1
|
Allison RL, Mangione CC, Suneja M, Gawrys J, Melvin BM, Belous N, LaCroix M, Harmelink M, Burnett BG, Ebert AD. IL-1ra and CCL5, but not IL-10, are promising targets for treating SMA astrocyte-driven pathology. Mol Ther 2025; 33:734-751. [PMID: 39673131 PMCID: PMC11853362 DOI: 10.1016/j.ymthe.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/30/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a pediatric genetic disorder characterized by the loss of spinal cord motor neurons (MNs). Although the mechanisms underlying MN loss are not clear, current data suggest that glial cells contribute to disease pathology. We have previously found that SMA astrocytes drive microglial activation and MN loss potentially through the upregulation of NF-κB-mediated pro-inflammatory cytokines. In this study, we tested the ability of neutralizing C-C motif chemokine ligand 5 (CCL5) while increasing either interleukin-10 (IL-10) or IL-1 receptor antagonist (IL-1ra) to reduce the pro-inflammatory phenotype of SMA astrocytes. While IL-10 was ineffective, IL-1ra ameliorated SMA astrocyte-driven glial activation and MN loss in induced pluripotent stem cell-derived cultures in vitro. In vivo AAV5 delivered IL-1ra overexpression, and miR-30 small hairpin RNA knockdown of CCL5 made modest but significant improvements in lifespan, weight gain, MN number, and motor function of SMNΔ7 mice. These data identify IL-1ra and CCL5 as possible therapeutic targets for SMA and highlight the importance of glial-targeted therapeutics for neurodegenerative disease.
Collapse
Affiliation(s)
- Reilly L Allison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cecelia C Mangione
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD 20814, USA
| | - Mya Suneja
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jessica Gawrys
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brendan M Melvin
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD 20814, USA
| | - Natalya Belous
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD 20814, USA
| | - Megan LaCroix
- Department of Neurology (Child Neurology), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew Harmelink
- Department of Neurology (Child Neurology), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD 20814, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
2
|
Barraza SJ, Woll MG. Pre‐mRNA Splicing Modulation. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2024:151-202. [DOI: 10.1002/9783527840458.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Grass T, Dokuzluoglu Z, Buchner F, Rosignol I, Thomas J, Caldarelli A, Dalinskaya A, Becker J, Rost F, Marass M, Wirth B, Beyer M, Bonaguro L, Rodriguez-Muela N. Isogenic patient-derived organoids reveal early neurodevelopmental defects in spinal muscular atrophy initiation. Cell Rep Med 2024; 5:101659. [PMID: 39067446 PMCID: PMC11384962 DOI: 10.1016/j.xcrm.2024.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/26/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Whether neurodevelopmental defects underlie postnatal neuronal death in neurodegeneration is an intriguing hypothesis only recently explored. Here, we focus on spinal muscular atrophy (SMA), a neuromuscular disorder caused by reduced survival of motor neuron (SMN) protein levels leading to spinal motor neuron (MN) loss and muscle wasting. Using the first isogenic patient-derived induced pluripotent stem cell (iPSC) model and a spinal cord organoid (SCO) system, we show that SMA SCOs exhibit abnormal morphological development, reduced expression of early neural progenitor markers, and accelerated expression of MN progenitor and MN markers. Longitudinal single-cell RNA sequencing reveals marked defects in neural stem cell specification and fewer MNs, favoring mesodermal progenitors and muscle cells, a bias also seen in early SMA mouse embryos. Surprisingly, SMN2-to-SMN1 conversion does not fully reverse these developmental abnormalities. These suggest that early neurodevelopmental defects may underlie later MN degeneration, indicating that postnatal SMN-increasing interventions might not completely amend SMA pathology in all patients.
Collapse
Affiliation(s)
- Tobias Grass
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany.
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Felix Buchner
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Ines Rosignol
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany; Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Joshua Thomas
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Antonio Caldarelli
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Anna Dalinskaya
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Jutta Becker
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Fabian Rost
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering, TUD, Dresden, Germany
| | - Michele Marass
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Center for Rare Diseases, University Hospital of Cologne, Cologne, Germany
| | - Marc Beyer
- Systems Medicine, DZNE, Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE & University of Bonn and West German Genome Center, Bonn, Germany; Immunogenomics & Neurodegeneration, DZNE, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, DZNE, Bonn, Germany; Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany; Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
4
|
Haque US, Yokota T. Recent Progress in Gene-Targeting Therapies for Spinal Muscular Atrophy: Promises and Challenges. Genes (Basel) 2024; 15:999. [PMID: 39202360 PMCID: PMC11353366 DOI: 10.3390/genes15080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe genetic disorder characterized by the loss of motor neurons, leading to progressive muscle weakness, loss of mobility, and respiratory complications. In its most severe forms, SMA can result in death within the first two years of life if untreated. The condition arises from mutations in the SMN1 (survival of motor neuron 1) gene, causing a deficiency in the survival motor neuron (SMN) protein. Humans possess a near-identical gene, SMN2, which modifies disease severity and is a primary target for therapies. Recent therapeutic advancements include antisense oligonucleotides (ASOs), small molecules targeting SMN2, and virus-mediated gene replacement therapy delivering a functional copy of SMN1. Additionally, recognizing SMA's broader phenotype involving multiple organs has led to the development of SMN-independent therapies. Evidence now indicates that SMA affects multiple organ systems, suggesting the need for SMN-independent treatments along with SMN-targeting therapies. No single therapy can cure SMA; thus, combination therapies may be essential for comprehensive treatment. This review addresses the SMA etiology, the role of SMN, and provides an overview of the rapidly evolving therapeutic landscape, highlighting current achievements and future directions.
Collapse
Affiliation(s)
- Umme Sabrina Haque
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
5
|
Leckie J, Yokota T. Potential of Cell-Penetrating Peptide-Conjugated Antisense Oligonucleotides for the Treatment of SMA. Molecules 2024; 29:2658. [PMID: 38893532 PMCID: PMC11173757 DOI: 10.3390/molecules29112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
6
|
Yu S, Liao R, Bai L, Guo M, Zhang Y, Zhang Y, Yang Q, Song Y, Li Z, Meng Q, Wang S, Huang X. Anticancer effect of hUC-MSC-derived exosome-mediated delivery of PMO-miR-146b-5p in colorectal cancer. Drug Deliv Transl Res 2024; 14:1352-1369. [PMID: 37978163 PMCID: PMC10984892 DOI: 10.1007/s13346-023-01469-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Antisense oligonucleotide (ASO) is a novel therapeutic platform for targeted cancer therapy. Previously, we have demonstrated that miR-146b-5p plays an important role in colorectal cancer progression. However, a safe and effective strategy for delivery of an ASO to its targeted RNA remains as a major hurdle in translational advances. Human umbilical cord mesenchymal cell (hUC-MSC)-derived exosomes were used as vehicles to deliver an anti-miR-146b-5p ASO (PMO-146b). PMO-146b was assembled onto the surface of exosomes (e) through covalent conjugation to an anchor peptide CP05 (P) that recognized an exosomal surface marker, CD63, forming a complex named ePPMO-146b. After ePPMO-146b treatment, cell proliferation, uptake ability, and migration assays were performed, and epithelial-mesenchymal transition progression was evaluated in vitro. A mouse xenograft model was used to determine the antitumor effect and distribution of ePPMO-146b in vivo. ePPMO-146b was taken up by SW620 cells and effectively inhibited cell proliferation and migration. The conjugate also exerted antitumor efficacy in a xenograft mouse model of colon cancer by systematic administration, where PPMO-146b was enriched in tumor tissue. Our study highlights the potential of hUC-MSC-derived exosomes anchored with PPMO-146b as a novel safe and effective approach for PMO backboned ASO delivery.
Collapse
Affiliation(s)
- Siming Yu
- Department of Pharmacy, Guangdong Province, Peking University Shenzhen Hospital, Shenzhen, 518036, People's Republic of China
- Department of Pharmacy, PKU-Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, People's Republic of China
| | - Ran Liao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, 150081, People's Republic of China
| | - Lu Bai
- Department of Laboratory, Lianyungang Maternal and Child Health Care Hospital, Jiangsu Province, Lianyungang, 222000, People's Republic of China
| | - Madi Guo
- Biotherapy Center, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, 150081, People's Republic of China
| | - Yu Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, 150081, People's Republic of China
| | - Yumin Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, 150081, People's Republic of China
| | - Qi Yang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, 150081, People's Republic of China
| | - Yushuai Song
- Department of Laboratory, Lianyungang Maternal and Child Health Care Hospital, Jiangsu Province, Lianyungang, 222000, People's Republic of China
| | - Zhiwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, 150081, People's Republic of China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin City, 150081, People's Republic of China
| | - Shubin Wang
- Department of Oncology, Guangdong Province, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, People's Republic of China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, 150081, People's Republic of China.
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang Province, Harbin, 150081, People's Republic of China.
| |
Collapse
|
7
|
Dai S, Qiu L, Veeraraghavan VP, Sheu CL, Mony U. Advances in iPSC Technology in Neural Disease Modeling, Drug Screening, and Therapy. Curr Stem Cell Res Ther 2024; 19:809-819. [PMID: 37291782 DOI: 10.2174/1574888x18666230608105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023]
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease are all incurable and can only be managed with drugs for the associated symptoms. Animal models of human illnesses help to advance our understanding of the pathogenic processes of diseases. Understanding the pathogenesis as well as drug screening using appropriate disease models of neurodegenerative diseases (NDs) are vital for identifying novel therapies. Human-derived induced pluripotent stem cell (iPSC) models can be an efficient model to create disease in a dish and thereby can proceed with drug screening and identifying appropriate drugs. This technology has many benefits, including efficient reprogramming and regeneration potential, multidirectional differentiation, and the lack of ethical concerns, which open up new avenues for studying neurological illnesses in greater depth. The review mainly focuses on the use of iPSC technology in neuronal disease modeling, drug screening, and cell therapy.
Collapse
Affiliation(s)
- Sihan Dai
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Linhui Qiu
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Chia-Lin Sheu
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
8
|
Ahmed F, Islam A, Akter S, Al Zubayer MA, Mahmud MN, Yeasmin H, Mawa Z. Multidisciplinary physical rehabilitation program of individuals with spinal muscular atrophy in an inclusive school setting. J Pediatr Rehabil Med 2024; 17:247-252. [PMID: 38007681 PMCID: PMC11307014 DOI: 10.3233/prm-230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/26/2023] [Indexed: 11/27/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular ailment that leads to the deprivation of motor neurons in the spinal cord, producing denervation and muscle weakness. This case report explains how a patient with type 2 SMA used a therapeutic exercise rehabilitation program in a school environment. Motor functions were assessed by Gross Motor Function Measure-88 (GMFM-88), Manual Muscle Testing (MMT), and Hammersmith Functional Motor Scale (HFMS), which is validated and reliable. This study employed a repeated pre-test post-test measures design. During a year of treatment sessions, the child underwent twice weekly 45-minute physical therapy sessions for 48 weeks. The research was carried out between March 2022 and February 2023. The purpose of the intervention, which comprised a variety of therapeutic workouts, was to enhance physical function and gross motor abilities in an age-appropriate manner. The intervention utilized in this study led to improvements in GMFM-88, HFMS, and MMT total scores. The results of this case study showed that a child with type 2 SMA aged nine had successfully improved their gross motor skills and muscle strength.
Collapse
Affiliation(s)
- Faruq Ahmed
- William and Marie Taylor School, Centre for the Rehabilitation of the Paralyzed (CRP), Savar, Dhaka, Bangladesh
| | - Asma Islam
- Department of Physiotherapy, Bangladesh Health Professions Institute (BHPI), CRP, Savar, Dhaka, Bangladesh
| | - Suria Akter
- William and Marie Taylor School, Centre for the Rehabilitation of the Paralyzed (CRP), Savar, Dhaka, Bangladesh
| | - Md Abdullah Al Zubayer
- William and Marie Taylor School, Centre for the Rehabilitation of the Paralyzed (CRP), Savar, Dhaka, Bangladesh
| | - Md Nasim Mahmud
- Department of Physiotherapy, Centre for the Rehabilitation of the Paralyzed (CRP), Savar, Dhaka, Bangladesh
| | - Hosneara Yeasmin
- William and Marie Taylor School, Centre for the Rehabilitation of the Paralyzed (CRP), Savar, Dhaka, Bangladesh
| | - Zannatul Mawa
- Department of Physiotherapy, Centre for the Rehabilitation of the Paralyzed (CRP), Savar, Dhaka, Bangladesh
| |
Collapse
|
9
|
Lessl AL, Pöhmerer J, Lin Y, Wilk U, Höhn M, Hörterer E, Wagner E, Lächelt U. mCherry on Top: A Positive Read-Out Cellular Platform for Screening DMD Exon Skipping Xenopeptide-PMO Conjugates. Bioconjug Chem 2023; 34:2263-2274. [PMID: 37991502 PMCID: PMC10739591 DOI: 10.1021/acs.bioconjchem.3c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Phosphorodiamidate morpholino oligomers (PMOs) are a special type of antisense oligonucleotides (ASOs) that can be used as therapeutic modulators of pre-mRNA splicing. Application of nucleic-acid-based therapeutics generally requires suitable delivery systems to enable efficient transport to intended tissues and intracellular targets. To identify potent formulations of PMOs, we established a new in vitro-in vivo screening platform based on mdx exon 23 skipping. Here, a new in vitro positive read-out system (mCherry-DMDEx23) is presented that is sensitive toward the PMO(Ex23) sequence mediating DMD exon 23 skipping and, in this model, functional mCherry expression. After establishment of the reporter system in HeLa cells, a set of amphiphilic, ionizable xenopeptides (XPs) was screened in order to identify potent carriers for PMO delivery. The identified best-performing PMO formulation with high splice-switching activity at nanomolar concentrations in vitro was then translated to in vivo trials, where exon 23 skipping in different organs of healthy BALB/c mice was confirmed. The predesigned in vitro-in vivo workflow enables evaluation of PMO(Ex23) carriers without change of the PMO sequence and formulation composition. Furthermore, the identified PMO-XP conjugate formulation was found to induce highly potent exon skipping in vitro and redistributed PMO activity in different organs in vivo.
Collapse
Affiliation(s)
- Anna-Lina Lessl
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Jana Pöhmerer
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Yi Lin
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ulrich Wilk
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Miriam Höhn
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Elisa Hörterer
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
- Center
for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, LMU
Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
- Center
for NanoScience (CeNS), LMU Munich, 80799 Munich, Germany
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
10
|
Maretina M, Il’ina A, Egorova A, Glotov A, Kiselev A. Development of 2'-O-Methyl and LNA Antisense Oligonucleotides for SMN2 Splicing Correction in SMA Cells. Biomedicines 2023; 11:3071. [PMID: 38002071 PMCID: PMC10669464 DOI: 10.3390/biomedicines11113071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by mutations in the SMN1 gene. Existing therapies demonstrate positive results on SMA patients but still might be ameliorated in efficacy and price. In the presented study we designed antisense oligonucleotides (AONs), targeting intronic splicing silencer sites, some were modified with 2'-O-methyl, others with LNA. The AONs have been extensively tested in different concentrations, both individually and combined, in order to effectively target the ISS-N1 and A+100G splicing silencer regions in intron 7 of the SMN2 gene. By treating SMA-cultured fibroblasts with certain AONs, we discovered a remarkable increase in the levels of full-length SMN transcripts and the number of nuclear gems. This increase was observed to be dose-dependent and reached levels comparable to those found in healthy cells. When added to cells together, most of the tested molecules showed a remarkable synergistic effect in correcting splicing. Through our research, we have discovered that the impact of oligonucleotides is greatly influenced by their length, sequence, and pattern of modification.
Collapse
Affiliation(s)
- Marianna Maretina
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| | - Arina Il’ina
- Faculty of Biology, Saint Petersburg State University, Universitetskaya Embankment 7–9, 199034 Saint Petersburg, Russia;
| | - Anna Egorova
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| | - Andrey Glotov
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| | - Anton Kiselev
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.M.); (A.E.); (A.G.)
| |
Collapse
|
11
|
Giorgia Q, Gomez Garcia de la Banda M, Smeriglio P. Role of circulating biomarkers in spinal muscular atrophy: insights from a new treatment era. Front Neurol 2023; 14:1226969. [PMID: 38020652 PMCID: PMC10679720 DOI: 10.3389/fneur.2023.1226969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease due to biallelic mutations in the SMN1 gene on chromosome 5. It is characterized by progressive muscle weakness of limbs, bulbar and respiratory muscles. The disease is usually classified in four different phenotypes (1-4) according to age at symptoms onset and maximal motor milestones achieved. Recently, three disease modifying treatments have received approval from the Food and Drug Administration (FDA) and the European Medicines Agency (EMA), while several other innovative drugs are under study. New therapies have been game changing, improving survival and life quality for SMA patients. However, they have also intensified the need for accurate biomarkers to monitor disease progression and treatment efficacy. While clinical and neurophysiological biomarkers are well established and helpful in describing disease progression, there is a great need to develop more robust and sensitive circulating biomarkers, such as proteins, nucleic acids, and other small molecules. Used alone or in combination with clinical biomarkers, they will play a critical role in enhancing patients' stratification for clinical trials and access to approved treatments, as well as in tracking response to therapy, paving the way to the development of individualized therapeutic approaches. In this comprehensive review, we describe the foremost circulating biomarkers of current significance, analyzing existing literature on non-treated and treated patients with a special focus on neurofilaments and circulating miRNA, aiming to identify and examine their role in the follow-up of patients treated with innovative treatments, including gene therapy.
Collapse
Affiliation(s)
- Querin Giorgia
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Centre Référent pour les Maladies Neuromusculaires Nord/Est/Ile de France, Paris, France
- Institut de Myologie, I-Motion Clinical Trials Platform, Paris, France
- European Reference Center Network (Euro-NMD ERN), Paris, France
| | - Marta Gomez Garcia de la Banda
- Institut de Myologie, I-Motion Clinical Trials Platform, Paris, France
- APHP, Pediatric Neurology Department, Hôpital Armand Trousseau, Centre Référent pour les Maladies Neuromusculaires Nord/Est/Ile de France, Paris, France
- APHP, Pediatric Neurology and ICU Department, Université Paris Saclay, DMU Santé de l'Enfant et de l'Adolescent, Hôpital Raymond Poincaré, Garches, France
| | - Piera Smeriglio
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, Paris, France
| |
Collapse
|
12
|
Haque US, Yokota T. Enhancing Antisense Oligonucleotide-Based Therapeutic Delivery with DG9, a Versatile Cell-Penetrating Peptide. Cells 2023; 12:2395. [PMID: 37830609 PMCID: PMC10572411 DOI: 10.3390/cells12192395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Antisense oligonucleotide-based (ASO) therapeutics have emerged as a promising strategy for the treatment of human disorders. Charge-neutral PMOs have promising biological and pharmacological properties for antisense applications. Despite their great potential, the efficient delivery of these therapeutic agents to target cells remains a major obstacle to their widespread use. Cellular uptake of naked PMO is poor. Cell-penetrating peptides (CPPs) appear as a possibility to increase the cellular uptake and intracellular delivery of oligonucleotide-based drugs. Among these, the DG9 peptide has been identified as a versatile CPP with remarkable potential for enhancing the delivery of ASO-based therapeutics due to its unique structural features. Notably, in the context of phosphorodiamidate morpholino oligomers (PMOs), DG9 has shown promise in enhancing delivery while maintaining a favorable toxicity profile. A few studies have highlighted the potential of DG9-conjugated PMOs in DMD (Duchenne Muscular Dystrophy) and SMA (Spinal Muscular Atrophy), displaying significant exon skipping/inclusion and functional improvements in animal models. The article provides an overview of a detailed understanding of the challenges that ASOs face prior to reaching their targets and continued advances in methods to improve their delivery to target sites and cellular uptake, focusing on DG9, which aims to harness ASOs' full potential in precision medicine.
Collapse
Affiliation(s)
- Umme Sabrina Haque
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
13
|
Nakevska Z, Yokota T. Challenges and future perspective of antisense therapy for spinal muscular atrophy: A review. Eur J Cell Biol 2023; 102:151326. [PMID: 37295266 DOI: 10.1016/j.ejcb.2023.151326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Spinal muscular atrophy (SMA), the most common genetic cause of infantile death, is caused by a mutation in the survival of motor neuron 1 gene (SMN1), leading to the death of motor neurons and progressive muscle weakness. SMN1 normally produces an essential protein called SMN. Although humans possess a paralogous gene called SMN2, ∼90% of the SMN it produces is non-functional. This is due to a mutation in SMN2 that causes the skipping of a required exon during splicing of the pre-mRNA. The first treatment for SMA, nusinersen (brand name Spinraza), was approved by the FDA in 2016 and by the EMU in 2017. Nusinersen is an antisense oligonucleotide-based therapy that alters the splicing of SMN2 to make functional full-length SMN protein. Despite the recent advancements in antisense oligonucleotide therapy and SMA treatment development, nusinersen is faced with a multitude of challenges, such as intracellular and systemic delivery. In recent years, the use of peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) in antisense therapy has gained interest. These are antisense oligonucleotides conjugated to cell-penetrating peptides such as Pips and DG9, and they have the potential to address the challenges associated with delivery. This review focuses on the historic milestones, development, current challenges, and future perspectives of antisense therapy for SMA.
Collapse
Affiliation(s)
- Zorica Nakevska
- Department of Biological Sciences, Faculty of Science, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada.
| | - Toshifumi Yokota
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada; Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada; The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812 112 St., Edmonton AB T6G 2H7, Canada.
| |
Collapse
|
14
|
Arbab M, Matuszek Z, Kray KM, Du A, Newby GA, Blatnik AJ, Raguram A, Richter MF, Zhao KT, Levy JM, Shen MW, Arnold WD, Wang D, Xie J, Gao G, Burghes AHM, Liu DR. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 2023; 380:eadg6518. [PMID: 36996170 PMCID: PMC10270003 DOI: 10.1126/science.adg6518] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, arises from survival motor neuron (SMN) protein insufficiency resulting from SMN1 loss. Approved therapies circumvent endogenous SMN regulation and require repeated dosing or may wane. We describe genome editing of SMN2, an insufficient copy of SMN1 harboring a C6>T mutation, to permanently restore SMN protein levels and rescue SMA phenotypes. We used nucleases or base editors to modify five SMN2 regulatory regions. Base editing converted SMN2 T6>C, restoring SMN protein levels to wild type. Adeno-associated virus serotype 9-mediated base editor delivery in Δ7SMA mice yielded 87% average T6>C conversion, improved motor function, and extended average life span, which was enhanced by one-time base editor and nusinersen coadministration (111 versus 17 days untreated). These findings demonstrate the potential of a one-time base editing treatment for SMA.
Collapse
Affiliation(s)
- Mandana Arbab
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zaneta Matuszek
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Kaitlyn M. Kray
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Ailing Du
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anton J. Blatnik
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michelle F. Richter
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kevin T. Zhao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan M. Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Max W. Shen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - W. David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65212, USA
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center and RNA Therapeutics Institute, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts, Medical School, Worcester, MA 01605, USA
- Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA 01605, USA
| | - Arthur H. M. Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
Torroba B, Macabuag N, Haisma EM, O'Neill A, Herva ME, Redis RS, Templin MV, Black LE, Fischer DF. RNA-based drug discovery for spinal muscular atrophy: a story of small molecules and antisense oligonucleotides. Expert Opin Drug Discov 2023; 18:181-192. [PMID: 36408582 DOI: 10.1080/17460441.2022.2149733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Spinal Muscular Atrophy (SMA), the second most prevalent autosomal genetic disease affecting infants, is caused by the lack of SMN1, which encodes a neuron functioning vital protein, SMN. Improving exon 7 splicing in the paralogous gene SMN2, also coding for SMN protein, increases protein production efficiency from SMN2 to overcome the genetic deficit in SMN1. Several molecular mechanisms have been investigated to improve SMN2 functional splicing. AREAS COVERED This manuscript will cover two of the three mechanistically distinct available treatment options for SMA, both targeting the SMN2 splicing mechanism. The first therapeutic, nusinersen (Spinraza®, 2017), is an antisense oligonucleotide (ASO) targeting the splicing inhibitory sequence in the intron downstream of exon 7 from SMN2, thus increasing exon 7 inclusion. The second drug is a small molecule, risdiplam (Evrysdi®, 2021), that enhances the binding of splice factors and also promotes exon 7 inclusion. Both therapies, albeit through different mechanisms, increase full-length SMN protein expression. EXPERT OPINION Nusinersen and risdiplam have directly helped SMA patients and families, but they also herald a sea change in drug development for genetic diseases. This piece aims to draw parallels between both development histories; this may help chart the course for future targeted agents.
Collapse
Affiliation(s)
| | | | | | - Amy O'Neill
- Charles River Laboratories, Saffron Walden, UK
| | | | | | | | | | | |
Collapse
|
16
|
Bofanova NS, Eliseeva AR, Onchina VS. [Modern principles of therapy for patients with spinal muscular atrophy]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:34-40. [PMID: 36946394 DOI: 10.17116/jnevro202312303134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Spinal muscular atrophy (SMA) is a common cause of childhood mortality among hereditary diseases of the central nervous system, which are caused by the processes of degeneration and death of motor neurons of the anterior horns of the spinal cord. An urgent issue of modern neurology is pathogenetic therapy for this group of patients, the purpose of which is to increase the level of motoneuron survival protein. We performed a search on current methods of treating SMA in Web of Science, Scopus, PubMed, Embase by the keywords: spinal muscular atrophy, neuromuscular diseases, pathogenetic therapy. Significant progress has been made in the treatment of SMA over the past 7 years. A major advance is the introduction of disease-modifying therapies using SMN2 splicing modulation or gene replacement therapy. At the moment, there are 3 FDA-approved drugs for pathogenetic therapy: Nusinersen, Risdiplam, Zolgensma. The article compares the drugs, evaluates their safety and effectiveness according to the available literature. Modern drugs for the pathogenetic therapy of SMA are highly effective and reduce the mortality rate. The results of clinical trials predict the emergence of new modern drugs. This suggests a favorable prognosis for the treatment of patients with SMA.
Collapse
|
17
|
Hammond SM, Abendroth F, Goli L, Stoodley J, Burrell M, Thom G, Gurrell I, Ahlskog N, Gait MJ, Wood MJ, Webster CI. Antibody-oligonucleotide conjugate achieves CNS delivery in animal models for spinal muscular atrophy. JCI Insight 2022; 7:154142. [PMID: 36346674 PMCID: PMC7614086 DOI: 10.1172/jci.insight.154142] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Antisense oligonucleotides (ASOs) have emerged as one of the most innovative new genetic drug modalities. However, their high molecular weight limits their bioavailability for otherwise-treatable neurological disorders. We investigated conjugation of ASOs to an antibody against the murine transferrin receptor, 8D3130, and evaluated it via systemic administration in mouse models of the neurodegenerative disease spinal muscular atrophy (SMA). SMA, like several other neurological and neuromuscular diseases, is treatable with single-stranded ASOs that modulate splicing of the survival motor neuron 2 (SMN2) gene. Administration of 8D3130-ASO conjugate resulted in elevated levels of bioavailability to the brain. Additionally, 8D3130-ASO yielded therapeutic levels of SMN2 splicing in the central nervous system of adult human SMN2-transgenic (hSMN2-transgenic) mice, which resulted in extended survival of a severely affected SMA mouse model. Systemic delivery of nucleic acid therapies with brain-targeting antibodies offers powerful translational potential for future treatments of neuromuscular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Suzan M Hammond
- Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Frank Abendroth
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Chemistry, Philipps Universität-Marburg, Marburg, Germany
| | - Larissa Goli
- Department of Paediatrics, John Radcliffe Hospital, and.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jessica Stoodley
- Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | | | | | - Ian Gurrell
- Neuroscience, Biopharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Nina Ahlskog
- Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Michael J Gait
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Matthew Ja Wood
- Department of Paediatrics, John Radcliffe Hospital, and.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
18
|
Grice SJ, Liu JL. Motor defects in a Drosophila model for spinal muscular atrophy result from SMN depletion during early neurogenesis. PLoS Genet 2022; 18:e1010325. [PMID: 35877682 PMCID: PMC9352204 DOI: 10.1371/journal.pgen.1010325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common autosomal recessive neurodegenerative disease, and is characterised by spinal motor neuron loss, impaired motor function and, often, premature death. Mutations and deletions in the widely expressed survival motor neuron 1 (SMN1) gene cause SMA; however, the mechanisms underlying the selectivity of motor neuron degeneration are not well understood. Although SMA is degenerative in nature, SMN function during embryonic and early postnatal development appears to be essential for motor neuron survival in animal models and humans. Notwithstanding, how developmental defects contribute to the subversion of postnatal and adult motor function remains elusive. Here, in a Drosophila SMA model, we show that neurodevelopmental defects precede gross locomotor dysfunction in larvae. Furthermore, to specifically address the relevance of SMN during neurogenesis and in neurogenic cell types, we show that SMN knockdown using neuroblast-specific and pan-neuronal drivers, but not differentiated neuron or glial cell drivers, impairs adult motor function. Using targeted knockdown, we further restricted SMN manipulation in neuroblasts to a defined time window. Our aim was to express specifically in the neuronal progenitor cell types that have not formed synapses, and thus a time that precedes neuromuscular junction formation and maturation. By restoring SMN levels in these distinct neuronal population, we partially rescue the larval locomotor defects of Smn mutants. Finally, combinatorial SMN knockdown in immature and mature neurons synergistically enhances the locomotor and survival phenotypes. Our in-vivo study is the first to directly rescue the motor defects of an SMA model by expressing Smn in an identifiable population of Drosophila neuroblasts and developing neurons, highlighting that neuronal sensitivity to SMN loss may arise before synapse establishment and nerve cell maturation. Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality and leads to the degeneration of the nerves that control muscle function. Loss-of-function mutations in the widely expressed survival motor neuron 1 (SMN1) gene cause SMA, but how low levels of SMN protein cause the neuronal dysfunction is not known. Although SMA is a disease of nerve degeneration, SMN function during nerve cell development may be important, particularly in severe forms of SMA. Nevertheless, how the defects during development and throughout early life contribute to the disease is not well understood. We have previously demonstrated that SMN protein becomes enriched in neuroblasts, which are the cells that divide to produce neurons. In the present study, motor defects observed in our fly model for SMA could be rescued by restoring SMN in neuroblasts alone. In addition, we show that knocking down SMN in healthy flies within the same cell type causes impaired motor function. The present study shows that the manipulation of SMN in a developmentally important cell type can cause motor defects, indicating that a period of abnormal neurodevelopment may contribute to SMA.
Collapse
Affiliation(s)
- Stuart J. Grice
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail: (SJG); , (J-LL)
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- School of Life Science and Technology, Shanghai, Tech University, Shanghai, China
- * E-mail: (SJG); , (J-LL)
| |
Collapse
|
19
|
Polikarpova AV, Egorova TV, Bardina MV. Genetically modified animal models of hereditary diseases for testing of gene-directed therapy. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.82618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disease-causing genes have been identified for many severe muscular and neurological genetic disorders. Advances in the gene therapy field offer promising solutions for drug development to treat these life-threatening conditions. Depending on how the mutation affects the function of the gene product, different gene therapy approaches may be beneficial. Gene replacement therapy is appropriate for diseases caused by mutations that result in the deficiency of the functional protein. Gene suppression strategy is suggested for disorders caused by the toxic product of the mutant gene. Splicing modulators, genome editing, and base editing techniques can be applied to disorders with different types of underlying mutations. Testing potential drugs in animal models of human diseases is an indispensable step of development. Given the specific gene therapy approach, appropriate animal models can be generated using a variety of technologies ranging from transgenesis to precise genome editing. In this review, we discuss technologies used to generate small and large animal models of the most common muscular and neurological genetic disorders. We specifically focus on animal models that were used to test gene therapies based on adeno-associated vectors and antisense nucleotides.
Collapse
|
20
|
López-Cortés A, Echeverría-Garcés G, Ramos-Medina MJ. Molecular Pathogenesis and New Therapeutic Dimensions for Spinal Muscular Atrophy. BIOLOGY 2022; 11:biology11060894. [PMID: 35741415 PMCID: PMC9219894 DOI: 10.3390/biology11060894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
The condition known as 5q spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disease caused by a deficiency of the ubiquitous protein survival of motor neuron (SMN), which is encoded by the SMN1 and SMN2 genes. It is one of the most common pediatric recessive genetic diseases, and it represents the most common cause of hereditary infant mortality. After decades of intensive basic and clinical research efforts, and improvements in the standard of care, successful therapeutic milestones have been developed, delaying the progression of 5q SMA and increasing patient survival. At the same time, promising data from early-stage clinical trials have indicated that additional therapeutic options are likely to emerge in the near future. Here, we provide updated information on the molecular underpinnings of SMA; we also provide an overview of the rapidly evolving therapeutic landscape for SMA, including SMN-targeted therapies, SMN-independent therapies, and combinational therapies that are likely to be key for the development of treatments that are effective across a patient’s lifespan.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170302, Ecuador
- Facultad de Medicina, Universidad de Las Américas, Quito 170124, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (G.E.-G.); (M.J.R.-M.)
- Correspondence:
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (G.E.-G.); (M.J.R.-M.)
| | - María José Ramos-Medina
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (G.E.-G.); (M.J.R.-M.)
| |
Collapse
|
21
|
Zhang L, Abendroth F, Vázquez O. A Chemical Biology Perspective to Therapeutic Regulation of RNA Splicing in Spinal Muscular Atrophy (SMA). ACS Chem Biol 2022; 17:1293-1307. [PMID: 35639849 DOI: 10.1021/acschembio.2c00161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Manipulation of RNA splicing machinery has emerged as a drug modality. Here, we illustrate the potential of this novel paradigm to correct aberrant splicing events focused on the recent therapeutic advances in spinal muscular atrophy (SMA). SMA is an incurable neuromuscular disorder and at present the primary genetic cause of early infant death. This Review summarizes the exciting journey from the first reported SMA cases to the currently approved splicing-switching treatments, i.e., antisense oligonucleotides and small-molecule modifiers. We emphasize both chemical structures and molecular bases for recognition. We briefly discuss the advantages and disadvantages of these treatments and include the remaining challenges and future directions. Finally, we also predict that these success stories will contribute to further therapies for human diseases by RNA-splicing control.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| |
Collapse
|
22
|
Toosaranont J, Ruschadaariyachat S, Mujchariyakul W, Arora JK, Charoensawan V, Suktitipat B, Palmer TN, Fletcher S, Wilton SD, Mitrpant C. Antisense Oligonucleotide Induction of the hnRNPA1b Isoform Affects Pre-mRNA Splicing of SMN2 in SMA Type I Fibroblasts. Int J Mol Sci 2022; 23:ijms23073937. [PMID: 35409296 PMCID: PMC8999010 DOI: 10.3390/ijms23073937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, debilitating neuromuscular condition characterised by loss of motor neurons and progressive muscle wasting. SMA is caused by a loss of expression of SMN1 that encodes the survival motor neuron (SMN) protein necessary for the survival of motor neurons. Restoration of SMN expression through increased inclusion of SMN2 exon 7 is known to ameliorate symptoms in SMA patients. As a consequence, regulation of pre-mRNA splicing of SMN2 could provide a potential molecular therapy for SMA. In this study, we explored if splice switching antisense oligonucleotides could redirect the splicing repressor hnRNPA1 to the hnRNPA1b isoform and restore SMN expression in fibroblasts from a type I SMA patient. Antisense oligonucleotides (AOs) were designed to promote exon 7b retention in the mature mRNA and induce the hnRNPA1b isoform. RT-PCR and western blot analysis were used to assess and monitor the efficiency of different AO combinations. A combination of AOs targeting multiple silencing motifs in hnRNPA1 pre-mRNA led to robust hnRNPA1b induction, which, in turn, significantly increased expression of full-length SMN (FL-SMN) protein. A combination of PMOs targeting the same motifs also strongly induced hnRNPA1b isoform, but surprisingly SMN2 exon 5 skipping was detected, and the PMO cocktail did not lead to a significant increase in expression of FL-SMN protein. We further performed RNA sequencing to assess the genome-wide effects of hnRNPA1b induction. Some 3244 genes were differentially expressed between the hnRNPA1b-induced and untreated SMA fibroblasts, which are functionally enriched in cell cycle and chromosome segregation processes. RT-PCR analysis demonstrated that expression of the master regulator of these enrichment pathways, MYBL2 and FOXM1B, were reduced in response to PMO treatment. These findings suggested that induction of hnRNPA1b can promote SMN protein expression, but not at sufficient levels to be clinically relevant.
Collapse
Affiliation(s)
- Jarichad Toosaranont
- Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.T.); (S.R.); (B.S.)
| | - Sukanya Ruschadaariyachat
- Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.T.); (S.R.); (B.S.)
| | - Warasinee Mujchariyakul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10700, Thailand; (W.M.); (J.K.A.); (V.C.)
| | - Jantarika Kumar Arora
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10700, Thailand; (W.M.); (J.K.A.); (V.C.)
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10700, Thailand; (W.M.); (J.K.A.); (V.C.)
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom 73170, Thailand
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Bhoom Suktitipat
- Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.T.); (S.R.); (B.S.)
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thomas N. Palmer
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia; (T.N.P.); (S.F.); (S.D.W.)
| | - Sue Fletcher
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia; (T.N.P.); (S.F.); (S.D.W.)
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Steve D. Wilton
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia; (T.N.P.); (S.F.); (S.D.W.)
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.T.); (S.R.); (B.S.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA 6009, Australia; (T.N.P.); (S.F.); (S.D.W.)
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Correspondence:
| |
Collapse
|
23
|
Aslesh T, Yokota T. Restoring SMN Expression: An Overview of the Therapeutic Developments for the Treatment of Spinal Muscular Atrophy. Cells 2022; 11:417. [PMID: 35159227 PMCID: PMC8834523 DOI: 10.3390/cells11030417] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder and one of the most common genetic causes of infant death. It is characterized by progressive weakness of the muscles, loss of ambulation, and death from respiratory complications. SMA is caused by the homozygous deletion or mutations in the survival of the motor neuron 1 (SMN1) gene. Humans, however, have a nearly identical copy of SMN1 known as the SMN2 gene. The severity of the disease correlates inversely with the number of SMN2 copies present. SMN2 cannot completely compensate for the loss of SMN1 in SMA patients because it can produce only a fraction of functional SMN protein. SMN protein is ubiquitously expressed in the body and has a variety of roles ranging from assembling the spliceosomal machinery, autophagy, RNA metabolism, signal transduction, cellular homeostasis, DNA repair, and recombination. Motor neurons in the anterior horn of the spinal cord are extremely susceptible to the loss of SMN protein, with the reason still being unclear. Due to the ability of the SMN2 gene to produce small amounts of functional SMN, two FDA-approved treatment strategies, including an antisense oligonucleotide (AON) nusinersen and small-molecule risdiplam, target SMN2 to produce more functional SMN. On the other hand, Onasemnogene abeparvovec (brand name Zolgensma) is an FDA-approved adeno-associated vector 9-mediated gene replacement therapy that can deliver a copy of the human SMN1. In this review, we summarize the SMA etiology, the role of SMN, and discuss the challenges of the therapies that are approved for SMA treatment.
Collapse
Affiliation(s)
- Tejal Aslesh
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada;
| | - Toshifumi Yokota
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada;
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2E1, Canada
- The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812 112 St., Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
24
|
Malard F, Mackereth CD, Campagne S. Principles and correction of 5'-splice site selection. RNA Biol 2022; 19:943-960. [PMID: 35866748 PMCID: PMC9311317 DOI: 10.1080/15476286.2022.2100971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022] Open
Abstract
In Eukarya, immature mRNA transcripts (pre-mRNA) often contain coding sequences, or exons, interleaved by non-coding sequences, or introns. Introns are removed upon splicing, and further regulation of the retained exons leads to alternatively spliced mRNA. The splicing reaction requires the stepwise assembly of the spliceosome, a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs). This review focuses on the early stage of spliceosome assembly, when U1 snRNP defines each intron 5'-splice site (5'ss) in the pre-mRNA. We first introduce the splicing reaction and the impact of alternative splicing on gene expression regulation. Thereafter, we extensively discuss splicing descriptors that influence the 5'ss selection by U1 snRNP, such as sequence determinants, and interactions mediated by U1-specific proteins or U1 small nuclear RNA (U1 snRNA). We also include examples of diseases that affect the 5'ss selection by U1 snRNP, and discuss recent therapeutic advances that manipulate U1 snRNP 5'ss selectivity with antisense oligonucleotides and small-molecule splicing switches.
Collapse
Affiliation(s)
- Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Cameron D Mackereth
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
25
|
Chilcott EM, Muiruri EW, Hirst TC, Yáñez-Muñoz RJ. Systematic review and meta-analysis determining the benefits of in vivo genetic therapy in spinal muscular atrophy rodent models. Gene Ther 2022; 29:498-512. [PMID: 34611322 PMCID: PMC9482879 DOI: 10.1038/s41434-021-00292-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/31/2023]
Abstract
Spinal muscular atrophy (SMA) is a severe childhood neuromuscular disease for which two genetic therapies, Nusinersen (Spinraza, an antisense oligonucleotide), and AVXS-101 (Zolgensma, an adeno-associated viral vector of serotype 9 AAV9), have recently been approved. We investigated the pre-clinical development of SMA genetic therapies in rodent models and whether this can predict clinical efficacy. We have performed a systematic review of relevant publications and extracted median survival and details of experimental design. A random effects meta-analysis was used to estimate and compare efficacy. We stratified by experimental design (type of genetic therapy, mouse model, route and time of administration) and sought any evidence of publication bias. 51 publications were identified containing 155 individual comparisons, comprising 2573 animals in total. Genetic therapies prolonged survival in SMA mouse models by 3.23-fold (95% CI 2.75-3.79) compared to controls. Study design characteristics accounted for significant heterogeneity between studies and greatly affected observed median survival ratios. Some evidence of publication bias was found. These data are consistent with the extended average lifespan of Spinraza- and Zolgensma-treated children in the clinic. Together, these results support that SMA has been particularly amenable to genetic therapy approaches and highlight SMA as a trailblazer for therapeutic development.
Collapse
Affiliation(s)
- Ellie M. Chilcott
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK ,Present Address: Institute for Women’s Health, UCL, 86-96 Chenies Mews, London, WC1E 6HX UK
| | - Evalyne W. Muiruri
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK
| | - Theodore C. Hirst
- grid.416232.00000 0004 0399 1866Department of Neurosurgery, Royal Victoria Hospital, Belfast, BT12 6BA UK
| | - Rafael J. Yáñez-Muñoz
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK
| |
Collapse
|
26
|
Kray KM, McGovern VL, Chugh D, Arnold WD, Burghes AHM. Dual SMN inducing therapies can rescue survival and motor unit function in symptomatic ∆7SMA mice. Neurobiol Dis 2021; 159:105488. [PMID: 34425216 PMCID: PMC8502210 DOI: 10.1016/j.nbd.2021.105488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by survival motor neuron (SMN) protein deficiency which results in motor neuron loss and muscle atrophy. SMA is caused by a mutation or deletion of the survival motor neuron 1 (SMN1) gene and retention of the nearly identical SMN2 gene. SMN2 contains a C to T change in exon 7 that results in exon 7 exclusion from 90% of transcripts. SMN protein lacking exon 7 is unstable and rapidly degraded. The remaining full-length transcripts from SMN2 are insufficient for normal motor neuron function leading to the development of SMA. Three different therapeutic approaches that increase full-length SMN (FL-SMN) protein production are approved for treatment of SMA patients. Studies in both animal models and humans have demonstrated increasing SMN levels prior to onset of symptoms provides the greatest therapeutic benefit. Treatment of SMA, after some motor neuron loss has occurred, is also effective but to a lesser degree. The SMN∆7 mouse model is a well characterized model of severe or type 1 SMA, dying at 14 days of age. Here we treated three groups of ∆7SMA mice starting before, roughly during, and after symptom onset to determine if combining two mechanistically distinct SMN inducing therapies could improve the therapeutic outcome both before and after motor neuron loss. We found, compared with individual therapies, that morpholino antisense oligonucleotide (ASO) directed against ISS-N1 combined with the small molecule compound RG7800 significantly increased FL-SMN transcript and protein production resulting in improved survival and weight of ∆7SMA mice. Moreover, when give late symptomatically, motor unit function was completely rescued with no loss in function at 100 days of age in the dual treatment group. We have therefore shown that this dual therapeutic approach successfully increases SMN protein and rescues motor function in symptomatic ∆7SMA mice.
Collapse
Affiliation(s)
- Kaitlyn M Kray
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA.
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA.
| | - Deepti Chugh
- Department of Neurology, Neuromuscular Division, The Ohio State University Wexner Medical Center, 395 W. 12(th) Ave, Columbus, OH 43210, USA
| | - W David Arnold
- Department of Neurology, Neuromuscular Division, The Ohio State University Wexner Medical Center, 395 W. 12(th) Ave, Columbus, OH 43210, USA.
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, 1060 Carmack Road, Columbus, OH 43210, USA; Department of Neurology, Neuromuscular Division, The Ohio State University Wexner Medical Center, 395 W. 12(th) Ave, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Pino MG, Rich KA, Kolb SJ. Update on Biomarkers in Spinal Muscular Atrophy. Biomark Insights 2021; 16:11772719211035643. [PMID: 34421296 PMCID: PMC8371741 DOI: 10.1177/11772719211035643] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) has created an urgent need to identify clinically meaningful biomarkers. Biomarkers present a means to measure and evaluate neurological disease across time. Changes in biomarkers provide insight into disease progression and may reveal biologic, physiologic, or pharmacologic phenomena occurring prior to clinical detection. Efforts to identify biomarkers for SMA, a genetic motor neuron disease characterized by motor neuron degeneration and weakness, have culminated in a number of putative molecular and physiologic markers that evaluate biological media (eg, blood and cerebrospinal fluid [CSF]) or nervous system function. Such biomarkers include SMN2 copy number, SMN mRNA and protein levels, neurofilament proteins (NFs), plasma protein analytes, creatine kinase (CK) and creatinine (Crn), and various electrophysiology and imaging measures. SMN2 copy number inversely correlates with disease severity and is the best predictor of clinical outcome in untreated individuals. SMN mRNA and protein are commonly measured in the blood or CSF of patients receiving SMA therapies, particularly those aimed at increasing SMN protein expression, and provide insight into current disease state. NFs have proven to be robust prognostic, disease progression, and pharmacodynamic markers for SMA infants undergoing treatment, but less so for adolescents and adults. Select plasma proteins are altered in SMA individuals and may track response to therapy. CK and Crn from blood correlate with motor function and disease severity status and are useful for predicting which individuals will respond to therapy. Electrophysiology measures comprise the most reliable means for monitoring motor function throughout disease course and are sensitive enough to detect neuromuscular changes before overt clinical manifestation, making them robust predictive and pharmacodynamic biomarkers. Finally, magnetic resonance imaging and muscle ultrasonography are non-invasive techniques for studying muscle structure and physiology and are useful diagnostic tools, but cannot reliably track disease progression. Importantly, biomarkers can provide information about the underlying mechanisms of disease as well as reveal subclinical disease progression, allowing for more appropriate timing and dosing of therapy for individuals with SMA. Recent therapeutic advancements in SMA have shown promising results, though there is still a great need to identify and understand the impact of biomarkers in modulating disease onset and progression.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Kelly A Rich
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State
University Wexner Medical Center, Columbus, OH, USA
- Department of Biological Chemistry and
Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH,
USA
| |
Collapse
|
28
|
Blatnik AJ, McGovern VL, Burghes AHM. What Genetics Has Told Us and How It Can Inform Future Experiments for Spinal Muscular Atrophy, a Perspective. Int J Mol Sci 2021; 22:8494. [PMID: 34445199 PMCID: PMC8395208 DOI: 10.3390/ijms22168494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.
Collapse
Affiliation(s)
| | | | - Arthur H. M. Burghes
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Rightmire Hall, Room 168, 1060 Carmack Road, Columbus, OH 43210, USA; (A.J.B.III); (V.L.M.)
| |
Collapse
|
29
|
Ottesen EW, Luo D, Singh NN, Singh RN. High Concentration of an ISS-N1-Targeting Antisense Oligonucleotide Causes Massive Perturbation of the Transcriptome. Int J Mol Sci 2021; 22:ijms22168378. [PMID: 34445083 PMCID: PMC8395096 DOI: 10.3390/ijms22168378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022] Open
Abstract
Intronic splicing silencer N1 (ISS-N1) located within Survival Motor Neuron 2 (SMN2) intron 7 is the target of a therapeutic antisense oligonucleotide (ASO), nusinersen (Spinraza), which is currently being used for the treatment of spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. The discovery of ISS-N1 as a promising therapeutic target was enabled in part by Anti-N1, a 20-mer ASO that restored SMN2 exon 7 inclusion by annealing to ISS-N1. Here, we analyzed the transcriptome of SMA patient cells treated with 100 nM of Anti-N1 for 30 h. Such concentrations are routinely used to demonstrate the efficacy of an ASO. While 100 nM of Anti-N1 substantially stimulated SMN2 exon 7 inclusion, it also caused massive perturbations in the transcriptome and triggered widespread aberrant splicing, affecting expression of essential genes associated with multiple cellular processes such as transcription, splicing, translation, cell signaling, cell cycle, macromolecular trafficking, cytoskeletal dynamics, and innate immunity. We validated our findings with quantitative and semiquantitative PCR of 39 candidate genes associated with diverse pathways. We also showed a substantial reduction in off-target effects with shorter ISS-N1-targeting ASOs. Our findings are significant for implementing better ASO design and dosing regimens of ASO-based drugs.
Collapse
|
30
|
Van Alstyne M, Tattoli I, Delestree N, Recinos Y, Workman E, Shihabuddin LS, Zhang C, Mentis GZ, Pellizzoni L. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci 2021; 24:930-940. [PMID: 33795885 PMCID: PMC8254787 DOI: 10.1038/s41593-021-00827-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023]
Abstract
The neurodegenerative disease spinal muscular atrophy (SMA) is caused by deficiency in the survival motor neuron (SMN) protein. Currently approved SMA treatments aim to restore SMN, but the potential for SMN expression beyond physiological levels is a unique feature of adeno-associated virus serotype 9 (AAV9)-SMN gene therapy. Here, we show that long-term AAV9-mediated SMN overexpression in mouse models induces dose-dependent, late-onset motor dysfunction associated with loss of proprioceptive synapses and neurodegeneration. Mechanistically, aggregation of overexpressed SMN in the cytoplasm of motor circuit neurons sequesters components of small nuclear ribonucleoproteins, leading to splicing dysregulation and widespread transcriptome abnormalities with prominent signatures of neuroinflammation and the innate immune response. Thus, long-term SMN overexpression interferes with RNA regulation and triggers SMA-like pathogenic events through toxic gain-of-function mechanisms. These unanticipated, SMN-dependent and neuron-specific liabilities warrant caution on the long-term safety of treating individuals with SMA with AAV9-SMN and the risks of uncontrolled protein expression by gene therapy.
Collapse
Affiliation(s)
- Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032,Department of Neurology, Columbia University, New York, NY, 10032
| | - Ivan Tattoli
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032
| | - Nicolas Delestree
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032,Department of Neurology, Columbia University, New York, NY, 10032
| | - Yocelyn Recinos
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Systems Biology, Columbia University, New York, NY 10032,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Eileen Workman
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032
| | | | - Chaolin Zhang
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Systems Biology, Columbia University, New York, NY 10032,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - George Z. Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032,Department of Neurology, Columbia University, New York, NY, 10032
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032,Department of Neurology, Columbia University, New York, NY, 10032,Address correspondence to: Livio Pellizzoni, Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, 630 West 168TH Street, New York, NY, 10032. Phone: +1 212-305-3046;
| |
Collapse
|
31
|
RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays. Molecules 2021; 26:molecules26082263. [PMID: 33919699 PMCID: PMC8070285 DOI: 10.3390/molecules26082263] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
RNA splicing is an essential step in producing mature messenger RNA (mRNA) and other RNA species. Harnessing RNA splicing modifiers as a new pharmacological modality is promising for the treatment of diseases caused by aberrant splicing. This drug modality can be used for infectious diseases by disrupting the splicing of essential pathogenic genes. Several antisense oligonucleotide splicing modifiers were approved by the U.S. Food and Drug Administration (FDA) for the treatment of spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). Recently, a small-molecule splicing modifier, risdiplam, was also approved for the treatment of SMA, highlighting small molecules as important warheads in the arsenal for regulating RNA splicing. The cellular targets of these approved drugs are all mRNA precursors (pre-mRNAs) in human cells. The development of novel RNA-targeting splicing modifiers can not only expand the scope of drug targets to include many previously considered “undruggable” genes but also enrich the chemical-genetic toolbox for basic biomedical research. In this review, we summarized known splicing modifiers, screening methods for novel splicing modifiers, and the chemical space occupied by the small-molecule splicing modifiers.
Collapse
|
32
|
Nicolau S, Waldrop MA, Connolly AM, Mendell JR. Spinal Muscular Atrophy. Semin Pediatr Neurol 2021; 37:100878. [PMID: 33892848 DOI: 10.1016/j.spen.2021.100878] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Spinal muscular atrophy is one of the most common neuromuscular disorders of childhood and has high morbidity and mortality. Three different disease-modifying treatments were introduced in the last 4 years: nusinersen, onasemnogene abeparvovec, and risdiplam. These agents have demonstrated safety and efficacy, but their long-term benefits require further study. Newborn screening programs are enabling earlier diagnosis and treatment and better outcomes, but respiratory care and other supportive measures retain a key role in the management of spinal muscular atrophy. Ongoing efforts seek to optimize gene therapy vectors, explore new therapeutic targets beyond motor neurons, and evaluate the role of combination therapy.
Collapse
Affiliation(s)
- Stefan Nicolau
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH.
| | - Megan A Waldrop
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Ohio State University, Columbus, OH
| | - Anne M Connolly
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Ohio State University, Columbus, OH
| | - Jerry R Mendell
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Ohio State University, Columbus, OH
| |
Collapse
|
33
|
In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sci 2021; 11:brainsci11020194. [PMID: 33562482 PMCID: PMC7915832 DOI: 10.3390/brainsci11020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual’s quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.
Collapse
|
34
|
Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166063. [PMID: 33412266 DOI: 10.1016/j.bbadis.2020.166063] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.
Collapse
|
35
|
Kim JK, Jha NN, Feng Z, Faleiro MR, Chiriboga CA, Wei-Lapierre L, Dirksen RT, Ko CP, Monani UR. Muscle-specific SMN reduction reveals motor neuron-independent disease in spinal muscular atrophy models. J Clin Invest 2020; 130:1271-1287. [PMID: 32039917 DOI: 10.1172/jci131989] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Paucity of the survival motor neuron (SMN) protein triggers the oft-fatal infantile-onset motor neuron disorder, spinal muscular atrophy (SMA). Augmenting the protein is one means of treating SMA and recently led to FDA approval of an intrathecally delivered SMN-enhancing oligonucleotide currently in use. Notwithstanding the advent of this and other therapies for SMA, it is unclear whether the paralysis associated with the disease derives solely from dysfunctional motor neurons that may be efficiently targeted by restricted delivery of SMN-enhancing agents to the nervous system, or stems from broader defects of the motor unit, arguing for systemic SMN repletion. We investigated the disease-contributing effects of low SMN in one relevant peripheral organ - skeletal muscle - by selectively depleting the protein in only this tissue. We found that muscle deprived of SMN was profoundly damaged. Although a disease phenotype was not immediately obvious, persistent low levels of the protein eventually resulted in muscle fiber defects, neuromuscular junction abnormalities, compromised motor performance, and premature death. Importantly, restoring SMN after the onset of muscle pathology reversed disease. Our results provide the most compelling evidence yet for a direct contributing role of muscle in SMA and argue that an optimal therapy for the disease must be designed to treat this aspect of the dysfunctional motor unit.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- Department of Pathology and Cell Biology and.,Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA
| | - Narendra N Jha
- Department of Pathology and Cell Biology and.,Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA
| | - Zhihua Feng
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Michelle R Faleiro
- Department of Pathology and Cell Biology and.,Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA
| | - Claudia A Chiriboga
- Department of Neurology and.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Lan Wei-Lapierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Chien-Ping Ko
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Umrao R Monani
- Department of Pathology and Cell Biology and.,Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA.,Department of Neurology and
| |
Collapse
|
36
|
McGovern VL, Kray KM, Arnold WD, Duque SI, Iyer CC, Massoni-Laporte A, Workman E, Patel A, Battle DJ, Burghes AHM. Intragenic complementation of amino and carboxy terminal SMN missense mutations can rescue Smn null mice. Hum Mol Genet 2020; 29:3493-3503. [PMID: 33084884 PMCID: PMC7788290 DOI: 10.1093/hmg/ddaa235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 10/15/2020] [Indexed: 01/15/2023] Open
Abstract
Spinal muscular atrophy is caused by reduced levels of SMN resulting from the loss of SMN1 and reliance on SMN2 for the production of SMN. Loss of SMN entirely is embryonic lethal in mammals. There are several SMN missense mutations found in humans. These alleles do not show partial function in the absence of wild-type SMN and cannot rescue a null Smn allele in mice. However, these human SMN missense allele transgenes can rescue a null Smn allele when SMN2 is present. We find that the N- and C-terminal regions constitute two independent domains of SMN that can be separated genetically and undergo intragenic complementation. These SMN protein heteromers restore snRNP assembly of Sm proteins onto snRNA and completely rescue both survival of Smn null mice and motor neuron electrophysiology demonstrating that the essential functional unit of SMN is the oligomer.
Collapse
Affiliation(s)
- Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Kaitlyn M Kray
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Sandra I Duque
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Chitra C Iyer
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Aurélie Massoni-Laporte
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Eileen Workman
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Aalapi Patel
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J Battle
- Department of Biological Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
37
|
Modelling Neuromuscular Diseases in the Age of Precision Medicine. J Pers Med 2020; 10:jpm10040178. [PMID: 33080928 PMCID: PMC7712305 DOI: 10.3390/jpm10040178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Advances in knowledge resulting from the sequencing of the human genome, coupled with technological developments and a deeper understanding of disease mechanisms of pathogenesis are paving the way for a growing role of precision medicine in the treatment of a number of human conditions. The goal of precision medicine is to identify and deliver effective therapeutic approaches based on patients’ genetic, environmental, and lifestyle factors. With the exception of cancer, neurological diseases provide the most promising opportunity to achieve treatment personalisation, mainly because of accelerated progress in gene discovery, deep clinical phenotyping, and biomarker availability. Developing reproducible, predictable and reliable disease models will be key to the rapid delivery of the anticipated benefits of precision medicine. Here we summarize the current state of the art of preclinical models for neuromuscular diseases, with particular focus on their use and limitations to predict safety and efficacy treatment outcomes in clinical trials.
Collapse
|
38
|
Yeo CJJ, Darras BT. Overturning the Paradigm of Spinal Muscular Atrophy as Just a Motor Neuron Disease. Pediatr Neurol 2020; 109:12-19. [PMID: 32409122 DOI: 10.1016/j.pediatrneurol.2020.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/31/2022]
Abstract
Spinal muscular atrophy is typically characterized as a motor neuron disease. Untreated patients with the most severe form, spinal muscular atrophy type 1, die early with infantile-onset progressive skeletal, bulbar, and respiratory muscle weakness. Such patients are now living longer due to new disease-modifying treatments such as gene replacement therapy (onasemnogene abeparvovec), recently approved by the US Food and Drug Administration, and nusinersen, a central nervous system-directed treatment which was approved by the US Food and Drug Administration three years ago. This has created an area of pressing clinical need: if spinal muscular atrophy is a multisystem disease, dysfunction of peripheral tissues and organs may become significant comorbidities as these patients survive into childhood and adulthood. In this review, we have compiled autopsy data, case reports, and cohort studies of peripheral tissue involvement in patients and animal models with spinal muscular atrophy. We have also evaluated preclinical studies addressing the question of whether peripheral expression of survival motor neuron is necessary and/or sufficient for motor neuron function and survival. Indeed, spinal muscular atrophy patient data suggest that spinal muscular atrophy is a multisystem disease with dysfunction in skeletal muscle, heart, kidney, liver, pancreas, spleen, bone, connective tissues, and immune systems. The peripheral requirement of SMN in each organ and how these contribute to motor neuron function and survival remains to be answered. A systemic (peripheral and central nervous system) approach to therapy during early development is most likely to effectively maximize positive clinical outcome.
Collapse
Affiliation(s)
- Crystal Jing Jing Yeo
- Department of Neurology, Neuromuscular Center and SMA Program, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Translational Neuromuscular Medicine Laboratory, Institute of Molecular and Cell Biology, Singapore; Experimental Drug Development Center, Singapore.
| | - Basil T Darras
- Department of Neurology, Neuromuscular Center and SMA Program, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
39
|
Singh NN, Ottesen EW, Singh RN. A survey of transcripts generated by spinal muscular atrophy genes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194562. [PMID: 32387331 PMCID: PMC7302838 DOI: 10.1016/j.bbagrm.2020.194562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Human Survival Motor Neuron (SMN) genes code for SMN, an essential multifunctional protein. Complete loss of SMN is embryonic lethal, while low levels of SMN lead to spinal muscular atrophy (SMA), a major genetic disease of children and infants. Reduced levels of SMN are associated with the abnormal development of heart, lung, muscle, gastro-intestinal system and testis. The SMN loci have been shown to generate a vast repertoire of transcripts, including linear, back- and trans-spliced RNAs as well as antisense long noncoding RNAs. However, functions of the majority of these transcripts remain unknown. Here we review the nature of RNAs generated from the SMN loci and discuss their potential functions in cellular metabolism.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Eric W Ottesen
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America.
| |
Collapse
|
40
|
Nusinersen ameliorates motor function and prevents motoneuron Cajal body disassembly and abnormal poly(A) RNA distribution in a SMA mouse model. Sci Rep 2020; 10:10738. [PMID: 32612161 PMCID: PMC7330045 DOI: 10.1038/s41598-020-67569-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disease characterized by degeneration of spinal cord alpha motor neurons (αMNs). SMA is caused by the homozygous deletion or mutation of the survival motor neuron 1 (SMN1) gene, resulting in reduced expression of SMN protein, which leads to αMN degeneration and muscle atrophy. The majority of transcripts of a second gene (SMN2) generate an alternative spliced isoform that lacks exon 7 and produces a truncated nonfunctional form of SMN. A major function of SMN is the biogenesis of spliceosomal snRNPs, which are essential components of the pre-mRNA splicing machinery, the spliceosome. In recent years, new potential therapies have been developed to increase SMN levels, including treatment with antisense oligonucleotides (ASOs). The ASO-nusinersen (Spinraza) promotes the inclusion of exon 7 in SMN2 transcripts and notably enhances the production of full-length SMN in mouse models of SMA. In this work, we used the intracerebroventricular injection of nusinersen in the SMN∆7 mouse model of SMA to evaluate the effects of this ASO on the behavior of Cajal bodies (CBs), nuclear structures involved in spliceosomal snRNP biogenesis, and the cellular distribution of polyadenylated mRNAs in αMNs. The administration of nusinersen at postnatal day (P) 1 normalized SMN expression in the spinal cord but not in skeletal muscle, rescued the growth curve and improved motor behavior at P12 (late symptomatic stage). Importantly, this ASO recovered the number of canonical CBs in MNs, significantly reduced the abnormal accumulation of polyadenylated RNAs in nuclear granules, and normalized the expression of the pre-mRNAs encoding chondrolectin and choline acetyltransferase, two key factors for αMN homeostasis. We propose that the splicing modulatory function of nusinersen in SMA αMN is mediated by the rescue of CB biogenesis, resulting in enhanced polyadenylated pre-mRNA transcription and splicing and nuclear export of mature mRNAs for translation. Our results support that the selective restoration of SMN expression in the spinal cord has a beneficial impact not only on αMNs but also on skeletal myofibers. However, the rescue of SMN expression in muscle appears to be necessary for the complete recovery of motor function.
Collapse
|
41
|
Singh RN, Seo J, Singh NN. RNA in spinal muscular atrophy: therapeutic implications of targeting. Expert Opin Ther Targets 2020; 24:731-743. [PMID: 32538213 DOI: 10.1080/14728222.2020.1783241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is caused by low levels of the Survival Motor Neuron (SMN) protein due to deletions of or mutations in the SMN1 gene. Humans carry another nearly identical gene, SMN2, which mostly produces a truncated and less stable protein SMNΔ7 due to predominant skipping of exon 7. Elevation of SMN upon correction of SMN2 exon 7 splicing and gene therapy have been proven to be the effective treatment strategies for SMA. AREAS COVERED This review summarizes existing and potential SMA therapies that are based on RNA targeting.We also discuss the mechanistic basis of RNA-targeting molecules. EXPERT OPINION The discovery of intronic splicing silencer N1 (ISS-N1) was the first major step towards developing the currently approved antisense-oligonucleotide (ASO)-directed therapy (SpinrazaTM) based on the correction of exon 7 splicing of the endogenous SMN2pre-mRNA. Recently, gene therapy (Zolgensma) has become the second approved treatment for SMA. Small compounds (currently in clinical trials) capable of restoring SMN2 exon 7 inclusion further expand the class of the RNA targeting molecules for SMA therapy. Endogenous RNA targets, such as long non-coding RNAs, circular RNAs, microRNAs and ribonucleoproteins, could be potentially exploited for developing additional SMA therapies.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| |
Collapse
|
42
|
Zhou H, Meng J, Malerba A, Catapano F, Sintusek P, Jarmin S, Feng L, Lu-Nguyen N, Sun L, Mariot V, Dumonceaux J, Morgan JE, Gissen P, Dickson G, Muntoni F. Myostatin inhibition in combination with antisense oligonucleotide therapy improves outcomes in spinal muscular atrophy. J Cachexia Sarcopenia Muscle 2020; 11:768-782. [PMID: 32031328 PMCID: PMC7296258 DOI: 10.1002/jcsm.12542] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by genetic defects in the survival motor neuron 1 (SMN1) gene that lead to SMN deficiency. Different SMN-restoring therapies substantially prolong survival and function in transgenic mice of SMA. However, these therapies do not entirely prevent muscle atrophy and restore function completely. To further improve the outcome, we explored the potential of a combinatorial therapy by modulating SMN production and muscle-enhancing approach as a novel therapeutic strategy for SMA. METHODS The experiments were performed in a mouse model of severe SMA. A previously reported 25-mer morpholino antisense oligomer PMO25 was used to restore SMN expression. The adeno-associated virus-mediated expression of myostatin propeptide was used to block the myostatin pathway. Newborn SMA mice were treated with a single subcutaneous injection of 40 μg/g (therapeutic dose) or 10 μg/g (low-dose) PMO25 on its own or together with systemic delivery of a single dose of adeno-associated virus-mediated expression of myostatin propeptide. The multiple effects of myostatin inhibition on survival, skeletal muscle phenotype, motor function, neuromuscular junction maturation, and proprioceptive afferences were evaluated. RESULTS We show that myostatin inhibition acts synergistically with SMN-restoring antisense therapy in SMA mice treated with the higher therapeutic dose PMO25 (40 μg/g), by increasing not only body weight (21% increase in male mice at Day 40), muscle mass (38% increase), and fibre size (35% increase in tibialis anterior muscle in 3 month female SMA mice), but also motor function and physical performance as measured in hanging wire test (two-fold increase in time score) and treadmill exercise test (two-fold increase in running distance). In SMA mice treated with low-dose PMO25 (10 μg/g), the early application of myostatin inhibition prolongs survival (40% increase), improves neuromuscular junction maturation (50% increase) and innervation (30% increase), and increases both the size of sensory neurons in dorsal root ganglia (60% increase) and the preservation of proprioceptive synapses in the spinal cord (30% increase). CONCLUSIONS These data suggest that myostatin inhibition, in addition to the well-known effect on muscle mass, can also positively influence the sensory neural circuits that may enhance motor neurons function. While the availability of the antisense drug Spinraza for SMA and other SMN-enhancing therapies has provided unprecedented improvement in SMA patients, there are still unmet needs in these patients. Our study provides further rationale for considering myostatin inhibitors as a therapeutic intervention in SMA patients, in combination with SMN-restoring drugs.
Collapse
Affiliation(s)
- Haiyan Zhou
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alberto Malerba
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Francesco Catapano
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Palittiya Sintusek
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Paediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Susan Jarmin
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Lucy Feng
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ngoc Lu-Nguyen
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Lianwen Sun
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Virginie Mariot
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Julie Dumonceaux
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - George Dickson
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
43
|
Sheng L, Rigo F, Bennett CF, Krainer AR, Hua Y. Comparison of the efficacy of MOE and PMO modifications of systemic antisense oligonucleotides in a severe SMA mouse model. Nucleic Acids Res 2020; 48:2853-2865. [PMID: 32103257 PMCID: PMC7102994 DOI: 10.1093/nar/gkaa126] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease. Nusinersen, a splice-switching antisense oligonucleotide (ASO), was the first approved drug to treat SMA. Based on prior preclinical studies, both 2′-O-methoxyethyl (MOE) with a phosphorothioate backbone and morpholino with a phosphorodiamidate backbone—with the same or extended target sequence as nusinersen—displayed efficient rescue of SMA mouse models. Here, we compared the therapeutic efficacy of these two modification chemistries in rescue of a severe mouse model using ASO10-29—a 2-nt longer version of nusinersen—via subcutaneous injection. Although both chemistries efficiently corrected SMN2 splicing in various tissues, restored motor function and improved the integrity of neuromuscular junctions, MOE-modified ASO10-29 (MOE10-29) was more efficacious than morpholino-modified ASO10-29 (PMO10-29) at the same molar dose, as seen by longer survival, greater body-weight gain and better preservation of motor neurons. Time-course analysis revealed that MOE10-29 had more persistent effects than PMO10-29. On the other hand, PMO10-29 appears to more readily cross an immature blood-brain barrier following systemic administration, showing more robust initial effects on SMN2 exon 7 inclusion, but less persistence in the central nervous system. We conclude that both modifications can be effective as splice-switching ASOs in the context of SMA and potentially other diseases, and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Lei Sheng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China.,Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | | | - Adrian R Krainer
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA
| | - Yimin Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York, NY 11724, USA.,Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
44
|
Chen TH. New and Developing Therapies in Spinal Muscular Atrophy: From Genotype to Phenotype to Treatment and Where Do We Stand? Int J Mol Sci 2020; 21:3297. [PMID: 32392694 PMCID: PMC7246502 DOI: 10.3390/ijms21093297] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a congenital neuromuscular disorder characterized by motor neuron loss, resulting in progressive weakness. SMA is notable in the health care community because it accounts for the most common cause of infant death resulting from a genetic defect. SMA is caused by low levels of the survival motor neuron protein (SMN) resulting from SMN1 gene mutations or deletions. However, patients always harbor various copies of SMN2, an almost identical but functionally deficient copy of the gene. A genotype-phenotype correlation suggests that SMN2 is a potent disease modifier for SMA, which also represents the primary target for potential therapies. Increasing comprehension of SMA pathophysiology, including the characterization of SMN1 and SMN2 genes and SMN protein functions, has led to the development of multiple therapeutic approaches. Until the end of 2016, no cure was available for SMA, and management consisted of supportive measures. Two breakthrough SMN-targeted treatments, either using antisense oligonucleotides (ASOs) or virus-mediated gene therapy, have recently been approved. These two novel therapeutics have a common objective: to increase the production of SMN protein in MNs and thereby improve motor function and survival. However, neither therapy currently provides a complete cure. Treating patients with SMA brings new responsibilities and unique dilemmas. As SMA is such a devastating disease, it is reasonable to assume that a unique therapeutic solution may not be sufficient. Current approaches under clinical investigation differ in administration routes, frequency of dosing, intrathecal versus systemic delivery, and mechanisms of action. Besides, emerging clinical trials evaluating the efficacy of either SMN-dependent or SMN-independent approaches are ongoing. This review aims to address the different knowledge gaps between genotype, phenotypes, and potential therapeutics.
Collapse
Affiliation(s)
- Tai-Heng Chen
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Division of Pediatric Emergency, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Translational Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University and Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
45
|
Cappella M, Ciotti C, Cohen-Tannoudji M, Biferi MG. Gene Therapy for ALS-A Perspective. Int J Mol Sci 2019; 20:E4388. [PMID: 31500113 PMCID: PMC6771059 DOI: 10.3390/ijms20184388] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease (MND) with no cure. Recent advances in gene therapy open a new perspective to treat this disorder-particularly for the characterized genetic forms. Gene therapy approaches, involving the delivery of antisense oligonucleotides into the central nervous system (CNS) are being tested in clinical trials for patients with mutations in SOD1 or C9orf72 genes. Viral vectors can be used to deliver therapeutic sequences to stably transduce motor neurons in the CNS. Vectors derived from adeno-associated virus (AAV), can efficiently target genes and have been tested in several pre-clinical settings with promising outcomes. Recently, the Food and Drug Administration (FDA) approved Zolgensma, an AAV-mediated treatment for another MND-the infant form of spinal muscular atrophy. Given the accelerated progress in gene therapy, it is potentially a promising avenue to develop an efficient and safe cure for ALS.
Collapse
Affiliation(s)
- Marisa Cappella
- Sorbonne Université, Inserm UMRS 974, Centre of Research in Myology (CRM), Institut de Myologie, GH Pitié Salpêtrière, 75013 Paris, France
| | - Chiara Ciotti
- Sorbonne Université, Inserm UMRS 974, Centre of Research in Myology (CRM), Institut de Myologie, GH Pitié Salpêtrière, 75013 Paris, France
| | - Mathilde Cohen-Tannoudji
- Sorbonne Université, Inserm UMRS 974, Centre of Research in Myology (CRM), Institut de Myologie, GH Pitié Salpêtrière, 75013 Paris, France
| | - Maria Grazia Biferi
- Sorbonne Université, Inserm UMRS 974, Centre of Research in Myology (CRM), Institut de Myologie, GH Pitié Salpêtrière, 75013 Paris, France.
| |
Collapse
|
46
|
Nair RR, Corrochano S, Gasco S, Tibbit C, Thompson D, Maduro C, Ali Z, Fratta P, Arozena AA, Cunningham TJ, Fisher EMC. Uses for humanised mouse models in precision medicine for neurodegenerative disease. Mamm Genome 2019; 30:173-191. [PMID: 31203387 PMCID: PMC6759662 DOI: 10.1007/s00335-019-09807-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disease encompasses a wide range of disorders afflicting the central and peripheral nervous systems and is a major unmet biomedical need of our time. There are very limited treatments, and no cures, for most of these diseases, including Alzheimer's Disease, Parkinson's Disease, Huntington Disease, and Motor Neuron Diseases. Mouse and other animal models provide hope by analysing them to understand pathogenic mechanisms, to identify drug targets, and to develop gene therapies and stem cell therapies. However, despite many decades of research, virtually no new treatments have reached the clinic. Increasingly, it is apparent that human heterogeneity within clinically defined neurodegenerative disorders, and between patients with the same genetic mutations, significantly impacts disease presentation and, potentially, therapeutic efficacy. Therefore, stratifying patients according to genetics, lifestyle, disease presentation, ethnicity, and other parameters may hold the key to bringing effective therapies from the bench to the clinic. Here, we discuss genetic and cellular humanised mouse models, and how they help in defining the genetic and environmental parameters associated with neurodegenerative disease, and so help in developing effective precision medicine strategies for future healthcare.
Collapse
Affiliation(s)
- Remya R Nair
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Silvia Corrochano
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Samanta Gasco
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Charlotte Tibbit
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - David Thompson
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Zeinab Ali
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Abraham Acevedo Arozena
- Unidad de Investigación Hospital Universitario de Canarias, FUNCANIS, Instituto de Tecnologías Biomédicas ULL, and CIBERNED, La Laguna, 38320, Tenerife, Spain
| | | | - Elizabeth M C Fisher
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK.
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
47
|
Bozorg Qomi S, Asghari A, Salmaninejad A, Mojarrad M. Spinal Muscular Atrophy and Common Therapeutic Advances. Fetal Pediatr Pathol 2019; 38:226-238. [PMID: 31060440 DOI: 10.1080/15513815.2018.1520374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive destructive motor neuron disease which is characterized primarily by the degeneration of α-motor neurons in the ventral gray horn of the spinal cord. It mainly affects children and represents the most common reason of inherited infant mortality. MATERIAL AND METHODS We provide an overview of the recent therapeutic strategies for the treatment of SMA together with available and developing therapeutic strategies. For this purpose, Google Scholar and PubMed databases were searched for literature on SMA, therapy and treatment. Titles were reviewed and 96 were selected and assessed in this paper. RESULT Over the last two decades, different therapeutic strategies have been proposed for SMA. Some methods are in the pre-clinical, others the clinical phase. CONCLUSION By emergence of the new approaches, especially in gene therapy, effective treatment in the close future is probable.
Collapse
Affiliation(s)
- Saeed Bozorg Qomi
- a Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,b Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amir Asghari
- c Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Arash Salmaninejad
- d Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Majid Mojarrad
- a Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,b Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
48
|
Singh RN, Singh NN. A novel role of U1 snRNP: Splice site selection from a distance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:634-642. [PMID: 31042550 DOI: 10.1016/j.bbagrm.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
Removal of introns by pre-mRNA splicing is fundamental to gene function in eukaryotes. However, understanding the mechanism by which exon-intron boundaries are defined remains a challenging endeavor. Published reports support that the recruitment of U1 snRNP at the 5'ss marked by GU dinucleotides defines the 5'ss as well as facilitates 3'ss recognition through cross-exon interactions. However, exceptions to this rule exist as U1 snRNP recruited away from the 5'ss retains the capability to define the splice site, where the cleavage takes place. Independent reports employing exon 7 of Survival Motor Neuron (SMN) genes suggest a long-distance effect of U1 snRNP on splice site selection upon U1 snRNP recruitment at target sequences with or without GU dinucleotides. These findings underscore that sequences distinct from the 5'ss may also impact exon definition if U1 snRNP is recruited to them through partial complementarity with the U1 snRNA. In this review we discuss the expanded role of U1 snRNP in splice-site selection due to U1 ability to be recruited at more sites than predicted solely based on GU dinucleotides.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
49
|
Abstract
The application of antisense oligonucleotides (AONs) to modify pre-messenger RNA splicing has great potential for treating genetic diseases. The strategies used to redirect splicing for therapeutic purpose involve the use of AONs complementary to splice motifs, enhancer or silencer sequences. AONs to block intronic splicing silencer motifs can efficiently augment exon 7 inclusion in survival motor neuron 2 (SMN2) gene and have demonstrated robust therapeutic effects in both preclinical studies and clinical trials in spinal muscular atrophy (SMA), which has led to a recently approved drug. AONs with phosphorodiamidate morpholino oligomer (PMO) backbone have shown target engagement with restoration of the defective protein in Duchenne muscular dystrophy (DMD) and their safety profile lead to a recent conditional approval for one DMD PMO drug. PMO AONs are also effective in correcting SMN2 exon 7 splicing and rescuing SMA transgenic mice. Here we provide the details of methods that our lab has used to evaluate PMO-mediated SMN2 exon 7 inclusion in the in vivo studies conducted in SMA transgenic mice. The methods comprise mouse experiment procedures, assessment of PMOs on exon 7 inclusion at RNA levels by reverse transcription (RT-) PCR and quantitative real-time PCR. In addition, we present methodology for protein quantification using western blot in mouse tissues, on neuropathology assessment of skeletal muscle (muscle pathology and neuromuscular junction staining) as well as behaviour test in the SMA mice (righting reflex).
Collapse
Affiliation(s)
- Haiyan Zhou
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Session, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Molecular Neurosciences Session, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.
| |
Collapse
|
50
|
Son HW, Yokota T. Recent Advances and Clinical Applications of Exon Inclusion for Spinal Muscular Atrophy. Methods Mol Biol 2019; 1828:57-68. [PMID: 30171534 DOI: 10.1007/978-1-4939-8651-4_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by a mutation in SMN1 that stops production of SMN (survival of motor neuron) protein. Insufficient levels of SMN results in the loss of motor neurons, which causes muscle weakness, respiratory distress, and paralysis. A nearly identical gene (SMN2) contains a C-to-T transition which excludes exon 7 from 90% of the mature mRNA transcripts, leading to unstable proteins which are targeted for degradation. Although SMN2 cannot fully compensate for a loss of SMN1 due to only 10% functional mRNA produced, the discovery of the intronic splicing silencer (ISS-N1) opened a doorway for therapy. By blocking its function with antisense oligonucleotides manipulated for high specificity and efficiency, exon 7 can be included to produce full-length mRNA, which then compensates for the loss of SMN1. Nusinersen (Spinraza), the first FDA-approved antisense oligonucleotide drug targeting SMA, was designed based on this concept and clinical studies have demonstrated a dramatic improvement in patients. Novel chemistries including phosphorodiamidate morpholino oligomers (PMOs) and locked nucleic acids (LNAs), as well as peptide conjugates such as Pip that facilitate accurate targeting to the central nervous system, are explored to increase the efficiency of exon 7 inclusion in the appropriate tissues to ameliorate the SMA phenotype. Due to the rapid advancement of treatments for SMA following the discovery of ISS-N1, the future of SMA treatment is highly promising.
Collapse
Affiliation(s)
- Hae-Won Son
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|