coverage in exons of genes known or hypothesized to be causative of multiple human phenotypes. Our report further shows that disruption of AUTS2 results in a variety of neurobehavioral phenotypes. More importantly, it demonstrates the utility of targeted exon array as a highly sensitive clinical diagnostic tool for the detection of small genomic rearrangements in the clinically relevant regions of the human genome.
Collapse
Affiliation(s)
- Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|