1
|
Agouridis AP, Palli N, Karagiorga VE, Konsoula A, Markaki L, Spernovasilis N, Tsioutis C. Statins in Children with Neurofibromatosis Type 1: A Systematic Review of Randomized Controlled Trials. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1556. [PMID: 37761518 PMCID: PMC10528298 DOI: 10.3390/children10091556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/26/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Statins, apart from their plasma-cholesterol-lowering ability, exert several pleiotropic effects, making them a potential treatment for other diseases. Animal studies have showed that statins, through the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase, can affect the Ras/MAPK pathway, thus providing impetus to examine the efficacy of statins in the pediatric population with neurofibromatosis type 1 (NF1). We aimed to systematically address all relevant evidence of statin treatment in children with NF1. METHODS We searched PubMed and Cochrane Library resources up to 2 June 2023 for randomized controlled trials (RCTs) written in English and evaluating statins versus placebo in children with NF1 (PROSPERO registration number: CRD42023439424). RESULTS Seven RCTs were suitable to be included in this qualitative synthesis, with a total participation of 336 children with NF1. The duration of the studies ranged from 12 to 52 weeks. The mean age of the pediatric population was 10.9 years old. Three studies investigated the role of simvastatin, while four studies examined lovastatin. According to our analysis, neither simvastatin nor lovastatin improved cognitive function, full-scale intelligence, school performance, attention problems, or internalizing behavioral problems when compared with placebo in children with NF1. Statins were well tolerated in all included RCTs. CONCLUSION Although safe, current evidence demonstrates that statins exert no beneficial effect in cognitive function and behavioral problems in children with NF1.
Collapse
Affiliation(s)
- Aris P. Agouridis
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (N.P.); (C.T.)
- Department of Internal Medicine, German Oncology Center, 4108 Limassol, Cyprus
| | - Nikoletta Palli
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (N.P.); (C.T.)
| | | | - Afroditi Konsoula
- Department of Pediatrics, General Hospital of Sitia, 72300 Sitia, Greece;
| | - Lamprini Markaki
- “Iliaktida” Pediatric & Adolescents Medical Center, 4001 Limassol, Cyprus;
| | | | - Constantinos Tsioutis
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (N.P.); (C.T.)
| |
Collapse
|
2
|
Mustafin RN. Prospects for the use of statins in the treatment of neurofibromatosis type 1. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-3-15-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neurofibromatosis type 1 is caused by a germline mutation in the NF1 gene encoding the tumor suppressor neurofibromin. Deficiency of this protein causes hyperactivation of Ras proto-oncogenes. This leads to the development of tumors. Ras proteins undergo prenylation, which is inhibited by inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase. Therefore, statins can be proposed as anticancer drugs in the complex treatment of neurofibromatosis type 1. Clinical studies have proven the effectiveness of statins in the treatment of sporadic malignant neoplasms, in the pathogenesis of which mutations in the NF1 gene play an important role. Various pathways of the influence of these drugs on the development of tumors are described, including the activation of autophagy, ferroptosis, suppression of proliferation, stimulation of antitumor immunity, and effects on the microenvironment of neoplasms. Data on the effect of statins on the development and progression of neurofibromas in patients with neurofibromatosis type 1 are not presented in the scientific literature. However, it was found that statins enhance the effect of anticancer drugs, the use of which in monotherapy against malignant neoplasms associated with neurofibromatosis is ineffective. In this regard, despite the inefficiency of statins in cognitive disorders in patients with neurofibromatosis type 1, the introduction of these drugs into clinical practice in combination with other drugs could provide a pleiotropic effect, affect various links in the pathogenesis of the disease.
Collapse
Affiliation(s)
- R. N. Mustafin
- Bashkir State Medical University, Ministry of Health of Russia
| |
Collapse
|
3
|
Tritz R, Hudson FZ, Harris V, Ghoshal P, Singla B, Lin H, Csanyi G, Stansfield BK. MEK inhibition exerts temporal and myeloid cell-specific effects in the pathogenesis of neurofibromatosis type 1 arteriopathy. Sci Rep 2021; 11:24345. [PMID: 34934133 PMCID: PMC8692602 DOI: 10.1038/s41598-021-03750-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Mutations in the NF1 tumor suppressor gene are linked to arteriopathy. Nf1 heterozygosity (Nf1+/–) results in robust neointima formation, similar to humans, and myeloid-restricted Nf1+/– recapitulates this phenotype via MEK-ERK activation. Here we define the contribution of myeloid subpopulations to NF1 arteriopathy. Neutrophils from WT and Nf1+/– mice were functionally assessed in the presence of MEK and farnesylation inhibitors in vitro and neutrophil recruitment to lipopolysaccharide was assessed in WT and Nf1+/– mice. Littermate 12–15 week-old male wildtype and Nf1+/– mice were subjected to carotid artery ligation and provided either a neutrophil depleting antibody (1A8), liposomal clodronate to deplete monocytes/macrophages, or PD0325901 and neointima size was assessed 28 days after injury. Bone marrow transplant experiments assessed monocyte/macrophage mobilization during neointima formation. Nf1+/– neutrophils exhibit enhanced proliferation, migration, and adhesion via p21Ras activation of MEK in vitro and in vivo. Neutrophil depletion suppresses circulating Ly6Clow monocytes and enhances neointima size, while monocyte/macrophage depletion and deletion of CCR2 in bone marrow cells abolish neointima formation in Nf1+/– mice. Taken together, these findings suggest that neurofibromin-MEK-ERK activation in circulating neutrophils and monocytes during arterial remodeling is nuanced and points to important cross-talk between these populations in the pathogenesis of NF1 arteriopathy.
Collapse
Affiliation(s)
- Rebekah Tritz
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Farlyn Z Hudson
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Valerie Harris
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | | | - Bhupesh Singla
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Huiping Lin
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, USA.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Brian K Stansfield
- Vascular Biology Center, Augusta University, Augusta, GA, USA. .,Division of Neonatology, Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta University, 1120 15th St, BIW6033, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Coleman DM, Wang Y, Yang ML, Hunker KL, Birt I, Bergin IL, Li JZ, Stanley JC, Ganesh SK. Molecular genetic evaluation of Pediatric Renovascular hypertension due to renal artery stenosis and abdominal aortic Coarctation in Neurofibromatosis type 1. Hum Mol Genet 2021; 31:334-346. [PMID: 34476477 DOI: 10.1093/hmg/ddab241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022] Open
Abstract
The etiology of renal artery stenosis (RAS) and abdominal aortic coarctation (AAC) causing the midaortic syndrome (MAS), often resulting in renovascular hypertension (RVH), remains ill-defined. Neurofibromatosis type 1 (NF-1) is frequently observed in children with RVH. Consecutive pediatric patients (N = 102) presenting with RVH secondary to RAS with and without concurrent AAC were prospectively enrolled in a clinical data base, and blood, saliva, and operative tissue when available, were collected. Among the 102 children were 13 having a concurrent clinical diagnosis of NF-1 (12.5%). Whole exome sequencing was performed for germline variant detection and RNASeq analysis of NF1, MAPK pathway genes, and MCP1 levels were undertaken in five NF-1 stenotic renal arteries, as well as control renal and mesenteric arteries from children with no known vasculopathy or NF-1. In 11 unrelated children with sequencing data, 11 NF1 genetic variants were identified, of which 10 had not been reported in gnomAD. Histologic analysis of NF-1 RAS specimens consistently revealed intimal thickening, disruption of the internal elastic lamina, and medial thinning. Analysis of transcript expression in arterial lesions documented an approximately 5-fold reduction in NF1 expression, confirming heterozygosity, MAPK pathway activation, and increased MCP1 expression. In summary, NF-1 related RVH in children is rare but often severe and progressive and as such, important to recognize. It is associated with histologic and molecular features consistent with an aggressive adverse vascular remodeling process. Further research is necessary to define the mechanisms underlying these findings.
Collapse
Affiliation(s)
- Dawn M Coleman
- Vascular Surgery Section, Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yu Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristina L Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Isabelle Birt
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James C Stanley
- Vascular Surgery Section, Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Loss of GTPase activating protein neurofibromin stimulates paracrine cell communication via macropinocytosis. Redox Biol 2019; 27:101224. [PMID: 31201114 PMCID: PMC6859534 DOI: 10.1016/j.redox.2019.101224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Neurofibromin, the protein product of the neurofibromatosis type 1 (NF1) tumor suppressor gene, is a negative regulator of Ras signaling. Patients with mutations in NF1 have a strong predisposition for cardiovascular disease, which contributes to their early mortality. Nf1 heterozygous (Nf1+/-) bone marrow to wild type chimeras and mice with heterozygous recombination of Nf1 in myeloid cells recapitulate many of the vascular phenotypes observed in Nf1+/- mutants. Although these results suggest that macrophages play a central role in NF1 vasculopathy, the underlying mechanisms are currently unknown. In the present study, we employed macrophages isolated from either Nf1+/- or Lysm Cre+/Nf1f/f mice to test the hypothesis that loss of Nf1 stimulates macropinocytosis in macrophages. Scanning electron microscopy and flow cytometry analysis of FITC-dextran internalization demonstrated that loss of Nf1 in macrophages stimulates macropinocytosis. We next utilized various cellular and molecular approaches, pharmacological inhibitors and genetically modified mice to identify the signaling mechanisms mediating macropinocytosis in Nf1-deficient macrophages. Our results indicate that loss of Nf1 stimulates PKCδ-mediated p47phox phosphorylation via RAS activation, leading to increased NADPH oxidase 2 activity, reactive oxygen species generation, membrane ruffling and macropinocytosis. Interestingly, we also found that Nf1-deficient macrophages internalize exosomes derived from angiotensin II-treated endothelial cells via macropinocytosis in vitro and in the peritoneal cavity in vivo. As a result of exosome internalization, Nf1-deficient macrophages polarized toward an inflammatory M1 phenotype and secreted increased levels of proinflammatory cytokines compared to controls. In conclusion, the findings of the present study demonstrate that loss of Nf1 stimulates paracrine endothelial to myeloid cell communication via macropinocytosis, leading to proinflammatory changes in recipient macrophages.
Collapse
|
6
|
Zhang H, Hudson FZ, Xu Z, Tritz R, Rojas M, Patel C, Haigh SB, Bordán Z, Ingram DA, Fulton DJ, Weintraub NL, Caldwell RB, Stansfield BK. Neurofibromin Deficiency Induces Endothelial Cell Proliferation and Retinal Neovascularization. Invest Ophthalmol Vis Sci 2019; 59:2520-2528. [PMID: 29847659 PMCID: PMC5963003 DOI: 10.1167/iovs.17-22588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Neurofibromatosis type 1 (NF1) is the result of inherited mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin. Eye manifestations are common in NF1 with recent reports describing a vascular dysplasia in the retina and choroid. Common features of NF1 retinopathy include tortuous and dilated feeder vessels that terminate in capillary tufts, increased endothelial permeability, and neovascularization. Given the retinal vascular phenotype observed in persons with NF1, we hypothesize that preserving neurofibromin may be a novel strategy to control pathologic retinal neovascularization. Methods Nf1 expression in human endothelial cells (EC) was reduced using small hairpin (sh) RNA and EC proliferation, migration, and capacity to form vessel-like networks were assessed in response to VEGF and hypoxia. Wild-type (WT), Nf1 heterozygous (Nf1+/−), and Nf1flox/+;Tie2cre pups were subjected to hyperoxia/hypoxia using the oxygen-induced retinopathy model. Retinas were analyzed quantitatively for extent of retinal vessel dropout, neovascularization, and capillary branching. Results Neurofibromin expression was suppressed in response to VEGF, which corresponded with activation of Mek-Erk and PI3-K-Akt signaling. Neurofibromin-deficient EC exhibited enhanced proliferation and network formation in response to VEGF and hypoxia via an Akt-dependent mechanism. In response to hyperoxia/hypoxia, Nf1+/− retinas exhibited increased vessel dropout and neovascularization when compared with WT retinas. Neovascularization was similar between Nf1+/− and Nf1flox/+;Tie2cre retinas, but capillary drop out in Nf1flox/+;Tie2cre retinas was significantly reduced when compared with Nf1+/− retinas. Conclusions These data suggest that neurofibromin expression is essential for controlling endothelial cell proliferation and retinal neovascularization and therapies targeting neurofibromin-deficient EC may be beneficial.
Collapse
Affiliation(s)
- Hanfang Zhang
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, Georgia, United States.,Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - Farlyn Z Hudson
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, Georgia, United States.,Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - Zhimin Xu
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - Rebekah Tritz
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, Georgia, United States.,Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - Modesto Rojas
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, United States
| | - Chintan Patel
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - Stephen B Haigh
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - Zsuzsanna Bordán
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States.,Department of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - David J Fulton
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, Georgia, United States
| | - Neal L Weintraub
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States.,Department of Cardiology, Augusta University, Augusta, Georgia, United States
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, Augusta, Georgia, United States.,Vision Discovery Institute, Augusta University, Augusta, Georgia, United States.,Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States.,Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Brian K Stansfield
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, Georgia, United States.,Vascular Biology Center, Augusta University, Augusta, Georgia, United States.,Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
7
|
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is an autosomal dominantly inherited tumor predisposition syndrome with an incidence of one in 3000-4000 individuals with no currently effective therapies. The NF1 gene encodes neurofibromin, which functions as a negative regulator of RAS. NF1 is a chronic multisystem disorder affecting many different tissues. Due to cell-specific complexities of RAS signaling, therapeutic approaches for NF1 will likely have to focus on a particular tissue and manifestation of the disease. Areas covered: We discuss the multisystem nature of NF1 and the signaling pathways affected due to neurofibromin deficiency. We explore the cell-/tissue-specific molecular and cellular consequences of aberrant RAS signaling in NF1 and speculate on their potential as therapeutic targets for the disease. We discuss recent genomic, transcriptomic, and proteomic studies combined with molecular, cellular, and biochemical analyses which have identified several targets for specific NF1 manifestations. We also consider the possibility of patient-specific gene therapy approaches for NF1. Expert opinion: The emergence of NF1 genotype-phenotype correlations, characterization of cell-specific signaling pathways affected in NF1, identification of novel biomarkers, and the development of sophisticated animal models accurately reflecting human pathology will continue to provide opportunities to develop therapeutic approaches to combat this multisystem disorder.
Collapse
Affiliation(s)
- James A Walker
- a Center for Genomic Medicine , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Meena Upadhyaya
- b Division of Cancer and Genetics , Cardiff University , Cardiff , UK
| |
Collapse
|
8
|
Genetic and Epigenetic Regulation of Aortic Aneurysms. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7268521. [PMID: 28116311 PMCID: PMC5237727 DOI: 10.1155/2017/7268521] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023]
Abstract
Aneurysms are characterized by structural deterioration of the vascular wall leading to progressive dilatation and, potentially, rupture of the aorta. While aortic aneurysms often remain clinically silent, the morbidity and mortality associated with aneurysm expansion and rupture are considerable. Over 13,000 deaths annually in the United States are attributable to aortic aneurysm rupture with less than 1 in 3 persons with aortic aneurysm rupture surviving to surgical intervention. Environmental and epidemiologic risk factors including smoking, male gender, hypertension, older age, dyslipidemia, atherosclerosis, and family history are highly associated with abdominal aortic aneurysms, while heritable genetic mutations are commonly associated with aneurysms of the thoracic aorta. Similar to other forms of cardiovascular disease, family history, genetic variation, and heritable mutations modify the risk of aortic aneurysm formation and provide mechanistic insight into the pathogenesis of human aortic aneurysms. This review will examine the relationship between heritable genetic and epigenetic influences on thoracic and abdominal aortic aneurysm formation and rupture.
Collapse
|
9
|
Bessler WK, Hudson FZ, Zhang H, Harris V, Wang Y, Mund JA, Downing B, Ingram DA, Case J, Fulton DJ, Stansfield BK. Neurofibromin is a novel regulator of Ras-induced reactive oxygen species production in mice and humans. Free Radic Biol Med 2016; 97:212-222. [PMID: 27266634 PMCID: PMC5765860 DOI: 10.1016/j.freeradbiomed.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 (NF1) predisposes individuals to early and debilitating cardiovascular disease. Loss of function mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin, leads to accelerated p21(Ras) activity and phosphorylation of multiple downstream kinases, including Erk and Akt. Nf1 heterozygous (Nf1(+/-)) mice develop a robust neointima that mimics human disease. Monocytes/macrophages play a central role in NF1 arterial stenosis as Nf1 mutations in myeloid cells alone are sufficient to reproduce the enhanced neointima observed in Nf1(+/-) mice. Though the molecular mechanisms underlying NF1 arterial stenosis remain elusive, macrophages are important producers of reactive oxygen species (ROS) and Ras activity directly regulates ROS production. Here, we use compound mutant and lineage-restricted mice to demonstrate that Nf1(+/-) macrophages produce excessive ROS, which enhance Nf1(+/-) smooth muscle cell proliferation in vitro and in vivo. Further, use of a specific NADPH oxidase-2 inhibitor to limit ROS production prevents neointima formation in Nf1(+/-) mice. Finally, mononuclear cells from asymptomatic NF1 patients have increased oxidative DNA damage, an indicator of chronic exposure to oxidative stress. These data provide genetic and pharmacologic evidence that excessive exposure to oxidant species underlie NF1 arterial stenosis and provide a platform for designing novels therapies and interventions.
Collapse
Affiliation(s)
- Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, United States
| | - Farlyn Z Hudson
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Hanfang Zhang
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Valerie Harris
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Yusi Wang
- Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| | - Julie A Mund
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis 46202, United States
| | - Brandon Downing
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, United States
| | - Jamie Case
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis 46202, United States; Scripps Clinic Medical Group, Center for Organ and Cell Transplantation, La Jolla, CA 92037, United States
| | - David J Fulton
- Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| | - Brian K Stansfield
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
10
|
Effector T cell subclasses associate with tumor burden in neurofibromatosis type 1 patients. Cancer Immunol Immunother 2016; 65:1113-21. [PMID: 27448806 PMCID: PMC4995232 DOI: 10.1007/s00262-016-1871-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/13/2016] [Indexed: 11/23/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a hereditary tumor syndrome caused by mutations of the NF1 gene and resulting dysregulation of the Ras-pathway. In addition to peripheral nerve tumors, affected tissues include the musculoskeletal and cardiovascular system. The immune system has recently been suggested as a possible modulator NF1-related phenotypes. Therefore, we determined the immune phenotype in NF1 patients and investigated its relationship with the phenotypic severity of NF1-related tumor manifestations. We quantified global leukocytes and lymphocyte subpopulations of peripheral blood from 37 NF1 patients and 21 healthy controls by flow cytometry. To associate immune phenotype with tumor phenotype, all NF1 patients underwent whole-body magnetic resonance imaging and total internal tumor volume was calculated. The immunophenotypes were compared among four NF1 groups with different total internal tumor burdens and between NF1 patients and non-NF1 subjects. We found that NF1 patients show a generalized lymphopenia. Closer analysis revealed that the CD8+/CD27− and CD8+/CD57+ effector T cell fractions strongly increase in NF1 patients with low tumor load and decrease to levels below control in patients with high tumor load. Moreover, increased production of IL2, IFN-γ and TNF-α was found in T cells of NF1 patients upon phorbol-12-myristate acetate (PMA) stimulation compared to healthy controls. The data indicate that decreasing CD8+/CD57+ and CD27− T cell fractions correspond to increasing tumor load in NF1 patients, potentially making these populations useful marker for internal tumor burden.
Collapse
|
11
|
Bessler WK, Kim G, Hudson FZ, Mund JA, Mali R, Menon K, Kapur R, Clapp DW, Ingram DA, Stansfield BK. Nf1+/- monocytes/macrophages induce neointima formation via CCR2 activation. Hum Mol Genet 2016; 25:1129-39. [PMID: 26740548 DOI: 10.1093/hmg/ddv635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
Persons with neurofibromatosis type 1 (NF1) have a predisposition for premature and severe arterial stenosis. Mutations in the NF1 gene result in decreased expression of neurofibromin, a negative regulator of p21(Ras), and increases Ras signaling. Heterozygous Nf1 (Nf1(+/-)) mice develop a marked arterial stenosis characterized by proliferating smooth muscle cells (SMCs) and a predominance of infiltrating macrophages, which closely resembles arterial lesions from NF1 patients. Interestingly, lineage-restricted inactivation of a single Nf1 allele in monocytes/macrophages is sufficient to recapitulate the phenotype observed in Nf1(+/-) mice and to mobilize proinflammatory CCR2+ monocytes into the peripheral blood. Therefore, we hypothesized that CCR2 receptor activation by its primary ligand monocyte chemotactic protein-1 (MCP-1) is critical for monocyte infiltration into the arterial wall and neointima formation in Nf1(+/-) mice. MCP-1 induces a dose-responsive increase in Nf1(+/-) macrophage migration and proliferation that corresponds with activation of multiple Ras kinases. In addition, Nf1(+/-) SMCs, which express CCR2, demonstrate an enhanced proliferative response to MCP-1 when compared with WT SMCs. To interrogate the role of CCR2 activation on Nf1(+/-) neointima formation, we induced neointima formation by carotid artery ligation in Nf1(+/-) and WT mice with genetic deletion of either MCP1 or CCR2. Loss of MCP-1 or CCR2 expression effectively inhibited Nf1(+/-) neointima formation and reduced macrophage content in the arterial wall. Finally, administration of a CCR2 antagonist significantly reduced Nf1(+/-) neointima formation. These studies identify MCP-1 as a potent chemokine for Nf1(+/-) monocytes/macrophages and CCR2 as a viable therapeutic target for NF1 arterial stenosis.
Collapse
Affiliation(s)
- Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Grace Kim
- Department of Pediatrics and Neonatal-Perinatal Medicine and Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Farlyn Z Hudson
- Department of Pediatrics and Neonatal-Perinatal Medicine and Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Julie A Mund
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and
| | - Raghuveer Mali
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Keshav Menon
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - D Wade Clapp
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian K Stansfield
- Department of Pediatrics and Neonatal-Perinatal Medicine and Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
12
|
DiStasi MR, Mund JA, Bohlen HG, Miller SJ, Ingram DA, Dalsing MC, Unthank JL. Impaired compensation to femoral artery ligation in diet-induced obese mice is primarily mediated via suppression of collateral growth by Nox2 and p47phox. Am J Physiol Heart Circ Physiol 2015; 309:H1207-17. [PMID: 26297224 DOI: 10.1152/ajpheart.00180.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
Abstract
The present study was undertaken to establish the role of NADPH oxidase (Nox) in impaired vascular compensation to arterial occlusion that occurs in the presence of risk factors associated with oxidative stress. Diet-induced obese (DIO) mice characterized by multiple comorbidities including diabetes and hyperlipidemia were used as a preclinical model. Arterial occlusion was induced by distal femoral artery ligation in lean and DIO mice. Proximal collateral arteries were identified as the site of major (∼70%) vascular resistance to calf perfusion by distal arterial pressures, which decreased from ∼80 to ∼30 mmHg with ligation in both lean and DIO mice. Two weeks after ligation, significant vascular compensation occurred in lean but not DIO mice as evidenced by increased perfusion (147 ± 48% vs. 49 ± 29%) and collateral diameter (151 ± 30% vs. 44 ± 17%). Vascular mRNA expression of p22(phox), Nox2, Nox4, and p47(phox) were all increased in DIO mice. Treatment of DIO mice with either apocynin or Nox2ds-tat or with whole body ablation of either Nox2 or p47(phox) ameliorated the impairment in both collateral growth and hindlimb perfusion. Multiparametric flow cytometry analysis demonstrated elevated levels of circulating monocytes in DIO mice without impaired mobilization and demargination after femoral artery ligation. These results establish collateral resistance as the major limitation to calf perfusion in this preclinical model, demonstrate than monocyte mobilization and demarginatin is not suppressed, implicate Nox2-p47(phox) interactions in the impairment of vascular compensation to arterial occlusion in DIO mice, and suggest that selective Nox component suppression/inhibition may be effective as either primary or adjuvant therapy for claudicants.
Collapse
Affiliation(s)
- Matthew R DiStasi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Julie A Mund
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - H Glenn Bohlen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven J Miller
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - David A Ingram
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael C Dalsing
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph L Unthank
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana;
| |
Collapse
|
13
|
Li F, Downing BD, Smiley LC, Mund JA, Distasi MR, Bessler WK, Sarchet KN, Hinds DM, Kamendulis LM, Hingtgen CM, Case J, Clapp DW, Conway SJ, Stansfield BK, Ingram DA. Neurofibromin-deficient myeloid cells are critical mediators of aneurysm formation in vivo. Circulation 2013; 129:1213-24. [PMID: 24370551 DOI: 10.1161/circulationaha.113.006320] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 tumor suppressor gene. Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity in circulating hematopoietic and vascular wall cells, which are critical for maintaining vessel wall homeostasis. NF1 patients have evidence of chronic inflammation resulting in the development of premature cardiovascular disease, including arterial aneurysms, which may manifest as sudden death. However, the molecular pathogenesis of NF1 aneurysm formation is unknown. METHOD AND RESULTS With the use of an angiotensin II-induced aneurysm model, we demonstrate that heterozygous inactivation of Nf1 (Nf1(+/-)) enhanced aneurysm formation with myeloid cell infiltration and increased oxidative stress in the vessel wall. Using lineage-restricted transgenic mice, we show that loss of a single Nf1 allele in myeloid cells is sufficient to recapitulate the Nf1(+/-) aneurysm phenotype in vivo. Finally, oral administration of simvastatin or the antioxidant apocynin reduced aneurysm formation in Nf1(+/-) mice. CONCLUSION These data provide genetic and pharmacological evidence that Nf1(+/-) myeloid cells are the cellular triggers for aneurysm formation in a novel model of NF1 vasculopathy and provide a potential therapeutic target.
Collapse
Affiliation(s)
- Fang Li
- Department of Pediatrics (F.L., B.D.D., L.C.S., J.A.M., M.R.D., W.K.B., K.N.S., D.M.H., J.C., D.W.C., S.J.C., B.K.S., D.A.I.), Wells Center for Pediatric Research (F.L., B.D.D., L.C.S., J.A.M., M.R.D., W.K.B., K.N.S., D.M.H., J.C., D.W.C., S.J.C., B.K.S., D.A.I.), Department of Biochemistry and Molecular Biology (B.D.D., D.W.C., S.J.C., D.A.I.), Microbiology and Immunology (M.R.D.), Pharmacology and Toxicology (L.M.K.), and Neurology (C.M.H.), Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Stansfield BK, Bessler WK, Mali R, Mund JA, Downing BD, Kapur R, Ingram DA. Ras-Mek-Erk signaling regulates Nf1 heterozygous neointima formation. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:79-85. [PMID: 24211110 DOI: 10.1016/j.ajpath.2013.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/03/2013] [Accepted: 09/20/2013] [Indexed: 11/20/2022]
Abstract
Neurofibromatosis type 1 (NF1) results from mutations in the NF1 tumor-suppressor gene, which encodes neurofibromin, a negative regulator of diverse Ras signaling cascades. Arterial stenosis is a nonneoplastic manifestation of NF1 that predisposes some patients to debilitating morbidity and sudden death. Recent murine studies demonstrate that Nf1 heterozygosity (Nf1(+/-)) in monocytes/macrophages significantly enhances intimal proliferation after arterial injury. However, the downstream Ras effector pathway responsible for this phenotype is unknown. Based on in vitro assays demonstrating enhanced extracellular signal-related kinase (Erk) signaling in Nf1(+/-) macrophages and vascular smooth muscle cells and in vivo evidence of Erk amplification without alteration of phosphatidylinositol 3-kinase signaling in Nf1(+/-) neointimas, we tested the hypothesis that Ras-Erk signaling regulates intimal proliferation in a murine model of NF1 arterial stenosis. By using a well-established in vivo model of inflammatory cell migration and standard cell culture, neurofibromin-deficient macrophages demonstrate enhanced sensitivity to growth factor stimulation in vivo and in vitro, which is significantly diminished in the presence of PD0325901, a specific inhibitor of Ras-Erk signaling in phase 2 clinical trials for cancer. After carotid artery injury, Nf1(+/-) mice demonstrated increased intimal proliferation compared with wild-type mice. Daily administration of PD0325901 significantly reduced Nf1(+/-) neointima formation to levels of wild-type mice. These studies identify the Ras-Erk pathway in neurofibromin-deficient macrophages as the aberrant pathway responsible for enhanced neointima formation.
Collapse
Affiliation(s)
- Brian K Stansfield
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Raghuveer Mali
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Julie A Mund
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brandon D Downing
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|