1
|
Stephenson KA, Peters P, Rae MG, O'Malley D. Astrocyte proliferation in the hippocampal dentate gyrus is suppressed across the lifespan of dystrophin-deficient mdx mice. Exp Physiol 2025; 110:585-598. [PMID: 39792584 PMCID: PMC11963898 DOI: 10.1113/ep092150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing. To understand changes in cellular composition that might underpin these age-related developments, we have compared neurogenesis and the prevalence of immunofluorescently identified newly born and mature neurons, astrocytes and microglia in the dentate gyrus of mdx and wild-type mice at 2, 4, 8 and 16 months of age. The number of adult-born neurons was suppressed in the dentate gyrus subgranular zone of 2-month-old mdx mice. However, the numbers of granule cells and GABAA receptor, alpha 1-expressing cells were similar in wild-type and mdx mice at all ages. Strikingly, the numbers of astrocytes, particularly in the dentate gyrus molecular layer, were suppressed in mdx mice at all time points. Thus, dystrophin loss was associated with reduced hippocampal neurogenesis in early life but did not impact the prevalence of mature neurons across the lifespan of mdx mice. In contrast, normal age-related dentate gyrus astrocyte proliferation was suppressed in dystrophic mice. Astrocytes are the most abundant cell type in the brain and are crucial in supporting neuronal function, such that loss of these cells is likely to contribute to hippocampal dysfunction reported in mdx mice.
Collapse
Affiliation(s)
| | - Polly Peters
- Department of Physiology, School of MedicineUniversity College CorkCorkIreland
| | - Mark G. Rae
- Department of Physiology, School of MedicineUniversity College CorkCorkIreland
| | - Dervla O'Malley
- Department of Physiology, School of MedicineUniversity College CorkCorkIreland
| |
Collapse
|
2
|
Gharibi S, Vaillend C, Lindsay A. The unconditioned fear response in vertebrates deficient in dystrophin. Prog Neurobiol 2024; 235:102590. [PMID: 38484964 DOI: 10.1016/j.pneurobio.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.
Collapse
Affiliation(s)
- Saba Gharibi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay 91400, France.
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Department of Medicine, University of Otago, Christchurch 8014, New Zealand.
| |
Collapse
|
3
|
García-Cruz C, Aragón J, Lourdel S, Annan A, Roger JE, Montanez C, Vaillend C. Tissue- and cell-specific whole-transcriptome meta-analysis from brain and retina reveals differential expression of dystrophin complexes and new dystrophin spliced isoforms. Hum Mol Genet 2022; 32:659-676. [PMID: 36130212 PMCID: PMC9896479 DOI: 10.1093/hmg/ddac236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023] Open
Abstract
The large DMD gene encodes a group of dystrophin proteins in brain and retina, produced from multiple promoters and alternative splicing events. Dystrophins are core components of different scaffolding complexes in distinct cell types. Their absence may thus alter several cellular pathways, which might explain the heterogeneous genotype-phenotype relationships underlying central comorbidities in Duchenne muscular dystrophy (DMD). However, the cell-specific expression of dystrophins and associated proteins (DAPs) is still largely unknown. The present study provides a first RNA-Seq-based reference showing tissue- and cell-specific differential expression of dystrophins, splice variants and DAPs in mouse brain and retina. We report that a cell type may express several dystrophin complexes, perhaps due to expression in separate cell subdomains and/or subpopulations, some of which with differential expression at different maturation stages. We also identified new splicing events in addition to the common exon-skipping events. These include a new exon within intron 51 (E51b) in frame with the flanking exons in retina, as well as inclusions of intronic sequences with stop codons leading to the presence of transcripts with elongated exons 40 and/or 41 (E40e, E41e) in both retina and brain. PCR validations revealed that the new exons may affect several dystrophins. Moreover, immunoblot experiments using a combination of specific antibodies and dystrophin-deficient mice unveiled that the transcripts with stop codons are translated into truncated proteins lacking their C-terminus, which we called N-Dp427 and N-Dp260. This study thus uncovers a range of new findings underlying the complex neurobiology of DMD.
Collapse
Affiliation(s)
| | | | - Sophie Lourdel
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, 91400 Saclay, France
| | - Ahrmad Annan
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, 91400 Saclay, France
| | - Jérôme E Roger
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| | - Cecilia Montanez
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| | - Cyrille Vaillend
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| |
Collapse
|
4
|
Belmaati Cherkaoui M, Vacca O, Izabelle C, Boulay AC, Boulogne C, Gillet C, Barnier JV, Rendon A, Cohen-Salmon M, Vaillend C. Dp71 contribution to the molecular scaffold anchoring aquaporine-4 channels in brain macroglial cells. Glia 2020; 69:954-970. [PMID: 33247858 DOI: 10.1002/glia.23941] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Intellectual disability in Duchenne muscular dystrophy has been associated with the loss of dystrophin-protein 71, Dp71, the main dystrophin-gene product in the adult brain. Dp71 shows major expression in perivascular macroglial endfeet, suggesting that dysfunctional glial mechanisms contribute to cognitive impairments. In the present study, we investigated the molecular alterations induced by a selective loss of Dp71 in mice, using semi-quantitative immunogold analyses in electron microscopy and immunofluorescence confocal analyses in brain sections and purified gliovascular units. In macroglial pericapillary endfeet of the cerebellum and hippocampus, we found a drastic reduction (70%) of the polarized distribution of aquaporin-4 (AQP4) channels, a 50% reduction of β-dystroglycan, and a complete loss of α1-syntrophin. Interestingly, in the hippocampus and cortex, these effects were not homogeneous: AQP4 and AQP4ex isoforms were mostly lost around capillaries but preserved in large vessels corresponding to pial arteries, penetrating cortical arterioles, and arterioles of the hippocampal fissure, indicating the presence of Dp71-independent pools of AQP4 in these vascular structures. In conclusion, the depletion of Dp71 strongly alters the distribution of AQP4 selectively in macroglial perivascular endfeet surrounding capillaries. This effect likely affects water homeostasis and blood-brain barrier functions and may thus contribute to the synaptic and cognitive defects associated with Dp71 deficiency.
Collapse
Affiliation(s)
| | - Ophélie Vacca
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, France
| | - Charlotte Izabelle
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Unité Mixte de Recherche 7241CNRS, Unité 1050 INSERM, PSL Research University, Paris, France
| | - Claire Boulogne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cynthia Gillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Vianney Barnier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, France
| | - Alvaro Rendon
- UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, Sorbonne Universités, Paris, France
| | - Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Unité Mixte de Recherche 7241CNRS, Unité 1050 INSERM, PSL Research University, Paris, France
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Xu S, Tang S, Li X, Iyer SR, Lovering RM. Abnormalities in Brain and Muscle Microstructure and Neurochemistry of the DMD Rat Measured by in vivo Diffusion Tensor Imaging and High Resolution Localized 1H MRS. Front Neurosci 2020; 14:739. [PMID: 32760246 PMCID: PMC7372970 DOI: 10.3389/fnins.2020.00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/22/2020] [Indexed: 12/03/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder caused by the lack of dystrophin with progressive degeneration of skeletal muscles. Most studies regarding DMD understandably focus on muscle, but dystrophin is also expressed in the central nervous system, potentially resulting in cognitive and behavioral changes. Animal models are being used for developing more comprehensive neuromonitoring protocols and clinical image acquisition procedures. The recently developed DMD rat is an animal model that parallels the progressive muscle wasting seen in DMD. Here, we studied the brain and temporalis muscle structure and neurochemistry of wild type (WT) and dystrophic (DMD) rats using magnetic resonance imaging and spectroscopy. Both structural and neurochemistry alterations were observed in the DMD rat brain and the temporalis muscle. There was a decrease in absolute brain volume (WT = 1579 mm3; DMD = 1501 mm3; p = 0.039, Cohen’s d = 1.867), but not normalized (WT = 4.27; DMD = 4.02; p = 0.306) brain volume. Diffusion tensor imaging (DTI) revealed structural alterations in the DMD temporalis muscle, with increased mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). In the DMD rat thalamus, DTI revealed an increase in fractional anisotropy (FA) and a decrease in RD. Smaller normalized brain volume correlated to severity of muscle dystrophy (r = −0.975). Neurochemical changes in the DMD rat brain included increased GABA and NAA in the prefrontal cortex, and GABA in the hippocampus. Such findings could indicate disturbed motor and sensory signaling, resulting in a dysfunctional GABAergic neurotransmission, and an unstable osmoregulation in the dystrophin-null brain.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xin Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Naidoo M, Anthony K. Dystrophin Dp71 and the Neuropathophysiology of Duchenne Muscular Dystrophy. Mol Neurobiol 2020; 57:1748-1767. [PMID: 31836945 PMCID: PMC7060961 DOI: 10.1007/s12035-019-01845-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by frameshift mutations in the DMD gene that prevent the body-wide translation of its protein product, dystrophin. Besides a severe muscle phenotype, cognitive impairment and neuropsychiatric symptoms are prevalent. Dystrophin protein 71 (Dp71) is the major DMD gene product expressed in the brain and mutations affecting its expression are associated with the DMD neuropsychiatric syndrome. As with dystrophin in muscle, Dp71 localises to dystrophin-associated protein complexes in the brain. However, unlike in skeletal muscle; in the brain, Dp71 is alternatively spliced to produce many isoforms with differential subcellular localisations and diverse cellular functions. These include neuronal differentiation, adhesion, cell division and excitatory synapse organisation as well as nuclear functions such as nuclear scaffolding and DNA repair. In this review, we first describe brain involvement in DMD and the abnormalities observed in the DMD brain. We then review the gene expression, RNA processing and functions of Dp71. We review genotype-phenotype correlations and discuss emerging cellular/tissue evidence for the involvement of Dp71 in the neuropathophysiology of DMD. The literature suggests changes observed in the DMD brain are neurodevelopmental in origin and that their risk and severity is associated with a cumulative loss of distal DMD gene products such as Dp71. The high risk of neuropsychiatric syndromes in Duchenne patients warrants early intervention to achieve the best possible quality of life. Unravelling the function and pathophysiological significance of dystrophin in the brain has become a high research priority to inform the development of brain-targeting treatments for Duchenne.
Collapse
Affiliation(s)
- Michael Naidoo
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK
| | - Karen Anthony
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK.
| |
Collapse
|
7
|
Kogelman B, Khmelinskii A, Verhaart I, van Vliet L, Bink DI, Aartsma-Rus A, van Putten M, van der Weerd L. Influence of full-length dystrophin on brain volumes in mouse models of Duchenne muscular dystrophy. PLoS One 2018; 13:e0194636. [PMID: 29601589 PMCID: PMC5877835 DOI: 10.1371/journal.pone.0194636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/07/2018] [Indexed: 11/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) affects besides muscle also the brain, resulting in memory and behavioral problems. The consequences of dystrophinopathy on gross macroscopic alterations are unclear. To elucidate the effect of full-length dystrophin expression on brain morphology, we used high-resolution post-mortem MRI in mouse models that either express 0% (mdx), 100% (BL10) or a low amount of full-length dystrophin (mdx-XistΔhs). While absence or low amounts of full-length dystrophin did not significantly affect whole brain volume and skull morphology, we found differences in volume of individual brain structures. The results are in line with observations in humans, where whole brain volume was found to be reduced only in patients lacking both full-length dystrophin and the shorter isoform Dp140.
Collapse
Affiliation(s)
- Bauke Kogelman
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Artem Khmelinskii
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Percuros B.V., Enschede, the Netherlands
| | - Ingrid Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura van Vliet
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Diewertje I. Bink
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Lopez JR, Uryash A, Kolster J, Estève E, Zhang R, Adams JA. Enhancing Endogenous Nitric Oxide by Whole Body Periodic Acceleration Elicits Neuroprotective Effects in Dystrophic Neurons. Mol Neurobiol 2018; 55:8680-8694. [DOI: 10.1007/s12035-018-1018-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
|
9
|
Mavrogeni S, Pons R, Nikas I, Papadopoulos G, Verganelakis DA, Kolovou G, Chrousos GP. Brain and heart magnetic resonance imaging/spectroscopy in duchenne muscular dystrophy. Eur J Clin Invest 2017; 47. [PMID: 28981141 DOI: 10.1111/eci.12842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle disorder characterized by progressive and irreversible loss of muscular function. As muscular disease progresses, the repair mechanisms cannot compensate for cellular damage, leading inevitably to necrosis and progressive replacement by fibrous and fatty tissue. Cardiomyopathy and respiratory failure are the main causes of death in DMD. In addition to the well-described muscle and heart disease, cognitive dysfunction affects around 30% of DMD boys. Myocardial fibrosis, assessed by late gadolinium enhancement (LGE), using cardiovascular magnetic resonance imaging (CMR), is an early marker of heart involvement in both DMD patients and female carriers. In parallel, brain MRI identifies smaller total brain volume, smaller grey matter volume, lower white matter fractional anisotropy and higher white matter radial diffusivity in DMD patients. The in vivo brain evaluation of mdx mice, a surrogate animal model of DMD, showed an increased inorganic phosphate (P(i))/phosphocreatine (PCr) and pH. In this paper, we propose a holistic approach using techniques of magnetic resonance imaging, spectroscopy and diffusion tensor imaging as a tool to create a "heart and brain imaging map" in DMD patients that could potentially facilitate the patients' risk stratification and also future research studies in the field.
Collapse
Affiliation(s)
| | - Roser Pons
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Ioannis Nikas
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - George Papadopoulos
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Dimitrios A Verganelakis
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | | | - George P Chrousos
- 1st Department of Pediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
10
|
Effects of (−)-epicatechin on frontal cortex DAPC and dysbindin of the mdx mice. Neurosci Lett 2017; 658:142-149. [DOI: 10.1016/j.neulet.2017.08.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 11/23/2022]
|
11
|
Lopez JR, Kolster J, Uryash A, Estève E, Altamirano F, Adams JA. Dysregulation of Intracellular Ca 2+ in Dystrophic Cortical and Hippocampal Neurons. Mol Neurobiol 2016; 55:603-618. [PMID: 27975174 DOI: 10.1007/s12035-016-0311-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an inherited X-linked disorder characterized by skeletal muscle wasting, cardiomyopathy, as well as cognitive impairment. Lack of dystrophin in striated muscle produces dyshomeostasis of resting intracellular Ca2+ ([Ca2+]i), Na+ ([Na+]i), and oxidative stress. Here, we test the hypothesis that similar to striated muscle cells, an absence of dystrophin in neurons from mdx mice (a mouse model for DMD) is also associated with dysfunction of [Ca2+]i homeostasis and oxidative stress. [Ca2+]i and [Na+]i in pyramidal cortical and hippocampal neurons from 3 and 6 months mdx mice were elevated compared to WT in an age-dependent manner. Removal of extracellular Ca2+ reduced [Ca2+]i in both WT and mdx neurons, but the decrease was greater and age-dependent in the latter. GsMTx-4 (a blocker of stretch-activated cation channels) significantly decreased [Ca2+]i and [Na+]i in an age-dependent manner in all mdx neurons. Blockade of ryanodine receptors (RyR) or inositol triphosphate receptors (IP3R) reduced [Ca2+]i in mdx. Mdx neurons showed elevated and age-dependent reactive oxygen species (ROS) production and an increase in neuronal damage. In addition, mdx mice showed a spatial learning deficit compared to WT. GsMTx-4 intraperitoneal injection reduced neural [Ca2+]i and improved learning deficit in mdx mice. In summary, mdx neurons show an age-dependent dysregulation in [Ca2+]i and [Na+]i which is mediated by plasmalemmal cation influx and by intracellular Ca2+ release through the RyR and IP3R. Also, mdx neurons have elevated ROS production and more extensive cell damage. Finally, a reduction of [Ca2+]i improved cognitive function in mdx mice.
Collapse
Affiliation(s)
- José R Lopez
- Department of Molecular Biosciences, University of California, Davis, CA, 95616, USA.
| | - Juan Kolster
- Centro de Investigaciones Biomédicas, Mexico, México
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, 33140, USA
| | - Eric Estève
- HP2 INSERM 1042 Institut Jean Roget, Université Grenoble Alpes, BP170, 38042, Grenoble Cedex, France
| | - Francisco Altamirano
- Department of Molecular Biosciences, University of California, Davis, CA, 95616, USA.,Department of Internal Medicine - Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - José A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL, 33140, USA
| |
Collapse
|
12
|
Rae MG, O'Malley D. Cognitive dysfunction in Duchenne muscular dystrophy: a possible role for neuromodulatory immune molecules. J Neurophysiol 2016; 116:1304-1315. [PMID: 27385793 PMCID: PMC5023417 DOI: 10.1152/jn.00248.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.
Collapse
Affiliation(s)
- Mark G Rae
- Department of Physiology, University College Cork, Cork, Ireland; and
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland; and APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
McGreevy JW, Hakim CH, McIntosh MA, Duan D. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 2015; 8:195-213. [PMID: 25740330 PMCID: PMC4348559 DOI: 10.1242/dmm.018424] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.
Collapse
Affiliation(s)
- Joe W McGreevy
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chady H Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mark A McIntosh
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
14
|
Miranda R, Nagapin F, Bozon B, Laroche S, Aubin T, Vaillend C. Altered social behavior and ultrasonic communication in the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Mol Autism 2015; 6:60. [PMID: 26527530 PMCID: PMC4627616 DOI: 10.1186/s13229-015-0053-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The Duchenne and Becker muscular dystrophies (DMD, BMD) show significant comorbid diagnosis for autism, and the genomic sequences encoding the proteins responsible for these diseases, the dystrophin and associated proteins, have been proposed as new candidate risk loci for autism. Dystrophin is expressed not only in muscles but also in central inhibitory synapses in the cerebellum, hippocampus, amygdala, and cerebral cortex, where it contributes to the organization of autism-associated trans-synaptic neurexin-neuroligin complexes and to the clustering of synaptic gamma-aminobutyric acid (GABA)A receptors. While brain defects due to dystrophin loss are associated with deficits in cognitive and executive functions, communication skills and social behavior, only a subpopulation of DMD patients meet the criteria for autism, suggesting that mutations in the dystrophin gene may confer a vulnerability to autism. The loss of dystrophin in the mdx mouse model of DMD has been associated with cognitive and emotional alterations, but social behavior and communication abilities have never been studied in this model. METHODS Here, we carried out the first in-depth analysis of social behavior and ultrasonic communication in dystrophin-deficient mdx mice, using a range of socially relevant paradigms involving various degrees of executive and cognitive demands, from simple presentation of sexual olfactory stimuli to social choice situations and direct encounters with female and male mice of various genotypes. RESULTS We identified context-specific alterations in social behavior and ultrasonic vocal communication in mdx mice during direct encounters in novel environments. Social behavior disturbances depended on intruders' genotype and behavior, suggesting alterations in executive functions and adaptive behaviors, and were associated with selective alterations of the development, rate, acoustic properties, and use of the ultrasonic vocal repertoire. CONCLUSIONS This first evidence that a mutation impeding expression of brain dystrophin affects social behavior and communication sheds new light on critical cognitive, emotional, and conative factors contributing to the development of autistic-like traits in this disease model.
Collapse
Affiliation(s)
- Rubén Miranda
- CNRS, Neuroscience Paris Saclay Institute, UMR 9197, Orsay, 91405 France ; Univ Paris-Sud, UMR 9197, Orsay, 91405 France ; Present address: Department of Psychobiology, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Flora Nagapin
- CNRS, Neuroscience Paris Saclay Institute, UMR 9197, Orsay, 91405 France ; Univ Paris-Sud, UMR 9197, Orsay, 91405 France
| | - Bruno Bozon
- CNRS, Neuroscience Paris Saclay Institute, UMR 9197, Orsay, 91405 France ; Univ Paris-Sud, UMR 9197, Orsay, 91405 France
| | - Serge Laroche
- CNRS, Neuroscience Paris Saclay Institute, UMR 9197, Orsay, 91405 France ; Univ Paris-Sud, UMR 9197, Orsay, 91405 France
| | - Thierry Aubin
- CNRS, Neuroscience Paris Saclay Institute, UMR 9197, Orsay, 91405 France ; Univ Paris-Sud, UMR 9197, Orsay, 91405 France
| | - Cyrille Vaillend
- CNRS, Neuroscience Paris Saclay Institute, UMR 9197, Orsay, 91405 France ; Univ Paris-Sud, UMR 9197, Orsay, 91405 France
| |
Collapse
|
15
|
Chaussenot R, Edeline JM, Le Bec B, El Massioui N, Laroche S, Vaillend C. Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: A reappraisal from sensory to executive processes. Neurobiol Learn Mem 2015; 124:111-22. [PMID: 26190833 DOI: 10.1016/j.nlm.2015.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 01/08/2023]
Abstract
Duchenne muscular dystrophy (DMD) is associated with language disabilities and deficits in learning and memory, leading to intellectual disability in a patient subpopulation. Recent studies suggest the presence of broader deficits affecting information processing, short-term memory and executive functions. While the absence of the full-length dystrophin (Dp427) is a common feature in all patients, variable mutation profiles may additionally alter distinct dystrophin-gene products encoded by separate promoters. However, the nature of the cognitive dysfunctions specifically associated with the loss of distinct brain dystrophins is unclear. Here we show that the loss of the full-length brain dystrophin in mdx mice does not modify the perception and sensorimotor gating of auditory inputs, as assessed using auditory brainstem recordings and prepulse inhibition of startle reflex. In contrast, both acquisition and long-term retention of cued and trace fear memories were impaired in mdx mice, suggesting alteration in a functional circuit including the amygdala. Spatial learning in the water maze revealed reduced path efficiency, suggesting qualitative alteration in mdx mice learning strategy. However, spatial working memory performance and cognitive flexibility challenged in various behavioral paradigms in water and radial-arm mazes were unimpaired. The full-length brain dystrophin therefore appears to play a role during acquisition of associative learning as well as in general processes involved in memory consolidation, but no overt involvement in working memory and/or executive functions could be demonstrated in spatial learning tasks.
Collapse
Affiliation(s)
- Rémi Chaussenot
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Jean-Marc Edeline
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Benoit Le Bec
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Nicole El Massioui
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Serge Laroche
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France
| | - Cyrille Vaillend
- Paris-Saclay Neuroscience Institute, UMR 9197, CNRS, F-91405 Orsay, France; Univ. Paris-Sud, UMR 9197, F-91405 Orsay, France; Université Paris-Saclay, France.
| |
Collapse
|
16
|
Burki U, Keane J, Blain A, O'Donovan L, Gait MJ, Laval SH, Straub V. Development and Application of an Ultrasensitive Hybridization-Based ELISA Method for the Determination of Peptide-Conjugated Phosphorodiamidate Morpholino Oligonucleotides. Nucleic Acid Ther 2015; 25:275-84. [PMID: 26176274 DOI: 10.1089/nat.2014.0528] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Antisense oligonucleotide (AON)-induced exon skipping is one of the most promising strategies for treating Duchenne muscular dystrophy (DMD) and other rare monogenic conditions. Phosphorodiamidate morpholino oligonucleotides (PMOs) and 2'-O-methyl phosphorothioate (2'OMe) are two of the most advanced AONs in development. The next generation of peptide-conjugated PMO (P-PMO) is also showing great promise, but to advance these therapies it is essential to determine the pharmacokinetic and biodistribution (PK/BD) profile using a suitable method to detect AON levels in blood and tissue samples. An enzyme-linked immunosorbent assay (ELISA)-based method, which shows greater sensitivity than the liquid chromatography-mass spectrometry method, is the method of choice for 2'OMe detection in preclinical and clinical studies. However, no such assay has been developed for PMO/P-PMO detection, and we have, therefore, developed an ultrasensitive hybridization-based ELISA for this purpose. The assay has a linear detection range of 5-250 pM (R(2)>0.99) in mouse serum and tissue lysates. The sensitivity was sufficient for determining the 24-h PK/BD profile of PMO and P-PMO injected at standard doses (12.5 mg/kg) in mdx mice, the dystrophin-deficient mouse model for DMD. The assay demonstrated an accuracy approaching 100% with precision values under 12%. This provides a powerful cost-effective assay for the purpose of accelerating the development of these emerging therapeutic agents.
Collapse
Affiliation(s)
- Umar Burki
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Jonathan Keane
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Alison Blain
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Liz O'Donovan
- 2 Laboratory of Molecular Biology , Medical Research Council, Cambridge, United Kingdom
| | - Michael John Gait
- 2 Laboratory of Molecular Biology , Medical Research Council, Cambridge, United Kingdom
| | - Steven H Laval
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Volker Straub
- 1 The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases at Newcastle, Institute of Genetic Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
| |
Collapse
|
17
|
Xu S, Shi D, Pratt SJP, Zhu W, Marshall A, Lovering RM. Abnormalities in brain structure and biochemistry associated with mdx mice measured by in vivo MRI and high resolution localized (1)H MRS. Neuromuscul Disord 2015; 25:764-72. [PMID: 26236031 DOI: 10.1016/j.nmd.2015.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/21/2015] [Accepted: 07/06/2015] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy (DMD), an X-linked disorder caused by the lack of dystrophin, is characterized by the progressive wasting of skeletal muscles. To date, what is known about dystrophin function is derived from studies of dystrophin-deficient animals, with the most common model being the mdx mouse. Most studies on patients with DMD and in mdx mice have focused on skeletal muscle and the development of therapies to reverse, or at least slow, the severe muscle wasting and progressive degeneration. However, dystrophin is also expressed in the CNS. Both mdx mice and patients with DMD can have cognitive and behavioral changes, but studies in the dystrophic brain are limited. We examined the brain structure and metabolites of mature wild type (WT) and mdx mice using magnetic resonance imaging and spectroscopy (MRI/MRS). Both structural and metabolic alterations were observed in the mdx brain. Enlarged lateral ventricles were detected in mdx mice when compared to WT. Diffusion tensor imaging (DTI) revealed elevations in diffusion diffusivities in the prefrontal cortex and a reduction of fractional anisotropy in the hippocampus. Metabolic changes included elevations in phosphocholine and glutathione, and a reduction in γ-aminobutyric acid in the hippocampus. In addition, an elevation in taurine was observed in the prefrontal cortex. Such findings indicate a regional structural change, altered cellular antioxidant defenses, a dysfunction of GABAergic neurotransmission, and a perturbed osmoregulation in the brain lacking dystrophin.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Da Shi
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Stephen J P Pratt
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Wenjun Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Andrew Marshall
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
18
|
Dystrophin induced cognitive impairment: mechanisms, models and therapeutic strategies. Ann Neurosci 2015; 22:108-18. [PMID: 26130916 PMCID: PMC4480258 DOI: 10.5214/ans.0972.7531.221210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/19/2015] [Accepted: 03/05/2015] [Indexed: 12/13/2022] Open
Abstract
Existence of conserved domains in dystrophin and its associated complexes provide an opportunity to understand the role of dystrophin associated signalling and its association with neuronal metabolism in a variety of model organisms. We critically reviewed the studies till 2013 through established search engines and databases. Thus, we review the role of dystrophin and its isoforms in different animal models at developmental stages in the neuronal metabolism to enhance the therapeutic strategies. Dystrophin interacts with other proteins in such a way that, when affected, it results in co-morbidities including autism and other neuropsychiatric disorders. It is speculated that various signalling molecules may converge to disrupt neuronal metabolism not adequately studied. TGF-β, RhoGAP and CAM mediated signalling molecules are the chief cause of mortalities due to respiratory and cardiac involvement but remain underevaluated targets for cognitive impairment in DMD/BMD. Manipulation of these signalling pathways could be potent intervention in dystrophin induced cognitive impairment while complementary therapeutic approaches may also be helpful in the treatment of cognitive impairment associated with DMD/BMD.
Collapse
|
19
|
Acetylcholine, GABA and neuronal networks: a working hypothesis for compensations in the dystrophic brain. Brain Res Bull 2014; 110:1-13. [PMID: 25445612 DOI: 10.1016/j.brainresbull.2014.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD), a genetic disease arising from a mutation in the dystrophin gene, is characterized by muscle failure and is often associated with cognitive deficits. Studies of the dystrophic brain on the murine mdx model of DMD provide evidence of morphological and functional alterations in the central nervous system (CNS) possibly compatible with the cognitive impairment seen in DMD. However, while some of the alterations reported are a direct consequence of the absence of dystrophin, others seem to be associated only indirectly. In this review we reevaluate the literature in order to formulate a possible explanation for the cognitive impairments associated with DMD. We present a working hypothesis, demonstrated as an integrated neuronal network model, according to which within the cascade of events leading to cognitive impairments there are compensatory mechanisms aimed to maintain functional stability via perpetual adjustments of excitatory and inhibitory components. Such ongoing compensatory response creates continuous perturbations that disrupt neuronal functionality in terms of network efficiency. We have theorized that in this process acetylcholine and network oscillations play a central role. A better understating of these mechanisms could provide a useful diagnostic index of the disease's progression and, perhaps, the correct counterbalance of this process might help to prevent deterioration of the CNS in DMD. Furthermore, the involvement of compensatory mechanisms in the CNS could be extended beyond DMD and possibly help to clarify other physio-pathological processes of the CNS.
Collapse
|
20
|
Vianello S, Bouyon S, Benoit E, Sebrié C, Boerio D, Herbin M, Roulot M, Fromes Y, de la Porte S. Arginine butyrate per os protects mdx mice against cardiomyopathy, kyphosis and changes in axonal excitability. Neurobiol Dis 2014; 71:325-33. [PMID: 25167832 DOI: 10.1016/j.nbd.2014.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/08/2014] [Accepted: 08/16/2014] [Indexed: 11/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by lack of dystrophin, a sub-sarcolemmal protein, which leads to dramatic muscle deterioration. We studied in mdx mice, the effects of oral administration of arginine butyrate (AB), a compound currently used for the treatment of sickle cell anemia in children, on cardiomyopathy, vertebral column deformation and electromyographic abnormalities. Monthly follow-up by echocardiography from the 8th month to the 14th month showed that AB treatment protected the mdx mice against drastic reduction (20-23%) of ejection fraction and fractional shortening, and also against the ≈20% ventricular dilatation and 25% cardiac hypertrophy observed in saline-treated mdx mice. The phenotypic improvement was corroborated by the decrease in serum CK level and by better fatigue resistance. Moreover, AB treatment protected against the progressive spinal deformity observed in mdx mice, another similarity with DMD patients. The value of the kyphosis index in AB-treated mice reached 94% of the value in C57BL/10 mice. Finally, axonal excitability parameters such as the membrane resting potential, the threshold and amplitude of the action potential, the absolute and relative refractory periods and the supernormal and subnormal periods, recorded from caudal and plantar muscles in response to excitability tests, that were modified in saline-treated mdx mice were not significantly changed, compared with wild-type animals, in AB-treated mdx mice. All of these results suggest that AB could be a potential treatment for DMD patients.
Collapse
Affiliation(s)
- Sara Vianello
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | - Sophie Bouyon
- UPMC, Université Paris 6, UMR 974, Institut de Myologie, F-75013 Paris, France.
| | - Evelyne Benoit
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | | | - Delphine Boerio
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | - Marc Herbin
- CNRS, Muséum National d'Histoire Naturelle, CNRS, UMR7179, Pavillon d'anatomie comparée, BP 55, 52 Rue Cuvier, 75231 Paris Cedex 05, France.
| | - Morgane Roulot
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | - Yves Fromes
- UPMC, Université Paris 6, UMR 974, Institut de Myologie, F-75013 Paris, France; ONIRIS, Centre de Boisbonne, Nantes F-44307, France.
| | - Sabine de la Porte
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| |
Collapse
|
21
|
Marshall JL, Kwok Y, McMorran BJ, Baum LG, Crosbie-Watson RH. The potential of sarcospan in adhesion complex replacement therapeutics for the treatment of muscular dystrophy. FEBS J 2013; 280:4210-29. [PMID: 23601082 DOI: 10.1111/febs.12295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/12/2013] [Indexed: 12/23/2022]
Abstract
Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic.
Collapse
Affiliation(s)
- Jamie L Marshall
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
22
|
Vianello S, Yu H, Voisin V, Haddad H, He X, Foutz AS, Sebrié C, Gillet B, Roulot M, Fougerousse F, Perronnet C, Vaillend C, Matecki S, Escolar D, Bossi L, Israël M, de la Porte S. Arginine butyrate: a therapeutic candidate for Duchenne muscular dystrophy. FASEB J 2013; 27:2256-69. [PMID: 23430975 DOI: 10.1096/fj.12-215723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As a strategy to treat Duchenne muscular dystrophy, we used arginine butyrate, which combines two pharmacological activities: nitric oxide pathway activation, and histone deacetylase inhibition. Continuous intraperitoneal administration to dystrophin-deficient mdx mice resulted in a near 2-fold increase in utrophin (protein homologous to dystrophin) in skeletal muscle, heart, and brain, accompanied by an improvement of the dystrophic phenotype in both adult and newborn mice (45 and 70% decrease in creatine kinase level, respectively; 14% increase in tidal volume, 30% decrease in necrotic area in limb and 23% increase in isometric force). Intermittent administration, as performed in clinical trials, was then used to reduce the frequency of injections and to improve safety. This also enhanced utrophin level around 2-fold (EC50=284 mg/ml) and alleviated the dystrophic phenotype (inverted grid and grip test performance near to wild-type values, creatine kinase level decreased by 50%). Skin biopsies were used to monitor treatment efficacy, instead of invasive muscle biopsies, and this could be done a few days after the start of treatment. A 2-fold increase in utrophin expression was also shown in cultured human myotubes. In vivo and in vitro experiments demonstrated that the drug combination acts synergistically. Together, these data constitute a proof of principle of the beneficial effects of arginine butyrate on muscular dystrophy.
Collapse
Affiliation(s)
- Sara Vianello
- Neurobiologie & Développement-Unité Propres de Recherche 3294, Centre National de la Recherche Scientifique, Institut de Neurobiologie Alfred Fessard-FRC2118, Gif sur Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|