1
|
Salum KCR, Assis ISDS, Kopke ÚDA, Palhinha L, Abreu GDM, Gouvêa LW, Teixeira MR, Mattos FCC, Nogueira Neto JF, Felício RDFM, Rosado EL, Zembrzuski VM, Campos Junior M, Maya-Monteiro CM, Cabello PH, Carneiro JRI, Bozza PT, Kohlrausch FB, da Fonseca ACP. FTO rs17817449 Variant Increases the Risk of Severe Obesity in a Brazilian Cohort: A Case-Control Study. Diabetes Metab Syndr Obes 2025; 18:283-303. [PMID: 39906696 PMCID: PMC11792641 DOI: 10.2147/dmso.s451401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/17/2024] [Indexed: 02/06/2025] Open
Abstract
Purpose Obesity is a complex disease caused by a combination of genetic, environmental, and epigenetic factors, and is associated with an increased risk of chronic diseases. The leptin-melanocortin pathway integrates peripheral signals about the body's energy stores with a central neuronal circuit in the hypothalamus. This pathway has been extensively studied over the years, as genetic variations in genes related to it may play a crucial role in determining an individual's susceptibility to obesity. Therefore, we analyzed the association between obesity and specific polymorphisms in leptin-melanocortin-related genes such as LEPR rs1137101, POMC rs1042571, LEP rs7799039, BDNF rs6265, FTO rs17817449, CART rs121909065, and NPY rs16147/rs5574. Patients and Methods The study enrolled 501 participants from Rio de Janeiro, Brazil, with obesity class II or greater (BMI ≥ 35 kg/m2) and normal weight controls (18.5≤ BMI ≤24.9 kg/m2). We collected demographic, body composition, biochemical, and genotyping data by real-time PCR, and performed logistic and linear regression analyses to investigate the association of polymorphisms with severe obesity status and obesity-related quantitative parameters. Results Individuals with severe obesity had significantly higher anthropometric measures, blood pressure, and biochemical levels. The FTO rs17817449 TT genotype was associated with a significantly higher risk of developing severe obesity, and distinct cytokine expression was observed across the FTO rs17817449 genotypes. The BDNF rs6265 dominant-model and NPY rs16147 CC genotypes were associated with triglyceride levels and childhood obesity, respectively. Finally, individuals with obesity were more likely to carry a greater number of risk alleles than those without obesity. Conclusion Our study observed an important association between FTO rs17817449 polymorphism with obesity and obesity-related traits. Additionally, BDNF rs6265 dominant-model was associated with triglyceride serum levels, and NPY rs16147 may have a role in obesity onset.
Collapse
Affiliation(s)
- Kaio Cezar Rodrigues Salum
- Medical Clinic Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Izadora Sthephanie da Silva Assis
- Medical Clinic Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | | | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Gabriella de Medeiros Abreu
- Human Genetics Laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Wendling Gouvêa
- Medical Clinic Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Myrela Ribeiro Teixeira
- Human Genetics Laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Institute of Biology, Federal Fluminense University Niterói, Rio de Janeiro, Brazil
- Postgraduate in Sciences and Biotechnology, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | | | | | - Rafaela de Freitas Martins Felício
- Birth Defect Epidemiology laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Health Care Network for Congenital Anomalies of the Central Nervous System, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eliane Lopes Rosado
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Fabiana Barzotto Kohlrausch
- Human Genetics Laboratory, Institute of Biology, Federal Fluminense University Niterói, Rio de Janeiro, Brazil
| | - Ana Carolina Proença da Fonseca
- Human Genetics Laboratory, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Genetics Laboratory, Grande Rio University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Feng XM, Zhang Y, Chen N, Ma LL, Gong M, Yan YX. The role of m 6A modification in cardiovascular disease: A systematic review and integrative analysis. Int Immunopharmacol 2024; 143:113603. [PMID: 39536485 DOI: 10.1016/j.intimp.2024.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS This study focused on the recent advancements in understanding the association between N6-methyladenosine (m6A) modification and cardiovascular disease (CVD). METHODS The potential mechanisms of m6A related to CVD were summarized by literature review. Associations between m6A levels and CVD were explored across 8 electronic databases: PubMed, Embase, Web of Science, Cochrane Library, Sinomed, Wan Fang, CNKI, and Vip. Standard mean difference (SMD) and 95 % confidence interval (95 % CI) were calculated to assess the total effect in integrated analysis. RESULTS The systematic review summarized previous studies on the association between m6A modification and CVD, highlighting the potential role of m6A in CVD progression. A total of 11 studies were included for integrative analysis. The mean m6A levels were significantly higher in CVD than those in normal controls (SMD = 1.86, 95 % CI: 0.16-3.56, P < 0.01). CONCLUSIONS This systematic review provided new targets for early detection and treatment for CVD. And the integrated analysis showed that increased level of m6A was associated with CVD.
Collapse
Affiliation(s)
- Xu-Man Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ning Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Lin-Lin Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Miao Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China; Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
3
|
Liu T, Li H, Wan Y, Shi G, Zhao Y, Liu Y, Fan X. METTL14-mediated upregulation of lncRNA HOTAIR represses PP1α expression by promoting H3K4me1 demethylation in oxycodone-treated mice. CNS Neurosci Ther 2024; 30:e14830. [PMID: 39046182 PMCID: PMC11267563 DOI: 10.1111/cns.14830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 07/25/2024] Open
Abstract
N6-methyladenosine (m6A) methylation is a vital epigenetic mechanism associated with drug addiction. However, the relationship between m6A modification and oxycodone rewarding is less well explored. Based on an open field test, the present study evaluated oxycodone rewarding using chromatin immunoprecipitation PCR, immunofluorescence, and RNA sequencing. A marked increase in METTL14 protein and a decrease in PP1α protein due to oxycodone abundance in the striatal neurons were observed in a dose- and time-dependent manner. Oxycodone markedly increased LSD1 expression, and decreased H3K4me1 expression in the striatum. In the open field test, intra-striatal injection of METTL14 siRNA, HOTAIR siRNA, or LSD1 shRNA blocked oxycodone-induced increase in locomotor activity. The downregulation of PP1α was also inhibited after treatment with METTL14/HOTAIR siRNA and LSD1 shRNA. Enhanced binding of LSD1 with CoRest and of CoRest with the PP1α gene induced by oxycodone was also reversed by LSD1 shRNA. In addition, H3K4me1 demethylation was also blocked by the treatment. In summary, the investigation confirmed that METTL14-mediated upregulation of HOTAIR resulted in the repression of PP1α, which in turn facilitated the recruitment of LSD1, thus catalyzing H3K4me1 demethylation and promoting oxycodone addiction.
Collapse
Affiliation(s)
- Tian‐Cong Liu
- Department of OtolaryngologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Hong‐Xi Li
- Department of Pain ManagementShengjing Hospital of China Medical UniversityShenyangChina
| | - Yu‐Xiao Wan
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Guang Shi
- Department of NeurologyThe People's Hospital of Liaoning ProvinceShenyangChina
| | - Yun‐Peng Zhao
- Department of PharmacyShengjing Hospital of China Medical UniversityShenyangChina
| | - Yi‐Fei Liu
- Department of PharmacyShengjing Hospital of China Medical UniversityShenyangChina
| | - Xin‐Yu Fan
- Department of PharmacyShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
4
|
Song J, Hao J, Lu Y, Ding X, Li M, Xin Y. Increased m 6A modification of BDNF mRNA via FTO promotes neuronal apoptosis following aluminum-induced oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123848. [PMID: 38548149 DOI: 10.1016/j.envpol.2024.123848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
N6-methyladenosine (m6A) RNA modification is a new epigenetic molecular mechanism involved in various biological or pathological processes. Exposure to aluminum (Al) has been considered to promote neuronal apoptosis resulting in cognitive dysfunction, yet whether m6A modification participates in the underlying mechanism remains largely unknown. Here, rats exposed to aluminum-maltolate [Al(mal)3] for 90 days showed impaired learning and memory function and elevated apoptosis, which were related to the increased m6A level and decreased fat mass and obesity-associated protein (FTO, an m6A demethylase) in the hippocampus. Accordingly, similar results presented in PC12 cells following Al(mal)3 treatment and FTO overexpression relieved the increased apoptosis and m6A level in vitro. Next, we identified brain-derived neurotrophic factor (BDNF) as the functional downstream target of FTO in a m6A-dependent manner. Furthermore, it was found that as the onset of aluminum neurotoxicity, oxidative stress may be the upstream regulator of FTO in aluminum-induced apoptosis. Taken together, these results suggest that increased m6A modification of BDNF mRNA via FTO promotes neuronal apoptosis following aluminum-induced oxidative stress.
Collapse
Affiliation(s)
- Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of coal environmental pathogenicity and prevention, Taiyuan, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan, China.
| | - Jiarui Hao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of coal environmental pathogenicity and prevention, Taiyuan, China
| | - Yang Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xiaohui Ding
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of coal environmental pathogenicity and prevention, Taiyuan, China
| | - Mujia Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Yulu Xin
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| |
Collapse
|
5
|
Hu Y, Shi T, Xu Z, Zhang M, Yang J, Liu Z, Wan Q, Liu Y. Heart failure potentially affects the cortical structure of the brain. Aging (Albany NY) 2024; 16:7357-7386. [PMID: 38656892 PMCID: PMC11087114 DOI: 10.18632/aging.205762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Heart failure (HF) has been reported to affect cerebral cortex structure, but the underlying cause has not been determined. This study used Mendelian randomization (MR) to reveal the causal relationship between HF and structural changes in the cerebral cortex. METHODS HF was defined as the exposure variable, and cerebral cortex structure was defined as the outcome variable. Inverse-variance weighted (IVW), MR-Egger regression and weighted median (WME) were performed for MR analysis; MR-PRESSO and Egger's intercept was used to test horizontal pleiotropy; and "leave-one-out" was used for sensitivity analysis. RESULTS Fifty-two single nucleotide polymorphisms (SNPs) were defined as instrumental variables (IVs), and there was no horizontal pleiotropy in the IVs. According to the IVW analysis, the OR and 95% CI of cerebral cortex thickness were 0.9932 (0.9868-1.00) (P=0.0402), and the MR-Egger intercept was -15.6× 10-5 (P = 0.7974) and the Global test pval was 0.078. The P-value of the cerebral cortex surface was 0.2205, and the MR-Egger intercept was -34.69052 (P= 0.6984) and the Global Test pval was 0.045. HF had a causal effect on the surface area of the caudal middle frontal lobule (P=0.009), insula lobule (P=0.01), precuneus lobule (P=0.049) and superior parietal lobule (P=0.044). CONCLUSIONS HF was potentially associated with changes in cortical thickness and in the surface area of the caudal middle frontal lobule, insula lobule, precuneus lobule and superior parietal lobule.
Collapse
Affiliation(s)
- Yinqin Hu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyun Shi
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaohui Xu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Zhang
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahui Yang
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhirui Liu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiqi Wan
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongming Liu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anhui Provincial Hospital of Integrated Medicine, Anhui Hospital of Shuguang Hospital Affiliated to Shanghai University of TCM, Hefei 230011, Anhui, China
| |
Collapse
|
6
|
Chang R, Zhu S, Peng J, Lang Z, Zhou X, Liao H, Zou J, Zeng P, Tan S. The hippocampal FTO-BDNF-TrkB pathway is required for novel object recognition memory reconsolidation in mice. Transl Psychiatry 2023; 13:349. [PMID: 37963912 PMCID: PMC10645923 DOI: 10.1038/s41398-023-02647-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Memory reconsolidation refers to the process by which the consolidated memory was restored after reactivation (RA). Memory trace becomes labile after reactivation and inhibition of memory reconsolidation may disrupt or update the original memory trace, which provided a new strategy for the treatment of several psychiatric diseases, such as drug addiction and post-traumatic stress disorder. Fat mass and obesity-associated gene (FTO) is a novel demethylase of N6-methyladenosine (m6A) and it has been intensively involved in learning and memory. However, the role of FTO in memory reconsolidation has not been determined. In the present study, the function of FTO in memory reconsolidation was investigated in the novel object recognition (NOR) model in mice. The results showed that RA of NOR memory increased hippocampal FTO expression in a time-dependent manner, while FTO inhibitor meclofenamic acid (MA) injected immediately, but not 6 h after RA disrupted NOR memory reconsolidation. MA downregulated BDNF expression during NOR memory reconsolidation in the hippocampus, while the TrkB agonist 7,8-Dihydroxyflavone (7,8-DHF) reversed the disruptive effects of MA on NOR memory reconsolidation. Furthermore, overexpression of FTO increased BDNF expression via decreasing mRNA m6A in HT22 cells. Taken together, these results indicate that FTO may up-regulate the BDNF-TrkB pathway to promote NOR memory reconsolidation through m6A modification.
Collapse
Affiliation(s)
- Rui Chang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Shanshan Zhu
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Jionghong Peng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenyi Lang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xinyu Zhou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Hailin Liao
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China.
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
7
|
Hu Y, Chen J, Wang Y, Sun J, Huang P, Feng J, Liu T, Sun X. Fat mass and obesity-associated protein alleviates Aβ 1-40 induced retinal pigment epithelial cells degeneration via PKA/CREB signaling pathway. Cell Biol Int 2023; 47:584-597. [PMID: 36378581 DOI: 10.1002/cbin.11959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Amyloid-β (Aβ) is thought to be a critical pathologic factor of retinal pigment epithelium (RPE) degeneration in age-related macular degeneration (AMD). Aβ induces inflammatory responses in RPE cells and recent studies demonstrate the N6-methyladenosine (m6A) regulatory role in RPE cell inflammation. m6A is a reversible epigenetic posttranslational modification, but its relationship with Aβ-induced RPE degeneration is yet to be thoroughly investigated. The present study explored the role and mechanism of m6A in Aβ-induced RPE degeneration model. This model was induced via intravitreally injecting oligomeric Aβ and the morphology of its retina was analyzed. One of m6A demethylases, the fat mass and obesity-associated (FTO) gene expression, was assessed. An m6A-messenger RNA (mRNA) epitranscriptomic microarray was employed for further bioinformatic analyses. It was confirmed that Aβ induced FTO upregulation within the RPE. Hypopigmentation alterations and structural disorganization were observed in Aβ-treated eyes, and inhibition of FTO exacerbated retinal degeneration and RPE impairment. Moreover, the m6A-mRNA epitranscriptomic microarray suggested that protein kinase A (PKA) was a target of FTO, and the PKA/cyclic AMP-responsive element binding (CREB) signaling pathway was involved in Aβ-induced RPE degeneration. m6A-RNA binding protein immunoprecipitation confirmed that FTO demethylated PKA within the RPE cells of Aβ-treated eyes. Altered expression of PKA and its downstream targets (CREB and brain-derived neurotrophic factor) was confirmed by quantitative reverse-transcription polymerase chain reaction and Western blot analyses. Hence, this study's findings shed light on FTO-mediated m6A modification in Aβ-induced RPE degeneration and indicate potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- Yifan Hu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Department of Ophthalmology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, and Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yuwei Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Department of Ophthalmology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junran Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jingyang Feng
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Te Liu
- Central Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Department of Ophthalmology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
The Epigenetic Regulation of RNA N6-Methyladenosine Methylation in Glycolipid Metabolism. Biomolecules 2023; 13:biom13020273. [PMID: 36830642 PMCID: PMC9953413 DOI: 10.3390/biom13020273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The highly conserved and dynamically reversible N6-methyladenine (m6A) modification has emerged as a critical gene expression regulator by affecting RNA splicing, translation efficiency, and stability at the post-transcriptional level, which has been established to be involved in various physiological and pathological processes, including glycolipid metabolism and the development of glycolipid metabolic disease (GLMD). Hence, accumulating studies have focused on the effects and regulatory mechanisms of m6A modification on glucose metabolism, lipid metabolism, and GLMD. This review summarizes the underlying mechanism of how m6A modification regulates glucose and lipid metabolism-related enzymes, transcription factors, and signaling pathways and the advances of m6A regulatory mechanisms in GLMD in order to deepen the understanding of the association of m6A modification with glycolipid metabolism and GLMD.
Collapse
|
9
|
Tan Q, He S, Leng X, Zheng D, Mao F, Hao J, Chen K, Jiang H, Lin Y, Yang J. The Mechanism and Role of N6-Methyladenosine (m 6A) Modification in Atherosclerosis and Atherosclerotic Diseases. J Cardiovasc Dev Dis 2022; 9:367. [PMID: 36354766 PMCID: PMC9697759 DOI: 10.3390/jcdd9110367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/27/2023] Open
Abstract
N6-methyladenosine (m6A) modification is a newly discovered regulatory mechanism in eukaryotes. As one of the most common epigenetic mechanisms, m6A's role in the development of atherosclerosis (AS) and atherosclerotic diseases (AD) has also received increasing attention. Herein, we elucidate the effect of m6A on major risk factors for AS, including lipid metabolism disorders, hypertension, and hyperglycemia. We also describe how m6A methylation contributes to endothelial cell injury, macrophage response, inflammation, and smooth muscle cell response in AS and AD. Subsequently, we illustrate the m6A-mediated aberrant biological role in the pathogenesis of AS and AD, and analyze the levels of m6A methylation in peripheral blood or local tissues of AS and AD, which helps to further discuss the diagnostic and therapeutic potential of m6A regulation for AS and AD. In summary, studies on m6A methylation provide new insights into the pathophysiologic mechanisms of AS and AD, and m6A methylation could be a novel diagnostic biomarker and therapeutic target for AS and AD.
Collapse
Affiliation(s)
- Quandan Tan
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, China
| | - Song He
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, China
| | - Xinyi Leng
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Danni Zheng
- Biomedical Informatics and Digital Health, School of Medical Sciences, University of Sydney, Sydney NSW 2050, Australia
| | - Fengkai Mao
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, China
| | - Junli Hao
- School of Biomedical Sciences and Technology, Chengdu Medical College, Chengdu 610072, China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu 610072, China
| | - Haisong Jiang
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yapeng Lin
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, China
- International Clinical Research Center, Chengdu Medical College, Chengdu 610072, China
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
10
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
11
|
Rossetti C, Cherix A, Guiraud LF, Cardinaux JR. New Insights Into the Pivotal Role of CREB-Regulated Transcription Coactivator 1 in Depression and Comorbid Obesity. Front Mol Neurosci 2022; 15:810641. [PMID: 35242012 PMCID: PMC8886117 DOI: 10.3389/fnmol.2022.810641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Depression and obesity are major public health concerns, and there is mounting evidence that they share etiopathophysiological mechanisms. The neurobiological pathways involved in both mood and energy balance regulation are complex, multifactorial and still incompletely understood. As a coactivator of the pleiotropic transcription factor cAMP response element-binding protein (CREB), CREB-regulated transcription coactivator 1 (CRTC1) has recently emerged as a novel regulator of neuronal plasticity and brain functions, while CRTC1 dysfunction has been associated with neurodegenerative and psychiatric diseases. This review focuses on recent evidence emphasizing the critical role of CRTC1 in the neurobiology of depression and comorbid obesity. We discuss the role of CRTC1 downregulation in mediating chronic stress-induced depressive-like behaviors, and antidepressant response in the light of the previously characterized Crtc1 knockout mouse model of depression. The putative role of CRTC1 in the alteration of brain energy homeostasis observed in depression is also discussed. Finally, we highlight rodent and human studies supporting the critical involvement of CRTC1 in depression-associated obesity.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Antoine Cherix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laetitia F. Guiraud
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Yang Z, Yu GL, Zhu X, Peng TH, Lv YC. Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: Implications in lipid metabolic disorders. Genes Dis 2022; 9:51-61. [PMID: 35005107 PMCID: PMC8720706 DOI: 10.1016/j.gendis.2021.01.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
The goal this review is to clarify the effects of the fat mass and obesity-associated protein (FTO) in lipid metabolism regulation and related underlying mechanisms through the FTO-mediated demethylation of m6A modification. FTO catalyzes the demethylation of m6A to alter the processing, maturation and translation of the mRNAs of lipid-related genes. FTO overexpression in the liver promotes lipogenesis and lipid droplet (LD) enlargement and suppresses CPT-1–mediated fatty acid oxidation via the SREBP1c pathway, promoting excessive lipid storage and nonalcoholic fatty liver diseases (NAFLD). FTO enhances preadipocyte differentiation through the C/EBPβ pathway, and facilitates adipogenesis and fat deposition by altering the alternative splicing of RUNX1T1, the expression of PPARγ and ANGPTL4, and the phosphorylation of PLIN1, whereas it inhibits lipolysis by inhibiting IRX3 expression and the leptin pathway, causing the occurrence and development of obesity. Suppression of the PPARβ/δ and AMPK pathways by FTO-mediated m6A demethylation damages lipid utilization in skeletal muscles, leading to the occurrence of diabetic hyperlipidemia. m6A demethylation by FTO inhibits macrophage lipid influx by downregulating PPARγ protein expression and accelerates cholesterol efflux by phosphorylating AMPK, thereby impeding foam cell formation and atherosclerosis development. In summary, FTO-mediated m6A demethylation modulates the expression of lipid-related genes to regulate lipid metabolism and lipid disorder diseases.
Collapse
Affiliation(s)
- Zhou Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Guang-Li Yu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Tian-Hong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Yun-Cheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| |
Collapse
|
13
|
Association of ADIPOQ-rs2241766 and FTO-rs9939609 genetic variants with body mass index trajectory in women of reproductive age over 6 years of follow-up: the PREDI study. Eur J Clin Nutr 2022; 76:159-172. [PMID: 33850313 DOI: 10.1038/s41430-021-00911-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Interindividual variations in body mass index (BMI) can be partially explained by genetic differences. We aimed to examine the association of the ADIPOQ-rs2241766, LEP-rs7799039 and FTO-rs9939609 genetic variants with BMI trajectory in women of reproductive age over 6 years of follow-up. METHODS This was a prospective study that used data from 435 women of the PREDI Study conducted in Brazil. Socioeconomic, biological and anthropometric data were collected at four time points: 2012 (baseline) in the maternity hospital, and 2013-14, 2016-17 and 2018 (1st, 2nd and 3rd follow-ups) at the participant's home. Genotyping was performed by PCR-RFLP. Linear mixed-effect and Poisson regression models were used to address the association of ADIPOQ, LEP and FTO genotypes with BMI and overweight/obesity status. RESULTS Women carrying the risk allele (TA or AA) of the FTO-rs9939609 genetic variant had a 1.16 kg/m2 higher BMI over the follow-up period than those carrying the wild-type genotype (TT), even when adjusted for potential confounders (95% CI: 0.23-2.10, p = 0.015). The risk of obesity associated with the FTO-TA or AA genotype decreased over the years, demonstrating an influence of time on its trajectory (IRR = 0.99, 95% CI: 0.98-0.99, p = 0.016). There was no variation in BMI trajectories for the ADIPOQ-rs2241766, LEP-rs7799039 or FTO-rs9939609 genetic variant. CONCLUSIONS The results of this study suggest that monitoring women of reproductive age with ADIPOQ-rs2241766 TG/GG or FTO-rs9939609 TA/AA genotypes may be an important strategy to reduce maternal excess body weight and, consequently, the long-term public health burden of obesity.
Collapse
|
14
|
Liu S, Xiu J, Zhu C, Meng K, Li C, Han R, Du T, Li L, Xu L, Liu R, Zhu W, Shen Y, Xu Q. Fat mass and obesity-associated protein regulates RNA methylation associated with depression-like behavior in mice. Nat Commun 2021; 12:6937. [PMID: 34836959 PMCID: PMC8626436 DOI: 10.1038/s41467-021-27044-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022] Open
Abstract
Post-transcriptional modifications of RNA, such as RNA methylation, can epigenetically regulate behavior, for instance learning and memory. However, it is unclear whether RNA methylation plays a critical role in the pathophysiology of major depression disorder (MDD). Here, we report that expression of the fat mass and obesity associated gene (FTO), an RNA demethylase, is downregulated in the hippocampus of patients with MDD and mouse models of depression. Suppressing Fto expression in the mouse hippocampus results in depression-like behaviors in adult mice, whereas overexpression of FTO expression leads to rescue of the depression-like phenotype. Epitranscriptomic profiling of N6-methyladenosine (m6A) RNA methylation in the hippocampus of Fto knockdown (KD), Fto knockout (cKO), and FTO-overexpressing (OE) mice allows us to identify adrenoceptor beta 2 (Adrb2) mRNA as a target of FTO. ADRB2 stimulation rescues the depression-like behaviors in mice and spine loss induced by hippocampal Fto deficiency, possibly via the modulation of hippocampal SIRT1 expression by c-MYC. Our findings suggest that FTO is a regulator of a mechanism underlying depression-like behavior in mice.
Collapse
Affiliation(s)
- Shu Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jianbo Xiu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Kexin Meng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Chen Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Rongrong Han
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Tingfu Du
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Lanlan Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Lingdan Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Renjie Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
15
|
Jalili V, Mokhtari Z, Rastgoo S, Hajipour A, Bourbour F, Gholamalizadeh M, Mosavi Jarrahi A, JavadiKooshesh S, Moslem A, Abdollahi M, Doaei S. The association between FTO rs9939609 polymorphism and serum lipid profile in adult women. Diabetol Metab Syndr 2021; 13:138. [PMID: 34801066 PMCID: PMC8606052 DOI: 10.1186/s13098-021-00754-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND FTO gene is considered to play an important role in many metabolic diseases. Evidence from studies indicated the possible association between the FTO rs9939609 polymorphisms with serum lipid profile. Therefore, this study aimed to investigate the association of FTO rs9939609 polymorphism with lipid profile in Iranian women. METHODS This cross-sectional study was carried out on 380 adult women. Information about age, height, weight, BMI, physical activity, and dietary intake were collected. The serum levels of Low Density Lipoprotein (LDL), High Density Lipoprotein (HDL), Triglyceride (TG), and total cholesterol were measured. The FTO gene was genotyped for rs9939609 polymorphism. The participants were divided into two groups of TT and AT/AA considering dominant model of FTO rs9939609 polymorphism. RESULTS General characteristics of the participants with different FTO genotypes were not significantly different. The lower levels of HDL were observed in AT/AA genotypes compared to the TT wild type genotype of FTO rs9939609 polymorphism (P = 0.004). Adjustments of age, BMI, and physical activity did not change the results. CONCLUSIONS However, the significant association between FTO genotype and the HDL level was disappeared after further adjustments for dietary intake. Further studies are warranted to identify the underlying mechanisms of the possible association between FTO gene and serum lipid profile.
Collapse
Affiliation(s)
- Vahideh Jalili
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zohreh Mokhtari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Rastgoo
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Hajipour
- School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Bourbour
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sepehr JavadiKooshesh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Moslem
- Department of Anesthesiology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Morteza Abdollahi
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeid Doaei
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, Al-zahra Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
16
|
Covelo-Molares H, Obrdlik A, Poštulková I, Dohnálková M, Gregorová P, Ganji R, Potěšil D, Gawriyski L, Varjosalo M, Vaňáčová Š. The comprehensive interactomes of human adenosine RNA methyltransferases and demethylases reveal distinct functional and regulatory features. Nucleic Acids Res 2021; 49:10895-10910. [PMID: 34634806 PMCID: PMC8565353 DOI: 10.1093/nar/gkab900] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022] Open
Abstract
N6-methyladenosine (m6A) and N6,2′-O-dimethyladenosine (m6Am) are two abundant modifications found in mRNAs and ncRNAs that can regulate multiple aspects of RNA biology. They function mainly by regulating interactions with specific RNA-binding proteins. Both modifications are linked to development, disease and stress response. To date, three methyltransferases and two demethylases have been identified that modify adenosines in mammalian mRNAs. Here, we present a comprehensive analysis of the interactomes of these enzymes. PCIF1 protein network comprises mostly factors involved in nascent RNA synthesis by RNA polymerase II, whereas ALKBH5 is closely linked with most aspects of pre-mRNA processing and mRNA export to the cytoplasm. METTL16 resides in subcellular compartments co-inhabited by several other RNA modifiers and processing factors. FTO interactome positions this demethylase at a crossroad between RNA transcription, RNA processing and DNA replication and repair. Altogether, these enzymes share limited spatial interactomes, pointing to specific molecular mechanisms of their regulation.
Collapse
Affiliation(s)
- Helena Covelo-Molares
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Ales Obrdlik
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Ivana Poštulková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Michaela Dohnálková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Pavlína Gregorová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Ranjani Ganji
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - David Potěšil
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Lisa Gawriyski
- Institute of Biotechnology & HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology & HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
17
|
Marcinkowski M, Pilžys T, Garbicz D, Piwowarski J, Przygońska K, Winiewska-Szajewska M, Ferenc K, Skorobogatov O, Poznański J, Grzesiuk E. Calmodulin as Ca 2+-Dependent Interactor of FTO Dioxygenase. Int J Mol Sci 2021; 22:ijms221910869. [PMID: 34639211 PMCID: PMC8509707 DOI: 10.3390/ijms221910869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
FTO is an N6-methyladenosine demethylase removing methyl groups from nucleic acids. Several studies indicate the creation of FTO complexes with other proteins. Here, we looked for regulatory proteins recognizing parts of the FTO dioxygenase region. In the Calmodulin (CaM) Target Database, we found the FTO C-domain potentially binding CaM, and we proved this finding experimentally. The interaction was Ca2+-dependent but independent on FTO phosphorylation. We found that FTO–CaM interaction essentially influences calcium-binding loops in CaM, indicating the presence of two peptide populations—exchanging as CaM alone and differently, suggesting that only one part of CaM interacts with FTO, and the other one reminds free. The modeling of FTO–CaM interaction showed its stable structure when the half of the CaM molecule saturated with Ca2+ interacts with the FTO C-domain, whereas the other part is disconnected. The presented data indicate calmodulin as a new FTO interactor and support engagement of the FTO protein in calcium signaling pathways.
Collapse
Affiliation(s)
- Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Jan Piwowarski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Kaja Przygońska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Karolina Ferenc
- Center of Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
| | - Oleksandr Skorobogatov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
- Correspondence: (J.P.); (E.G.)
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (M.M.); (T.P.); (D.G.); (J.P.); (K.P.); (M.W.-S.); (O.S.)
- Correspondence: (J.P.); (E.G.)
| |
Collapse
|
18
|
Yang Y, Feng Y, Hu Y, Liu J, Shi H, Zhao R. Exposure to constant light impairs cognition with FTO inhibition and m 6A-dependent TrκB repression in mouse hippocampus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117037. [PMID: 33866220 DOI: 10.1016/j.envpol.2021.117037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/16/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
N6-methyladenosine (m6A) mRNA methylation plays a role in various brain functions. Exposure to chronic constant light (CCL) has been reported to impair cognition, yet whether the underlying mechanism involves m6A remains unknown. In this study, mice exposed to CCL for 3 weeks show impaired cognitive behavior, which was associated with increased m6A level in hippocampus. Accordingly, the m6A demethylase FTO was inhibited while the methyltransferases METTL3, METTL14 and WTAP, as well as the reader protein YTHDF2, were elevated in the hippocampus of CCL-exposed mice. CCL exposure significantly activated hippocampal expression of circadian regulator cryptochrome 1 and 2 (CRY1 and 2). Meanwhile, hippocampal neurogenesis was impaired with suppression of BDNF/TrκB/ERK pathway. To further delineate the signaling pathway and the role of m6A, we altered the expression of CRY1/2 in hippocampus neuron cells. CRY1/2 overexpression inhibited FTO and increased m6A levels, while CRY1/2 knockdown led to opposite results. Luciferase reporter analysis further confirmed CRY1/2-induced FTO suppression. Furthermore, FTO knockdown increased m6A on 3'UTR of TrκB mRNA, and decreased TrκB mRNA stability and TrκB protein expression, in a YTHDF2-dependent manner. These results indicate that CCL-activated CRY1/2 causes transcriptional inhibition of FTO, which suppresses TrκB expression in hippocampus via m6A-dependent post-transcriptional regulation and contributes to impaired cognitive behavior in mice exposed to constant light.
Collapse
Affiliation(s)
- Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jie Liu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hailing Shi
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
19
|
Kumar SU, Rajan B, Kumar DT, Cathryn RH, Das S, Zayed H, Emmanuel Jebaraj Walter C, Ramanathan G, Priya Doss C G. Comparison of potential inhibitors and targeting fat mass and obesity-associated protein causing diabesity through docking and molecular dynamics strategies. J Cell Biochem 2021; 122:1625-1638. [PMID: 34289159 DOI: 10.1002/jcb.30109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWAS) have identified an association between polymorphisms in the FTO gene and obesity. The FTO: rs9939609, an intronic variant, is considered a risk allele for developing diabesity in homozygous and heterozygous forms. This study aimed to investigate the molecular structure of the available inhibitors specific to the FTO mutations along with the rs9939609 variant. We identified the best-suited inhibitor molecules for each mutant type containing the rs9939609 risk allele. Missense mutations unique to obesity and containing the risk allele of rs9939609 were retrieved from dbSNP for this study. Further stability testing for the mutations were carried out using DynaMut and iStable tools. Three mutations (G187A, M223V, and I492V) were highly destabilizing the FTO structure. These three mutants and native FTO were docked with each of the nine-inhibitor molecules collected from literature studies with the help of PyRx and AutoDock. Further structural behavior of the mutants and native FTO were identified with molecular dynamics simulations and MM-PBSA analyses, along with the 19complex inhibitor compound. We found the compound 19complex exhibited better binding interactions and is the top candidate inhibitor for the M223V and I492V mutants. This study provided insights into the structural changes caused due to mutations in FTO, and the binding mechanism of the inhibitor molecules. It could aid in developing antiobesity drugs for treating patients with mutations and risk alleles predisposing to obesity.
Collapse
Affiliation(s)
- S Udhaya Kumar
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bithia Rajan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - R Hephzibah Cathryn
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Samprita Das
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Charles Emmanuel Jebaraj Walter
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.,Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - George Priya Doss C
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
20
|
Novikov DA, Beletsky AP, Kolosov PM. The Putative Role of m6A-RNA Methylation in Memory Consolidation. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Mehrdad M, Eftekhari MH, Jafari F, Nikbakht HA, Gholamalizadeh M. Associations between FTO rs9939609 polymorphism, serum vitamin D, mental health, and eating behaviors in overweight adults. Nutr Neurosci 2021; 25:1889-1897. [PMID: 33939949 DOI: 10.1080/1028415x.2021.1913316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: Despite the significant role of the Fat Mass and Obesity-Associated (FTO) gene in obesity, the underlying mechanisms are not fully elucidated. Besides, vitamin D deficiency and obesity are mostly seen together, and it can be hypothesized that this nutrient may have an impact in the role of FTO genotype in adiposity.Objective: Thus, this study aimed to investigate the association of FTO rs9939609 gene polymorphism with eating behaviors, eating disorders, and general mental health in overweight adults, considering their vitamin D intake as a mediate confounding factor.Methods: This cross-sectional study was carried out on 197 overweight adults in Shiraz, Iran. Genotyping was performed through amplification refractory mutation system polymerase chain reaction (ARMS PCR). Mental health, vitamin D intake, eating behaviors and disorders were assessed by the validated questionnaires.Results: The risk allele of the FTO rs9939609 polymorphism (A) was significantly associated with a higher risk of eating behavior and mental health disorders (all P < 0.05). After considering vitamin D intake, the AA genotype carriers had significantly higher risks for poorer eating behavior (P = 0.002), mental health (P = 0.007), and general mental health (P = 0.039) compared with the TT carriers if they had insufficient vitamin D intake.Conclusion: In conclusion, these results indicated that the A-allele of the FTO rs9939609 polymorphism may be associated with poorer eating behaviors, mental health, and higher risk of eating disorders. It was also identified that the effect of FTO rs9939609 A risk allele on eating behavior and mental health may be limited to people with insufficient vitamin D intake.
Collapse
Affiliation(s)
- Mahsa Mehrdad
- Department of Clinical Nutrition, School of Nutrition & Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hassan Eftekhari
- Department of Clinical Nutrition, School of Nutrition & Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Jafari
- Department of Clinical Nutrition, School of Nutrition & Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Clinical Nutrition, School of Nutrition & Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein-Ali Nikbakht
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Comprehensive Analysis of Differential m6A RNA Methylomes in the Hippocampus of Cocaine-Conditioned Mice. Mol Neurobiol 2021; 58:3759-3768. [PMID: 33826069 DOI: 10.1007/s12035-021-02363-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/16/2021] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification found in mRNAs and lncRNA and plays a vital role in posttranscriptional regulation in mammals. m6A is abundant in the nervous system, where it modulates neuronal development and hippocampus-dependent learning and memory. However, the roles of RNAs m6A modification and its related enzymes in cocaine reward are still not fully understood. In this study, we found that the fat mass and obesity-associated gene (FTO) demethylase, but not methyltransferase-like 3 (METTL3) and 14 (METTL14), was downregulated in the hippocampus following cocaine-induced conditioned place preference (CPP), and the level of m6A is notably higher in the hippocampus of cocaine CPP training mice. Using methylated m6A RNA immunoprecipitation sequencing (MeRIP-m6A-seq), we identified a total of 6516 m6A peaks within 4460 mRNAs, and 3083 m6A peaks within 850 lncRNAs were significantly dysregulated. Intriguingly, the altered m6A peaks within mRNAs and lncRNAs were enriched in synapse maturation and localization processes. Our study uncovers a critical role for an m6A epitranscriptomic dysregulation and downregulation of FTO expression in the hippocampus following cocaine-induced CPP.
Collapse
|
23
|
Examining the effect of obesity-associated gene variants on breast cancer survivors in a randomized weight loss intervention. Breast Cancer Res Treat 2021; 187:487-497. [PMID: 33677781 DOI: 10.1007/s10549-021-06151-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/16/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE Our study examined whether common variants of obesity-associated genes FTO, MC4R, BDNF, and CREB1 moderated the effects of a lifestyle intervention on weight change among breast cancer survivors. METHODS 151 breast cancer survivors with a body mass index ≥ 25 kg/m2 were randomly assigned to a 6-month weight loss intervention or usual care group. Genotyping of FTO rs9939609, MC4R rs6567160, BDNF rs11030104, CREB1 rs17203016 was performed. Linear mixed models were used including the main effects of genotype (assuming a dominant genetic model), treatment arm on weight and percent body fat changes, and genotype by treatment interaction variable. All statistical tests were evaluated against a Bonferroni-corrected alpha of 0.0125. RESULTS Women in the intervention group achieved significantly greater weight loss than the usual care group (5.9% vs 0.4%, p < 0.001), regardless of genotype. Changes in weight and percent body fat did not differ significantly between carriers of the FTO rs9939609, MC4R rs6567160, BDNF rs11030104, and CREB1 rs17203016 risk alleles compared to non-carriers (p-interaction > 0.0125 for each single-nucleotide polymorphisms). CONCLUSIONS Women who are genetically predisposed to obesity and recently diagnosed with breast cancer may achieve significant and clinically meaningful weight loss through healthy eating and exercise. CLINICAL TRIAL REGISTRATION NCT02863887 (Date of Registration: August 11, 2016); NCT02110641 (Date of Registration: April 10, 2014).
Collapse
|
24
|
Shen J, Yang L, Wei W. Role of Fto on CaMKII/CREB signaling pathway of hippocampus in depressive-like behaviors induced by chronic restraint stress mice. Behav Brain Res 2021; 406:113227. [PMID: 33677012 DOI: 10.1016/j.bbr.2021.113227] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Major depressive disorders (MDD) is one of the most common mental illness in the world. Recently, brain m6A /m (fat mass- and obesity-associated gene Fto) was found that exerted an important role in regulating gene expression involved in stress related depression. However, the potential mechanism of Fto on depression still remains elusive. This study investigated the role of Fto and its downstream signaling pathway in hippocampus on chronic restraint stress induced depressive-like behaviors. METHODS C57BL/6 mice weighing 20-22 g were randomly divided into 4 groups (Control, Control + Fto-ov, Stress, Stress + Fto-ov). Mice were exposed to chronic restraint stress for 3 consecutive weeks to induce depression model. Mice in the Fto-ov groups were stereotaxic injected with Recombinant Adeno-associated Virus lentivirus (Fto) in hippocampus followed by stress procedure. Depressive-like behaviors were detected after stress procedure. Western blot was used to test hippocampal Fto, p-CaMKII and p-CREB expression. Post synaptic density protein 95 (PSD95) and synaptophysin levels were detected by PCR. Golgi-Cox staining was used to appraise dendritic spine density and branches. Synaptic morphology in hippocampus was determined by electron microscopy. RESULTS We demonstrated that chronic restraint stress induced depressive-like behaviors, decreased protein expression of Fto, p-CaMKII and p-CREB, reduced levels of synaptic plasticity markers (synaptophysin and PSD95) in hippocampus. Moreover, chronic restraint stress led to synaptic morphology alterations (reduced dendritic spine density and number of branches; thinned postsynaptic density). However, these molecules changes and morphology alterations were reversed by stereotaxic injected recombinant adeno-associated Fto-overexpression virus in hippocampus. CONCLUSIONS This study found that the modulation of Fto on CaMKII/CREB signaling pathway plays a key role in hippocampal synaptic plasticity, and then ameliorated chronic restraint stress induced depressive-like behaviors.
Collapse
Affiliation(s)
- Jun Shen
- Department of Neurology, Huadong Hospital, Fudan University, 221 West Yan An Road, Shanghai, 200040, China
| | - Lu Yang
- Department of Neurology, Huadong Hospital, Fudan University, 221 West Yan An Road, Shanghai, 200040, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital, Fudan University, 221 West Yan An Road, Shanghai, 200040, China.
| |
Collapse
|
25
|
Moraes VN, Queiroz AL, Martone D, Rodrigues JAL, Gomes MM, Salgado JÚnior W, Bueno CR. Relationship between the hsa miR 150-5p and FTO gene expression in white subcutaneous adipose tissue with overweight/obesity, lipid profile and glycemia. AN ACAD BRAS CIENC 2020; 92:e20200249. [PMID: 33237144 DOI: 10.1590/0001-3765202020200249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/28/2020] [Indexed: 11/21/2022] Open
Abstract
The overweight population is growing in the world, and the search for obesity-associated mechanisms is important for a better understanding of this disease. Few studies with the FTO gene and miRs show how they associate to obesity and how they can impact this disease. The aim of this study was to verify the relationship between the FTO gene and the hsa-miR-150-5p expression with overweight/obesity, lipid profile, and fast blood glucose. Men and women (18 years older or above), with body mass index ≥ 18.5 kg/m2, were enrolled in the present study and the FTO gene and hsa-miR-150-5p expression, biochemical parameters of blood and anthropometric measurements were analyzed. The results highlight that the FTO gene expression is associated to obesity (p 0.029), LDL-C (p 0.02) and fasting blood glucose (p 0.02), but not with triglycerides (p 0.69), total cholesterol (p 0.21), and HDL-C (p 0.24). The hsa-miR-150-5p is not associated to obesity (p 0.84), triglycerides (p 0.57), total cholesterol (p 0.51), HDL-C (p 0.75), LDL-C (p 0.32), and fasting blood glucose (p 0.42). The FTO gene expression is related to obesity, LDL-C and blood fasting glucose, representing a good molecular marker for obesity.
Collapse
Affiliation(s)
- Vitor N Moraes
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - AndrÉ L Queiroz
- Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA
| | - Daniel Martone
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Jhennyfer A L Rodrigues
- Universidade de São Paulo, Escola de Educação Física e Esporte de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14040-907 Ribeirão Preto, SP, Brazil
| | - Matheus M Gomes
- Universidade de São Paulo, Escola de Educação Física e Esporte de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14040-907 Ribeirão Preto, SP, Brazil
| | - Wilson Salgado JÚnior
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Carlos Roberto Bueno
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil.,Universidade de São Paulo, Escola de Educação Física e Esporte de Ribeirão Preto, Av. Bandeirantes, 3900, Vila Monte Alegre, 14040-907 Ribeirão Preto, SP, Brazil
| |
Collapse
|
26
|
Ma D, Liu X, Zhang JJ, Zhao JJ, Xiong YJ, Chang Q, Wang HY, Su P, Meng J, Zhao YB. Vascular Smooth Muscle FTO Promotes Aortic Dissecting Aneurysms via m6A Modification of Klf5. Front Cardiovasc Med 2020; 7:592550. [PMID: 33330653 PMCID: PMC7715013 DOI: 10.3389/fcvm.2020.592550] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 11/27/2022] Open
Abstract
Background: Aortic dissecting aneurysm (ADA) represents an aortic remodeling disease with a high mortality rate. Fat mass and obesity-associated protein (FTO) exerts RNA demethylation function to regulate gene expression related to stem cell differentiation, DNA damage repair, and tumorigenesis, but the role of FTO in ADA is still unclear. Methods: The expression and location of FTO in 43 ADA tissues and 11 normal tissues were determined by RT-qPCR, WB, immunohistochemistry, and immunofluorescence staining. Detecting proliferation and migration of VSMCs. M6A methylated RNA immuno-precipitation qRT-PCR and dual luciferase reporter assay were performed for determining m6A level and interaction between m6A modulation and Klf5 mRNA, respectively. Results: FTO are highly expressed in VSMCs. FTO was positively correlated with BMI, triglyceride, and D-dimer (all P < 0.05). Functionally, both AngII-induced FTO expression and over expression of FTO promote cell proliferation and migration, whereas knockdown of FTO inhibits these functions. Mechanically, we identified Krüppel-like factor 5 (Klf5) as a target of FTO mediating m6A modification. Overexpression of FTO reduced m6A modification on Klf5 mRNA and promoted Klf5 mRNA expression. Furthermore, the p-GSK3β and Klf5 levels increased after FTO overexpression. Finally, knockdown of FTO suppresses the p-GSK3β levels and Klf5 expression regardless of AngII treatment. Conclusions: Our study revealed that FTO expression significantly contributes to the phenotype conversion of VSMCs and the ADA by the demethylation function (m6A), thereby providing a novel therapeutic target.
Collapse
Affiliation(s)
- Dong Ma
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiao Liu
- Cardiac Surgery Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin-Jin Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Jun-Jian Zhao
- Affiliated Hospital of North China University of Technology, Tangshan, China
| | - Yan-Jie Xiong
- Affiliated Hospital of North China University of Technology, Tangshan, China
| | - Quan Chang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hong-Yan Wang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Peng Su
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Jia Meng
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yong-Bo Zhao
- Cardiac Surgery Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
27
|
Ferenc K, Pilžys T, Garbicz D, Marcinkowski M, Skorobogatov O, Dylewska M, Gajewski Z, Grzesiuk E, Zabielski R. Intracellular and tissue specific expression of FTO protein in pig: changes with age, energy intake and metabolic status. Sci Rep 2020; 10:13029. [PMID: 32747736 PMCID: PMC7400765 DOI: 10.1038/s41598-020-69856-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies in the FTO gene have identified SNPs correlating with obesity and type 2 diabetes. In mice, lack of Fto function leads to intrauterine growth retardation and lean phenotype, whereas in human it is lethal. The aim of this study in a pig model was to determine the localization of the FTO protein in different tissues and cell compartments, in order to investigate potential targets of FTO action. To better understand physiological role of FTO protein, its expression was studied in pigs of different age, metabolic status and nutrition, using both microscopic methods and Western blot analysis. For the first time, FTO protein was found in vivo in the cytoplasm, of not all, but specific tissues and cells e.g. in the pancreatic β-cells. Abundant FTO protein expression was found in the cerebellum, salivary gland and kidney of adult pigs. No FTO protein expression was detected in blood, saliva, and bile, excluding its role in cell-to-cell communication. In the pancreas, FTO protein expression was positively associated with energy intake, whereas in the muscles it was strictly age-related. In IUGR piglets, FTO protein expression was much higher in the cerebellum and kidneys, as compared to normal birth body weight littermates. In conclusion, our data suggest that FTO protein may play a number of distinct, yet unknown intracellular functions due to its localization. Moreover, it may play a role in animal growth/development and metabolic state, although additional studies are necessary to clarify the detailed mechanism(s) of action.
Collapse
Affiliation(s)
- Karolina Ferenc
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Oleksandr Skorobogatov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Małgorzata Dylewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Zdzisław Gajewski
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| | - Romuald Zabielski
- Veterinary Research Centre, Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797, Warsaw, Poland.
| |
Collapse
|
28
|
Tao B, Huang X, Shi J, Liu J, Li S, Xu C, Zhong J, Wan L, Feng B, Li B. FTO interacts with FOXO3a to enhance its transcriptional activity and inhibits aggression in gliomas. Signal Transduct Target Ther 2020; 5:130. [PMID: 32724043 PMCID: PMC7387469 DOI: 10.1038/s41392-020-00234-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Bangbao Tao
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, 200092, Shanghai, China
| | - Xuehua Huang
- Department of Pain, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, 200092, Shanghai, China
| | - Juanhong Shi
- Department of Pathology, Tongji Hospital, School of Medicine, School of Medicine, Shanghai Tongji University, 389 Xincun Road, 200062, Shanghai, China
| | - Jun Liu
- Department of Neurosurgery, Second Affiliated Hospital of Wannan Medical College, 10 Kangfu Road, 241001, Wuhu, Anhui, China
| | - Shu Li
- Department of Pathophysiology, Wannan Medical College, 22 Wenchang Road, 241002, Wuhu, Anhui, China
| | - Chunyan Xu
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, 200092, Shanghai, China
| | - Jun Zhong
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, 200092, Shanghai, China
| | - Liang Wan
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, 200092, Shanghai, China.
| | - Baohui Feng
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, 200092, Shanghai, China.
| | - Bin Li
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, 200092, Shanghai, China.
| |
Collapse
|
29
|
KANLI A, KASAP M, AKPINAR G, YANAR S. Fat Mass and Obesity Associated (FTO) Protein Ekspresyonunun Neden Olduğu SH-SY5Y Hücrelerinin Proteomunda Meydana Gelen Değişiklikler, FTO Proteininin Çok Yönlü Özellikleri Ortaya Çıkarır. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2020. [DOI: 10.30934/kusbed.666084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
30
|
Marcinkowski M, Pilžys T, Garbicz D, Steciuk J, Zugaj D, Mielecki D, Sarnowski TJ, Grzesiuk E. Human and Arabidopsis alpha-ketoglutarate-dependent dioxygenase homolog proteins-New players in important regulatory processes. IUBMB Life 2020; 72:1126-1144. [PMID: 32207231 DOI: 10.1002/iub.2276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022]
Abstract
The family of AlkB homolog (ALKBH) proteins, the homologs of Escherichia coli AlkB 2-oxoglutarate (2OG), and Fe(II)-dependent dioxygenase are involved in a number of important regulatory processes in eukaryotic cells including repair of alkylation lesions in DNA, RNA, and nucleoprotein complexes. There are nine human and thirteen Arabidopsis thaliana ALKBH proteins described, which exhibit diversified functions. Among them, human ALKBH5 and FaT mass and Obesity-associated (FTO) protein and Arabidopsis ALKBH9B and ALKBH10B have been recognized as N6 methyladenine (N6 meA) demethylases, the most abundant posttranscriptional modification in mRNA. The FTO protein is reported to be associated with obesity and type 2 diabetes, and involved in multiple other processes, while ALKBH5 is induced by hypoxia. Arabidopsis ALKBH9B is an N6 meA demethylase influencing plant susceptibility to viral infections via m6 A/A ratio control in viral RNA. ALKBH10B has been discovered to be a functional Arabidopsis homolog of FTO; thus, it is also an RNA N6 meA demethylase involved in plant flowering and several other regulatory processes including control of metabolism. High-throughput mass spectrometry showed multiple sites of human ALKBH phosphorylation. In the case of FTO, the type of modified residue decides about the further processing of the protein. This modification may result in subsequent protein ubiquitination and proteolysis, or in the blocking of these processes. However, the impact of phosphorylation on the other ALKBH function and their downstream pathways remains nearly unexplored in both human and Arabidopsis. Therefore, the investigation of evolutionarily conserved functions of ALKBH proteins and their regulatory impact on important cellular processes is clearly called for.
Collapse
Affiliation(s)
- Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Zugaj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
31
|
Song H, Wang Y, Wang R, Zhang X, Liu Y, Jia G, Chen PR. SFPQ Is an FTO-Binding Protein that Facilitates the Demethylation Substrate Preference. Cell Chem Biol 2020; 27:283-291.e6. [PMID: 31981477 DOI: 10.1016/j.chembiol.2020.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/15/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
The fat mass and obesity-associated protein (FTO) is the first identified demethylase of the internal RNA modification N6-methyladenosine (m6A), which also exhibits demethylation activity toward N6,2'-O-dimethyladenosine (m6Am) and N1-methyladenosine (m1A). Demethylation of m6A at specific sites on target transcripts is a key enzymatic function of FTO that modulates diverse physiological and/or pathological processes. However, how FTO selects target RNA and whether additional interaction proteins facilitate this process remain elusive. Herein, via the genetically encoded and site-specific photocrosslinking strategy, we identified the major RNA-binding protein SFPQ as a direct interaction partner of FTO. Our study showed that FTO and SFPQ were located in close proximity throughout the transcriptome and that overexpression of SFPQ led to the demethylation of adjacent m6As, likely through recruiting FTO to these specific RNA sites. These results uncovered a new layer of regulation mechanism that may assist FTO to gain substrate specificity.
Collapse
Affiliation(s)
- Haiping Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ye Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruixiang Wang
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Xiao Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yaping Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
32
|
Li J, Yang X, Qi Z, Sang Y, Liu Y, Xu B, Liu W, Xu Z, Deng Y. The role of mRNA m 6A methylation in the nervous system. Cell Biosci 2019; 9:66. [PMID: 31452869 PMCID: PMC6701067 DOI: 10.1186/s13578-019-0330-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/14/2019] [Indexed: 11/21/2022] Open
Abstract
Epitranscriptomics, also known as “RNA epigenetics”, is a chemical modification for RNA regulation. Ribonucleic acid (RNA) methylation is considered to be a major discovery following the deoxyribonucleic acid (DNA) and histone methylation. Messenger RNA (mRNA) methylation modification accounts for more than 60% of all RNA modifications and N6-methyladenosine (m6A) is known as one of the most common type of eukaryotic mRNA methylation modifications in current. The m6A modification is a dynamic reversible modification, which can directly or indirectly affect biological processes, such as RNA degradation, translation and splicing, and can play important biological roles in vivo. This article introduces the mRNA m6A methylation modification enzymes and binding proteins, and reviews the research progress and related mechanisms of the role of mRNA m6A methylation in the nervous system from the aspects of neural stem cells, learning and memory, brain development, axon growth and glioblastoma.
Collapse
Affiliation(s)
- Jiashuo Li
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Xinxin Yang
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Zhipeng Qi
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Yanqi Sang
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Yanan Liu
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Bin Xu
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Wei Liu
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Zhaofa Xu
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| | - Yu Deng
- School of Public Health, China Medical University, Shenyang, 110122 Liaoning China
| |
Collapse
|
33
|
Spychala A, Rüther U. FTO affects hippocampal function by regulation of BDNF processing. PLoS One 2019; 14:e0211937. [PMID: 30730976 PMCID: PMC6366932 DOI: 10.1371/journal.pone.0211937] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/15/2018] [Indexed: 12/23/2022] Open
Abstract
Initially, the function of the fat mass and obesity associated (Fto) gene seemed to be primarily the regulation of the body weight. Here we show that loss of Fto results in a hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis. In consequence, Fto-/- mice display an anxiety-like behavior and impairments in working memory. Furthermore, differentiation of neurons is affected in the hippocampus. As a cause of these impairments we identified a processing defect of the neurotrophin BDNF which is most likely the result of a reduced expression of MMP-9. Therefore, we propose FTO as a possible new target to develop novel approaches for the treatment of diseases associated with hippocampal disorders. In parallel, we also would like to make the point that any anti-obesity therapy via blocking FTO function can have negative effects on the proper function of the hippocampus.
Collapse
Affiliation(s)
- André Spychala
- Institute of Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Ulrich Rüther
- Institute of Animal Developmental and Molecular Biology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
34
|
Kroll C, de França PHC, Mastroeni MF. Association betweenFTOgene polymorphism and excess body weight in women from before to after pregnancy: A cohort study. Am J Hum Biol 2018; 30:e23164. [DOI: 10.1002/ajhb.23164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/05/2018] [Accepted: 06/10/2018] [Indexed: 01/31/2023] Open
Affiliation(s)
- Caroline Kroll
- Post-graduate Program in Health and Environment; University of Joinville Region - UNIVILLE; Joinville Santa Catarina Brazil
| | | | - Marco Fabio Mastroeni
- Post-graduate Program in Health and Environment; University of Joinville Region - UNIVILLE; Joinville Santa Catarina Brazil
| |
Collapse
|
35
|
Widagdo J, Anggono V. The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity. J Neurochem 2018; 147:137-152. [PMID: 29873074 DOI: 10.1111/jnc.14481] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 12/27/2022]
Abstract
Research over the past decade has provided strong support for the importance of various epigenetic mechanisms, including DNA and histone modifications in regulating activity-dependent gene expression in the mammalian central nervous system. More recently, the emerging field of epitranscriptomics revealed an equally important role of post-transcriptional RNA modifications in shaping the transcriptomic landscape of the brain. This review will focus on the methylation of the adenosine base at the N6 position, termed N6 methyladenosine (m6A), which is the most abundant internal modification that decorates eukaryotic messenger RNAs. Given its prevalence and dynamic regulation in the adult brain, the m6A-epitranscriptome provides an additional layer of regulation on RNA that can be controlled in a context- and stimulus-dependent manner. Conceptually, m6A serves as a molecular switch that regulates various aspects of RNA function, including splicing, stability, localization, or translational control. The versatility of m6A function is typically determined through interaction or disengagement with specific classes of m6A-interacting proteins. Here we review recent advances in the field and provide insights into the roles of m6A in regulating brain function, from development to synaptic plasticity, learning, and memory. We also discuss how aberrant m6A signaling may contribute to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
36
|
Alldred MJ, Chao HM, Lee SH, Beilin J, Powers BE, Petkova E, Strupp BJ, Ginsberg SD. CA1 pyramidal neuron gene expression mosaics in the Ts65Dn murine model of Down syndrome and Alzheimer's disease following maternal choline supplementation. Hippocampus 2018; 28:251-268. [PMID: 29394516 PMCID: PMC5874173 DOI: 10.1002/hipo.22832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022]
Abstract
Although there are changes in gene expression and alterations in neuronal density and afferent inputs in the forebrain of trisomic mouse models of Down syndrome (DS) and Alzheimer's disease (AD), there is a lack of systematic assessments of gene expression and encoded proteins within individual vulnerable cell populations, precluding translational investigations at the molecular and cellular level. Further, no effective treatment exists to combat intellectual disability and basal forebrain cholinergic neurodegeneration seen in DS. To further our understanding of gene expression changes before and following cholinergic degeneration in a well-established mouse model of DS/AD, the Ts65Dn mouse, we assessed RNA expression levels from CA1 pyramidal neurons at two adult ages (∼6 months of age and ∼11 months of age) in both Ts65Dn and their normal disomic (2N) littermates. We further examined a therapeutic intervention, maternal choline supplementation (MCS), which has been previously shown to lessen dysfunction in spatial cognition and attention, and have protective effects on the survival of basal forebrain cholinergic neurons in the Ts65Dn mouse model. Results indicate that MCS normalized expression of several genes in key gene ontology categories, including synaptic plasticity, calcium signaling, and AD-associated neurodegeneration related to amyloid-beta peptide (Aβ) clearance. Specifically, normalized expression levels were found for endothelin converting enzyme-2 (Ece2), insulin degrading enzyme (Ide), Dyrk1a, and calcium/calmodulin-dependent protein kinase II (Camk2a), among other relevant genes. Single population expression profiling of vulnerable CA1 pyramidal neurons indicates that MCS is a viable therapeutic for long-term reprogramming of key transcripts involved in neuronal signaling that are dysregulated in the trisomic mouse brain which have translational potential for DS and AD.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
| | - Helen M. Chao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
| | - Sang Han Lee
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY
- Child Psychiatry, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
- Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY
| | - Judah Beilin
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
| | | | - Eva Petkova
- Child Psychiatry, Nathan Kline Institute, Orangeburg, NY
- Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY
| | - Barbara J. Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
- Department of Psychology, Cornell University, Ithaca, NY
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
- Neuroscience & Physiology, New York University Langone Medical Center, New York, NY
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY
| |
Collapse
|
37
|
Rossetti C, Sciarra D, Petit JM, Eap CB, Halfon O, Magistretti PJ, Boutrel B, Cardinaux JR. Gender-specific alteration of energy balance and circadian locomotor activity in the Crtc1 knockout mouse model of depression. Transl Psychiatry 2017; 7:1269. [PMID: 29217834 PMCID: PMC5802703 DOI: 10.1038/s41398-017-0023-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 07/28/2017] [Accepted: 09/07/2017] [Indexed: 02/04/2023] Open
Abstract
Obesity and depression are major public health concerns, and there is increasing evidence that they share etiological mechanisms. CREB-regulated transcription coactivator 1 (CRTC1) participates in neurobiological pathways involved in both mood and energy balance regulation. Crtc1 -/- mice rapidly develop a depressive-like and obese phenotype in early adulthood, and are therefore a relevant animal model to explore possible common mechanisms underlying mood disorders and obesity. Here, the obese phenotype of male and female Crtc1 -/- mice was further characterized by investigating CRTC1's role in the homeostatic and hedonic regulation of food intake, as well as its influence on daily locomotor activity. Crtc1 -/- mice showed a strong gender difference in the homeostatic regulation of energy balance. Mutant males were hyperphagic and rapidly developed obesity on normal chow diet, whereas Crtc1 -/- females exhibited mild late-onset obesity without hyperphagia. Overeating of mutant males was accompanied by alterations in the expression of several orexigenic and anorexigenic hypothalamic genes, thus confirming a key role of CRTC1 in the central regulation of food intake. No alteration in preference and conditioned response for saccharine was observed in Crtc1 -/- mice, suggesting that mutant males' hyperphagia was not due to an altered hedonic regulation of food intake. Intriguingly, mutant males exhibited a hyperphagic behavior only during the resting (diurnal) phase of the light cycle. This abnormal feeding behavior was associated with a higher diurnal locomotor activity indicating that the lack of CRTC1 may affect circadian rhythmicity. Collectively, these findings highlight the male-specific involvement of CRTC1 in the central control of energy balance and circadian locomotor activity.
Collapse
Affiliation(s)
- Clara Rossetti
- 0000 0001 2165 4204grid.9851.5Center for Psychiatric Neuroscience, Department of Psychiatry, University Medical Center, University of Lausanne, Prilly, Switzerland ,0000 0001 2165 4204grid.9851.5Service of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Lausanne, Switzerland
| | - Daniel Sciarra
- 0000 0001 2165 4204grid.9851.5Center for Psychiatric Neuroscience, Department of Psychiatry, University Medical Center, University of Lausanne, Prilly, Switzerland
| | - Jean-Marie Petit
- 0000 0001 2165 4204grid.9851.5Center for Psychiatric Neuroscience, Department of Psychiatry, University Medical Center, University of Lausanne, Prilly, Switzerland ,0000000121839049grid.5333.6Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Chin B. Eap
- 0000 0001 2165 4204grid.9851.5Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, University Medical Center, University of Lausanne, Prilly, Switzerland ,0000 0001 2322 4988grid.8591.5School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Olivier Halfon
- 0000 0001 2165 4204grid.9851.5Service of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Lausanne, Switzerland
| | - Pierre J. Magistretti
- 0000 0001 2165 4204grid.9851.5Center for Psychiatric Neuroscience, Department of Psychiatry, University Medical Center, University of Lausanne, Prilly, Switzerland ,0000000121839049grid.5333.6Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ,0000 0001 1926 5090grid.45672.32Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Benjamin Boutrel
- 0000 0001 2165 4204grid.9851.5Center for Psychiatric Neuroscience, Department of Psychiatry, University Medical Center, University of Lausanne, Prilly, Switzerland ,0000 0001 2165 4204grid.9851.5Service of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Lausanne, Switzerland
| | - Jean-René Cardinaux
- Center for Psychiatric Neuroscience, Department of Psychiatry, University Medical Center, University of Lausanne, Prilly, Switzerland. .,Service of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
38
|
Li L, Zang L, Zhang F, Chen J, Shen H, Shu L, Liang F, Feng C, Chen D, Tao H, Xu T, Li Z, Kang Y, Wu H, Tang L, Zhang P, Jin P, Shu Q, Li X. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. Hum Mol Genet 2017; 26:2398-2411. [PMID: 28398475 PMCID: PMC6192412 DOI: 10.1093/hmg/ddx128] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/12/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Fat mass and obesity-associated gene (FTO) is a member of the Fe (II)- and oxoglutarate-dependent AlkB dioxygenase family and is linked to both obesity and intellectual disability. The role of FTO in neurodevelopment and neurogenesis, however, remains largely unknown. Here we show that FTO is expressed in adult neural stem cells and neurons and displays dynamic expression during postnatal neurodevelopment. The loss of FTO leads to decreased brain size and body weight. We find that FTO deficiency could reduce the proliferation and neuronal differentiation of adult neural stem cells in vivo, which leads to impaired learning and memory. Given the role of FTO as a demethylase of N6-methyladenosine (m6A), we went on to perform genome-wide m6A profiling and observed dynamic m6A modification during postnatal neurodevelopment. The loss of FTO led to the altered expression of several key components of the brain derived neurotrophic factor pathway that were marked by m6A. These results together suggest FTO plays important roles in neurogenesis, as well as in learning and memory.
Collapse
Affiliation(s)
- Liping Li
- Institute of Genetics, College of Life Sciences, Zhejiang University,
Hangzhou 310058, China
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Liqun Zang
- Institute of Genetics, College of Life Sciences, Zhejiang University,
Hangzhou 310058, China
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta,
GA 30322, USA
| | - Junchen Chen
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Hui Shen
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Liqi Shu
- Department of Human Genetics, Emory University School of Medicine, Atlanta,
GA 30322, USA
- School of Medicine and Health Sciences, George Washington University,
Washington, DC 20037, USA
| | - Feng Liang
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| | - Chunyue Feng
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
| | - Deng Chen
- State Key Laboratory of Medical Molecular Biology, Department of
Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of
Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005,
China
| | - Huikang Tao
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
| | - Tianlei Xu
- Department of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, GA 30322, USA
| | - Ziyi Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, GA 30322, USA
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta,
GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, GA 30322, USA
| | - Lichun Tang
- National Center for Protein Sciences Beijing, Life Sciences Park, Beijing
102206, China
| | - Pumin Zhang
- National Center for Protein Sciences Beijing, Life Sciences Park, Beijing
102206, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta,
GA 30322, USA
| | - Qiang Shu
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
| | - Xuekun Li
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou
310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang
University, Hangzhou 310029, China
| |
Collapse
|
39
|
Yang Q, Xiao T, Guo J, Su Z. Complex Relationship between Obesity and the Fat Mass and Obesity Locus. Int J Biol Sci 2017; 13:615-629. [PMID: 28539834 PMCID: PMC5441178 DOI: 10.7150/ijbs.17051] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
In the 21st century, obesity has become a serious problem because of increasing obese patients and numerous metabolic complications. The primary reasons for this situation are environmental and genetic factors. In 2007, FTO (fat mass and obesity associated) was the first gene identified through a genome-wide association study (GWAS) associated with obesity in humans. Subsequently, a cluster of single nucleotide polymorphisms (SNPs) in the first intron of the FTO gene was discovered to be associated with BMI and body composition. Various studies have explored the mechanistic basis behind this association. Thus, emerging evidence showed that FTO plays a key role regulating adipose tissue development and functions in body size and composition. Recent prevalent research topic concentrated in the three neighboring genes of FTO: RPGRIP1L, IRX3 and IRX5, as having a functional link between obesity-associated common variants within FTO and the observed human phenotypes. The purpose of this review is to present a comprehensive picture of the impact of FTO on obesity susceptibility and to illuminate these new studies of FTO function in adipose tissue.
Collapse
Affiliation(s)
- Qingyun Yang
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, Oxford University, South Parks Road, OX1 3QR, United Kingdom.,Guangzhou Boxabio Technology Ltd, Guangzhou Science City, P R China
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
40
|
Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, Qin X, Tang L, Wang Y, Hong GM, Huang H, Wang X, Chen P, Gurbuxani S, Arnovitz S, Li Y, Li S, Strong J, Neilly MB, Larson RA, Jiang X, Zhang P, Jin J, He C, Chen J. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6-Methyladenosine RNA Demethylase. Cancer Cell 2017; 31:127-141. [PMID: 28017614 PMCID: PMC5234852 DOI: 10.1016/j.ccell.2016.11.017] [Citation(s) in RCA: 1135] [Impact Index Per Article: 141.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/02/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022]
Abstract
N6-Methyladenosine (m6A) represents the most prevalent internal modification in mammalian mRNAs. Despite its functional importance in various fundamental bioprocesses, the studies of m6A in cancer have been limited. Here we show that FTO, as an m6A demethylase, plays a critical oncogenic role in acute myeloid leukemia (AML). FTO is highly expressed in AMLs with t(11q23)/MLL rearrangements, t(15;17)/PML-RARA, FLT3-ITD, and/or NPM1 mutations. FTO enhances leukemic oncogene-mediated cell transformation and leukemogenesis, and inhibits all-trans-retinoic acid (ATRA)-induced AML cell differentiation, through regulating expression of targets such as ASB2 and RARA by reducing m6A levels in these mRNA transcripts. Collectively, our study demonstrates the functional importance of the m6A methylation and the corresponding proteins in cancer, and provides profound insights into leukemogenesis and drug response.
Collapse
Affiliation(s)
- Zejuan Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Hengyou Weng
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Rui Su
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Xiaocheng Weng
- Departments of Chemistry, Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Hubei, Wuhan 430072, PR China
| | - Zhixiang Zuo
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Chenying Li
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA; Key Laboratory of Hematopoietic Malignancies, Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Huilin Huang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Sigrid Nachtergaele
- Departments of Chemistry, Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lei Dong
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Chao Hu
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA; Key Laboratory of Hematopoietic Malignancies, Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xi Qin
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Lichun Tang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yungui Wang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA; Key Laboratory of Hematopoietic Malignancies, Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Gia-Ming Hong
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Hao Huang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xiao Wang
- Departments of Chemistry, Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Ping Chen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sandeep Gurbuxani
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Stephen Arnovitz
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yuanyuan Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Shenglai Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer Strong
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Mary Beth Neilly
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Richard A Larson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xi Jiang
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Pumin Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jie Jin
- Key Laboratory of Hematopoietic Malignancies, Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chuan He
- Departments of Chemistry, Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA.
| | - Jianjun Chen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA.
| |
Collapse
|
41
|
Abstract
BACKGROUND A recent study in children demonstrated that the rs9939609 single-nucleotide polymorphism in the fat mass and obesity (FTO) gene influences prospective weight gain, however, only in those who were vitamin D-deficient. If this might also be the case for Roux-en-Y gastric bypass (RYGB), surgery-induced weight loss is however unknown. The objective of this study is to examine if the magnitude of RYGB surgery-induced weight loss after 2 years depends on patients' FTO rs9939609 genotype (i.e., TT, AT, and AA) and presurgery vitamin D status (<50 nmol/L equals deficiency). METHODS Before and at 24 months after RYGB surgery, BMI was measured in 210 obese patients (mean BMI 45 kg/m(2), 72 % females). Serum 25-hydroxyvitamin D3 levels were also repeatedly measured. Following surgery, vitamin D was supplemented. Possible weight loss differences between genotypes were tested with multiple linear regressions. RESULTS The per-allele effect of each FTO A-allele on excessive BMI loss (EBMIL) was 3 % (P = 0.02). When split by baseline status, the EBMIL of vitamin D-deficient patients carrying AA exceeded that of vitamin D-deficient patients carrying TT by ~14 % (P = 0.03). No such genotypic differences were found in patients without presurgery vitamin D deficiency. Post-surgery serum levels of vitamin D did not differ between groups. CONCLUSIONS Our data suggest that presurgery vitamin D levels influence the size of genotype effects of FTO rs9939609 on RYGB surgery-induced weight loss in obese patients.
Collapse
|
42
|
Kim H, Kang H, Heo RW, Jeon BT, Yi CO, Shin HJ, Kim J, Jeong SY, Kwak W, Kim WH, Kang SS, Roh GS. Caloric restriction improves diabetes-induced cognitive deficits by attenuating neurogranin-associated calcium signaling in high-fat diet-fed mice. J Cereb Blood Flow Metab 2016; 36:1098-110. [PMID: 26661177 PMCID: PMC4908619 DOI: 10.1177/0271678x15606724] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/03/2015] [Indexed: 01/09/2023]
Abstract
Diabetes-induced cognitive decline has been recognized in human patients of type 2 diabetes mellitus and mouse model of obesity, but the underlying mechanisms or therapeutic targets are not clearly identified. We investigated the effect of caloric restriction on diabetes-induced memory deficits and searched a molecular mechanism of caloric restriction-mediated neuroprotection. C57BL/6 mice were fed a high-fat diet for 40 weeks and RNA-seq analysis was performed in the hippocampus of high-fat diet-fed mice. To investigate caloric restriction effect on differential expression of genes, mice were fed high-fat diet for 20 weeks and continued on high-fat diet or subjected to caloric restriction (2 g/day) for 12 weeks. High-fat diet-fed mice exhibited insulin resistance, glial activation, blood-brain barrier leakage, and memory deficits, in that we identified neurogranin, a down-regulated gene in high-fat diet-fed mice using RNA-seq analysis; neurogranin regulates Ca(2+)/calmodulin-dependent synaptic function. Caloric restriction increased insulin sensitivity, reduced high-fat diet-induced blood-brain barrier leakage and glial activation, and improved memory deficit. Furthermore, caloric restriction reversed high-fat diet-induced expression of neurogranin and the activation of Ca(2+)/calmodulin-dependent protein kinase II and calpain as well as the downstream effectors. Our results suggest that neurogranin is an important factor of high-fat diet-induced memory deficits on which caloric restriction has a therapeutic effect by regulating neurogranin-associated calcium signaling.
Collapse
Affiliation(s)
- Hwajin Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Heeyoung Kang
- Department of Neurology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Rok Won Heo
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Byeong Tak Jeon
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, USA
| | - Chin-Ok Yi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | - Won-Ho Kim
- Division of Metabolic Diseases, Center for Biomedical Sciences, National Institute of Health, Osong, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| |
Collapse
|
43
|
Wang CY, Shie SS, Tsai ML, Yang CH, Hung KC, Wang CC, Hsieh IC, Wen MS. FTO modulates fibrogenic responses in obstructive nephropathy. Sci Rep 2016; 6:18874. [PMID: 26727661 PMCID: PMC4698750 DOI: 10.1038/srep18874] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies have shown that variants in fat mass and obesity-associated (FTO) gene are robustly associated with body mass index and obesity. These FTO variants are also associated with end stage renal disease and all-cause mortality in chronic kidney diseases. However, the exact role of FTO in kidneys is currently unknown. Here we show that FTO expression is increased after ureteral obstruction and renal fibrosis. Deficiency of the FTO gene attenuates the fibrogenic responses induced by ureteral obstruction in the kidney. Renal tubular cells deficient of FTO produce less α-SMA after TGF-β stimulation. FTO is indispensable for the extracellular matrix synthesis after ureteral obstruction in kidneys. Indeed, global gene transcriptions amplitude is reduced in FTO deficient kidneys after ureteral obstruction. These data establish the importance of FTO in renal fibrosis, which may have potential therapeutic implications.
Collapse
Affiliation(s)
- Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Shian-Sen Shie
- Department of Infectious Diseases, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Ming-Lung Tsai
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Chia-Hung Yang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Kuo-Chun Hung
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Chun-Chieh Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - I-Chang Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Ming-Shien Wen
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| |
Collapse
|
44
|
Wang CY, Shie SS, Wen MS, Hung KC, Hsieh IC, Yeh TS, Wu D. Loss of FTO in adipose tissue decreases Angptl4 translation and alters triglyceride metabolism. Sci Signal 2015; 8:ra127. [PMID: 26671148 DOI: 10.1126/scisignal.aab3357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A common variant of the FTO (fat mass- and obesity-associated) gene is a risk factor for obesity. We found that mice with an adipocyte-specific deletion of FTO gained more weight than control mice on a high-fat diet. Analysis of mice lacking FTO in adipocytes fed a normal diet or adipocytes from these mice revealed alterations in triglyceride metabolism that would be expected to favor increased fatty acid storage by adipose tissue. Mice lacking FTO in adipocytes showed increased serum triglyceride breakdown and clearance, which was associated with lower serum triglyceride concentrations. In addition, lipolysis in response to β-adrenergic stimulation was decreased in adipocytes and ex vivo adipose explants from the mutant mice. FTO is a nucleic acid demethylase that removes N(6)-methyladenosine (m(6)A) from mRNAs. We found that FTO bound to Angptl4, which encodes an adipokine that stimulates intracellular lipolysis in adipocytes. Unexpectedly, the adipose tissue of fasted or fed mice lacking FTO in adipocytes had greater Angptl4 mRNA abundance. However, after high-fat feeding, the mutant mice had less Angptl4 protein and more m(6)A-modified Angptl4 than control mice, suggesting that lack of FTO prevented the translation of Angptl4. Injection of Angptl4-encoding adenovirus into mice lacking FTO in adipocytes restored serum triglyceride concentrations and lipolysis to values similar to those in control mice and abolished excessive weight gain from a high-fat diet. These results reveal that FTO regulates fatty acid mobilization in adipocytes and thus body weight in part through posttranscriptional regulation of Angptl4.
Collapse
Affiliation(s)
- Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan.
| | - Shian-Sen Shie
- Department of Infectious Diseases, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ming-Shien Wen
- Department of Cardiology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Kuo-Chun Hung
- Department of Cardiology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - I-Chang Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ta-Sen Yeh
- Department of General Surgery, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Delon Wu
- Department of Cardiology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| |
Collapse
|
45
|
Du T, Rao S, Wu L, Ye N, Liu Z, Hu H, Xiu J, Shen Y, Xu Q. An association study of the m6A genes with major depressive disorder in Chinese Han population. J Affect Disord 2015; 183:279-86. [PMID: 26047305 DOI: 10.1016/j.jad.2015.05.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a common, chronic and recurrent mental disease but the precise mechanism behind this disorder remains unknown. FTO is one of the N6-methyladenosine (m6A) modification genes and has recently been found to be associated with depression. N6-methyladenosine (m6A) is the most abundant internal modification on RNA, which is highly enriched within the brain. There are five genes involved in m6A modification including FTO, but whether these m6A modification genes could confer a risk of MDD is still unclear. This study aimed to investigate the genetic influence of the m6A modification genes on risk of MDD. METHODS We genotyped 23 SNPs in 5 modification genes among 738 patients with MDD and 1098 controls. The UNPHASED program was applied to analyze the genotyping data for allelic and genotypic association with MDD. RESULTS Of the 23 SNPs selected, rs12936694 from the m6A demethylase gene ALKBH5 showed allelic association (χ(2)=11.19, p=0.0008, OR=1.491, 95%CI 1.179-1.887) and genotypic association (χ(2)=12.26, df=2, p=0.0022) with MDD. LIMITATIONS Replication and functional study are required to draw a firm conclusion. CONCLUSIONS The ALKBH5 gene may play a role in conferring risk of MDD in the Chinese population.
Collapse
Affiliation(s)
- Tingfu Du
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, China
| | - Shuquan Rao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, China
| | - Lin Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, China
| | - Ning Ye
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, China
| | - Zeyue Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, China
| | - Huiling Hu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, China
| | - Jianbo Xiu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, China
| | - Yan Shen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, China
| | - Qi Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, China.
| |
Collapse
|
46
|
Abstract
A cluster of single nucleotide polymorphisms (SNPs) in the first intron of the fat mass and obesity related (FTO) gene were the first common variants discovered to be associated with body mass index and body fatness. This review summarises what has been later discovered about the biology of FTO drawing together information from both human and animal studies. Subsequent work showed that the 'at risk' alleles of these SNPs are associated with greater food intake and increased hunger/lowered satiety, but are not associated with altered resting energy expenditure or low physical activity in humans. FTO is an FE (II) and 2-oxoglutarate dependent DNA/RNA methylase. Contrasting the impact of the SNPs on energy balance in humans, knocking out or reducing activity of the Fto gene in the mouse resulted in lowered adiposity, elevated energy expenditure with no impact on food intake (but the impact on expenditure is disputed). In contrast, overexpression of the gene in mice led to elevated food intake and adiposity, with no impact on expenditure. In rodents, the Fto gene is widely expressed in the brain including hypothalamic nuclei linked to food intake regulation. Since its activity is 2-oxoglutarate dependent it could potentially act as a sensor of citrate acid cycle flux, but this function has been dismissed, and instead it has been suggested to be much more likely to act as an amino acid sensor, linking circulating AAs to the mammalian target of rapamycin complex 1. This may be fundamental to its role in development but the link to obesity is less clear. It has been recently suggested that although the obesity related SNPs reside in the first intron of FTO, they may not only impact FTO but mediate their obesity effects via nearby genes (notably RPGRIP1L and IRX3).
Collapse
Affiliation(s)
- John R Speakman
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 Beichen xilu, Chaoyang, Beijing, China.
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen, Scotland, AB24 2TZ, UK.
| |
Collapse
|
47
|
Chojnicka I, Fudalej S, Walczak A, Wasilewska K, Fudalej M, Stawiński P, Strawa K, Pawlak A, Wojnar M, Krajewski P, Płoski R. Inverse association between obesity predisposing FTO genotype and completed suicide. PLoS One 2014; 9:e108900. [PMID: 25265168 PMCID: PMC4181953 DOI: 10.1371/journal.pone.0108900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/03/2014] [Indexed: 01/09/2023] Open
Abstract
The A allele of rs9939609 in the FTO gene predisposes to increased body mass index (BMI) and obesity. Recently we showed an inverse association between the obesity related A allele of rs9939609 and alcohol dependence which was replicated by others. Since this finding raises a possibility that FTO may be associated with other psychiatric phenotypes, we aimed to examine association of rs9939609 with completed suicide. We genotyped rs9939609 in 912 suicide victims and 733 controls using TaqMan approach. We observed an inverse association between suicide and the rs9939609 A allele (OR = 0.80, P = 0.002, Pcor = 0.006) with genotype distribution suggesting a co-dominant effect. Given the link between alcoholism and suicide under influence of alcohol reported in Polish population, confounding by alcohol addiction was unlikely due to apparently similar effect size among cases who were under influence of ethanol at the time of death (OR = 0.76, P = 0.003, N = 361) and those who were not (OR = 0.80, P = 0.007, N = 469). The search for genotype-phenotype correlations did not show significant results. In conclusion, our study proves that there is an inverse association between rs9939609 polymorphism in FTO gene and completed suicide which is independent from association between FTO and alcohol addiction.
Collapse
Affiliation(s)
- Izabela Chojnicka
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
- Department of Rehabilitation Psychology, University of Warsaw, Warsaw, Poland
| | - Sylwia Fudalej
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Walczak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Krystyna Wasilewska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Fudalej
- Department of Forensic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Strawa
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Pawlak
- Department of Forensic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Paweł Krajewski
- Department of Forensic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|