1
|
Becker Y, Haller H. Current understanding of heparanase 2 regulation, a non-heparanase. Biochem Soc Trans 2025; 53:BST20241281. [PMID: 39910799 DOI: 10.1042/bst20241281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Heparan sulfate (HS) proteoglycans are life-supporting proteins comprising a core protein to which one or more HS glycan chains are covalently bound. HS proteoglycans act as binding sites for circulating cells and molecules, allow gradient formation, and provide local storage capacities. They act as coreceptors, fine-tuning growth factor receptors and activating intracellular signaling pathways. HS glycan chains are cleaved and regulated by heparanase 1 (Hpa1). Heparanase 2 (Hpa2) is a close homolog of Hpa1. Unlike Hpa1, Hpa2 lacks enzymatic activity but nonetheless binds HS with high affinity, thus modulating HS-mediated biological processes. Only a few functions of Hpa2 have been unraveled. Under disease conditions that include the Mendelian urofacial syndrome, Hpa2 expression is markedly down-regulated, most compellingly demonstrated in several cancers. Hpa2 also circulates in the bloodstream, potentially originating from secretory organs such as liver and pancreas. The Hpa2 promotor is inducible by cellular stressors including cytotoxic, proteostatic, and endoplasmic reticulum stress. Activating transcription factor 3 (ATF3) induces Hpa2 gene expression. We summarize Hpa2 regulation in the framework of health and disease to foster research into its function. The underlying mystery remains: ‘How does this “heparanase,” which is actually a non-heparanase, work, and what are the ramifications?
Collapse
Affiliation(s)
- Yannic Becker
- Department of Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory MDIBL, Bar Harbor, Maine, USA
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory MDIBL, Bar Harbor, Maine, USA
| |
Collapse
|
2
|
Del Valle-Peréz M, Mejía-García A, Echeverri-López D, Gallo-Bonilla K, Tejada-Moreno JA, Villegas-Lanau A, Chvatal-Medina M, Restrepo JE, Cuartas-Montoya G, Zapata-Builes W. Urofacial (Ochoa) syndrome with a founder pathogenic variant in the HPSE2 gene: a case report and mutation origin. J Appl Genet 2024:10.1007/s13353-024-00896-7. [PMID: 39150614 DOI: 10.1007/s13353-024-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Urofacial syndrome or Ochoa syndrome (UFS or UFOS) is a rare disease characterized by inverted facial expression and bladder dysfunction that was described for the first time in Colombia. It is an autosomal recessive pathology with mutations in the HPSE2 and LRIG2 genes. However, 16% of patients do not have any mutations associated with the syndrome. Despite the importance of neurobiology in its pathophysiology, there are no neurological, neuropsychological, or psychological studies in these patients. A 30-year-old male from Medellín, Colombia, with a significant perinatal history, was diagnosed with grade 4 hydronephrosis on his first ultrasound test. At 4 months of age, symptoms such as hypomimia, lagophthalmos, and recurrent urinary tract infections started to manifest. Imaging studies revealed urinary tract dilatation, vesicoureteral reflux, and a double collector system on his left side, which led to the diagnosis of UFS. Multiple procedures, including vesicostomy, ureterostomy, and enterocystoplasty, were performed. At 20 years of age, he achieved urinary sphincter control. Genetic analysis revealed a founder pathogenic variant, c.1516C > T (p.Arg506Ter), in the HPSE2 gene, which produces a truncated protein that lacks 86 amino acids. This variant is classified as pathogenic according to the ClinVar database for UFS. The mutation age is approximately 260-360 years, and the two alleles share a 7.2-7.4 Mb IBD segment. Moreover, we detected European local ancestry in the IBD segment, which is consistent with a Spanish introduction. Neurological examination, neuropsychological assessment, and psychological testing revealed no abnormalities, except for high stress levels. Clinical analysis of this patient revealed distorted facial expression and detrusor-sphincter dyssynergia, which are typical of patients with UFS. Genetic analysis revealed a pathogenic variant in the HPSE2 gene of European origin and a mutation age of 260-360 years. From a neurological, neuropsychological, and psychological (emotional and personality) perspective, the patient showed no signs or symptoms of clinical interest.
Collapse
Affiliation(s)
- Manuela Del Valle-Peréz
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Alejandro Mejía-García
- Grupo de Genética Molecular (GENMOL), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Antioquia, Medellín, Colombia
| | - Dayana Echeverri-López
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Katherine Gallo-Bonilla
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Johanna A Tejada-Moreno
- Grupo de Genética Molecular (GENMOL), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Antioquia, Medellín, Colombia
| | - Andrés Villegas-Lanau
- Grupo de Genética Molecular (GENMOL), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Antioquia, Medellín, Colombia
| | - Mateo Chvatal-Medina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Jorge E Restrepo
- Grupo OBSERVATOS, Facultad de Educación Y Ciencias Sociales, Tecnológico de Antioquia - Institución Universitaria, Medellín, Colombia
| | - Gina Cuartas-Montoya
- Facultad de Psicología, Grupo Neurociencia Y Cognición, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Wildeman Zapata-Builes
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
3
|
Barbon C, Grünherz L, Schweizer R, Lindenblatt N, Giovanoli P. Botulinum toxin to improve facial expression in a patient with Urofacial (Ochoa) Syndrome. Am J Med Genet A 2023; 191:559-563. [PMID: 36321812 DOI: 10.1002/ajmg.a.63025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 10/15/2022] [Indexed: 01/11/2023]
Abstract
The Urofacial or Ochoa Syndrome is a very rare congenital disorder that includes vesical bladder dysfunction and a peculiar inverse facial expression, which brings patients to express a sad-crying face while they intend to laugh. Up-to-date treatments have addressed only the urological side of this disease. However, also the impaired facial mimicry has a strong impact on patients' quality of life. We treated a young patient with Botulinum toxin to address this impairment and obtained pleasing results, including a harmonic smile and a very satisfied patient. To the best of our knowledge, this is the first time that the use of Botulinum toxin is reported in literature to address the facial expression component of this disease.
Collapse
Affiliation(s)
- Carlotta Barbon
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Lisanne Grünherz
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Riccardo Schweizer
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Beaman GM, Lopes FM, Hofmann A, Roesch W, Promm M, Bijlsma EK, Patel C, Akinci A, Burgu B, Knijnenburg J, Ho G, Aufschlaeger C, Dathe S, Voelckel MA, Cohen M, Yue WW, Stuart HM, Mckenzie EA, Elvin M, Roberts NA, Woolf AS, Newman WG. Expanding the HPSE2 Genotypic Spectrum in Urofacial Syndrome, A Disease Featuring a Peripheral Neuropathy of the Urinary Bladder. Front Genet 2022; 13:896125. [PMID: 35812751 PMCID: PMC9259970 DOI: 10.3389/fgene.2022.896125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Urofacial (also called Ochoa) syndrome (UFS) is an autosomal recessive congenital disorder of the urinary bladder featuring voiding dysfunction and a grimace upon smiling. Biallelic variants in HPSE2, coding for the secreted protein heparanase-2, are described in around half of families genetically studied. Hpse2 mutant mice have aberrant bladder nerves. We sought to expand the genotypic spectrum of UFS and make insights into its pathobiology. Sanger sequencing, next generation sequencing and microarray analysis were performed in four previously unreported families with urinary tract disease and grimacing. In one, the proband had kidney failure and was homozygous for the previously described pathogenic variant c.429T>A, p.(Tyr143*). Three other families each carried a different novel HPSE2 variant. One had homozygous triplication of exons 8 and 9; another had homozygous deletion of exon 4; and another carried a novel c.419C>G variant encoding the missense p.Pro140Arg in trans with c.1099-1G>A, a previously reported pathogenic splice variant. Expressing the missense heparanase-2 variant in vitro showed that it was secreted as normal, suggesting that 140Arg has aberrant functionality after secretion. Bladder autonomic neurons emanate from pelvic ganglia where resident neural cell bodies derive from migrating neural crest cells. We demonstrated that, in normal human embryos, neuronal precursors near the developing hindgut and lower urinary tract were positive for both heparanase-2 and leucine rich repeats and immunoglobulin like domains 2 (LRIG2). Indeed, biallelic variants of LRIG2 have been implicated in rare UFS families. The study expands the genotypic spectrum in HPSE2 in UFS and supports a developmental neuronal pathobiology.
Collapse
Affiliation(s)
- Glenda M. Beaman
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine, and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Filipa M. Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Aybike Hofmann
- Department of Pediatric Urology, KUNO Clinic St. Hedwig Clinic, University Medical Center Regensburg, Regensburg, Germany
| | - Wolfgang Roesch
- Department of Pediatric Urology, KUNO Clinic St. Hedwig Clinic, University Medical Center Regensburg, Regensburg, Germany
| | - Martin Promm
- Department of Pediatric Urology, KUNO Clinic St. Hedwig Clinic, University Medical Center Regensburg, Regensburg, Germany
| | - Emilia K. Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, Netherlands
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
| | - Aykut Akinci
- Department of Pediatric Urology, Ankara University School of Medicine, Cebeci Children’s Hospital, Ankara, Turkey
| | - Berk Burgu
- Department of Pediatric Urology, Ankara University School of Medicine, Cebeci Children’s Hospital, Ankara, Turkey
| | - Jeroen Knijnenburg
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, Netherlands
| | - Gladys Ho
- Sydney Genome Diagnostics, Children’s Hospital at Westmead, Westmead, NSW, Australia
- Disciplines of Child and Adolescent Health and Genomic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Christina Aufschlaeger
- Department of Pediatric Urology, KUNO Clinic St. Hedwig Clinic, University Medical Center Regensburg, Regensburg, Germany
| | - Sylvia Dathe
- Department of Pediatric Urology, KUNO Clinic St. Hedwig Clinic, University Medical Center Regensburg, Regensburg, Germany
- Städtisches Klinikum Dessau, Dessau-Roslau, Germany
| | | | - Monika Cohen
- Center for Human Genetics and Laboratory Diagnostics (AHC) Medical Labs Martinsried, Martinsried, Germany
| | - Wyatt W. Yue
- Biosciences Institute, Medical School, Newcastle University, Newcastle, United Kingdom
| | - Helen M. Stuart
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine, and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Edward A. Mckenzie
- Protein Expression Facility, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Mark Elvin
- Peak Proteins Ltd., Macclesfield, United Kingdom
| | - Neil A. Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Adrian S. Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - William G. Newman
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine, and Human Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Kaur R, Deb PK, Diwan V, Saini B. Heparanase Inhibitors in Cancer Progression: Recent Advances. Curr Pharm Des 2021; 27:43-68. [PMID: 33185156 DOI: 10.2174/1381612826666201113105250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND An endo-β-glucuronidase enzyme, Heparanase (HPSE), degrades the side chains of polymeric heparan sulfate (HS), a glycosaminoglycan formed by alternate repetitive units of D-glucosamine and D-glucuronic acid/L-iduronic acid. HS is a major component of the extracellular matrix and basement membranes and has been implicated in processes of the tissue's integrity and functional state. The degradation of HS by HPSE enzyme leads to conditions like inflammation, angiogenesis, and metastasis. An elevated HPSE expression with a poor prognosis and its multiple roles in tumor growth and metastasis has attracted significant interest for its inhibition as a potential anti-neoplastic target. METHODS We reviewed the literature from journal publication websites and electronic databases such as Bentham, Science Direct, PubMed, Scopus, USFDA, etc., about HPSE, its structure, functions, and role in cancer. RESULTS The present review is focused on Heparanase inhibitors (HPIns) that have been isolated from natural resources or chemically synthesized as new therapeutics for metastatic tumors and chronic inflammatory diseases in recent years. The recent developments made in the HPSE structure and function are also discussed, which can lead to the future design of HPIns with more potency and specificity for the target. CONCLUSION HPIns can be a better target to be explored against various cancers.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Philadelphia, Jordan
| | - Vishal Diwan
- Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
6
|
Urofacial (ochoa) syndrome: A literature review. J Pediatr Urol 2021; 17:246-254. [PMID: 33558177 DOI: 10.1016/j.jpurol.2021.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/26/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022]
Abstract
The Urofacial or Ochoa Syndrome (UFS or UFOS) is characterized by an inverted facial expression (those affected seem crying while smiling) associated with lower urinary tract dysfunction without evident obstructive or neurological cause. It is associated with autosomal recessive inheritance mutations in the HPSE2 gene, located at 10q23-q24, and the LRGI2 gene, located in 1p13.2; however, in up to 16% of patients, no associated mutations have been found. Recent evidence suggests that these genes are critical to an adequate neurological development to the lower urinary tract and that the origin of the disease seems to be due to peripheral neuropathy. There is clinical variability among patients with UFS and not all present the classic two components, and it has even been genetically confirmed in patients with a prior diagnosis of Hinman Syndrome or other bladder dysfunctions. Also, the presence of nocturnal lagophthalmos in these patients was recently described. Early recognition and timely diagnosis are critical to preventing complications such as urinary tract infections or chronic kidney disease. Next, the history of Urofacial Syndrome, the advances in its pathophysiology, and its clinical characteristics is reviewed.
Collapse
|
7
|
Gross-Cohen M, Feld S, Arvatz G, Ilan N, Vlodavsky I. Elucidating the Consequences of Heparan Sulfate Binding by Heparanase 2. Front Oncol 2021; 10:627463. [PMID: 33585253 PMCID: PMC7879983 DOI: 10.3389/fonc.2020.627463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
Unlike the intense research effort devoted to exploring the significance of heparanase in human diseases, very little attention was given to its close homolog, heparanase 2 (Hpa2). The emerging role of Hpa2 in a rare autosomal recessive congenital disease called urofacial syndrome (UFS), clearly indicates that Hpa2 is not a pseudogene but rather a gene coding for an important protein. Hpa2 lacks the heparan sulfate (HS)-degrading activity typical of heparanase, yet exhibits high affinity to HS, affinity that is 10-fold higher than that of heparanase. The consequences of this high-affinity interaction of Hpa2 with plasma membrane HSPG has not been explored yet. Here, we used highly purified Hpa2 protein to examine this aspect. We provide evidence that cells adhere to and spread on dishes coated with Hpa2. We also show that cell migration is attenuated markedly by exogenous addition of Hpa2 to primary and transformed cells, a function that agrees with the anti-cancer properties of Hpa2. Interestingly, we found that exogenous addition of Hpa2 also disrupts the morphology of cell colonies, resulting in cell scattering. This implies that under certain conditions and experimental settings, Hpa2 may exhibit pro-tumorigenic properties. We further developed a panel of anti-Hpa2 monoclonal antibodies (mAb) and show that these properties of Hpa2 are prevented by some of the newly-developed mAb, thus providing new molecular tools to better appreciate the significance of Hpa2 in health and disease.
Collapse
Affiliation(s)
- Miriam Gross-Cohen
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Sari Feld
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Gil Arvatz
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
8
|
Receptor tyrosine kinases and heparan sulfate proteoglycans: Interplay providing anticancer targeting strategies and new therapeutic opportunities. Biochem Pharmacol 2020; 178:114084. [DOI: 10.1016/j.bcp.2020.114084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
|
9
|
Pinhal MAS, Melo CM, Nader HB. The Good and Bad Sides of Heparanase-1 and Heparanase-2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:821-845. [PMID: 32274740 DOI: 10.1007/978-3-030-34521-1_36] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In this chapter, we will emphasize the importance of heparan sulfate proteoglycans (HSPG) in controlling various physiological and pathological molecular mechanisms and discuss how the heparanase enzyme can modulate the effects triggered by HSPG. Additionally, we will also navigate about the existing knowledge of the possible role of heparanase-2 in biological events. Heparan sulfate is widely distributed and evolutionarily conserved, evidencing its vital importance in cell development and functions such as cell proliferation, migration, adhesion, differentiation, and angiogenesis. During remodeling of the extracellular matrix, the breakdown of heparan sulfate by heparanase results in the release of molecules containing anchored glycosaminoglycan chains of great interest in heparanase-mediated cell signaling pathways in various physiological states, tumor development, inflammation, and other diseases. Taken together, it appears that heparanase plays a key role in the maintenance of the pathology of cancer and inflammatory diseases and is a potential target for anti-cancer therapies. Therefore, heparanase inhibitors are currently being examined in clinical trials as novel cancer therapeutics. Heparanase-2 has no enzymatic activity, displays higher affinity for heparan sulfate and the coding region alignment shows 40% identity with the heparanase gene. Heparanase-2 plays an important role in embryogenic development however its mode of action and biological function remain to be elucidated. Heparanase-2 functions as an inhibitor of the heparanase-1 enzyme and also inhibits neovascularization mediated by VEGF. The HPSE2 gene is repressed by the Polycomb complex, together suggesting a role as a tumor suppressor.
Collapse
Affiliation(s)
| | - Carina Mucciolo Melo
- Biochemistry Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Helena Bonciani Nader
- Biochemistry Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Manak I, Gurney AM, McCloskey KD, Woolf AS, Roberts NA. Dysfunctional bladder neurophysiology in urofacial syndrome
Hpse2
mutant mice. Neurourol Urodyn 2020; 39:1930-1938. [DOI: 10.1002/nau.24450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Imerjit Manak
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreUniversity of ManchesterManchester UK
| | - Alison M. Gurney
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and HealthUniversity of ManchesterManchester UK
| | - Karen D. McCloskey
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfast UK
| | - Adrian S. Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreUniversity of ManchesterManchester UK
| | - Neil A. Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreUniversity of ManchesterManchester UK
| |
Collapse
|
11
|
Abstract
From 1999-2003, Oxford GlycoSciences (OGS) ran a successful drug discovery oncology programme to discover small molecule inhibitors of the Heparanase I enzyme (HPSE1). HPSE1 at the time was widely regarded as being the sole mammalian enzyme capable of cleaving Heparan Sulfate (HS). A second family protein member however called Heparanase 2 (HPSE2) including splice forms was subsequently discovered by PCR analysis based on EST sequences. HPSE2 was found to be expressed mainly in smooth muscle containing tissues, particularly bladder and brain. HPSE2 is poorly expressed in haematopoietic cells and placenta which contrasts with the HPSE1 distribution pattern. HPSE2 binds more strongly to HS than HPSE1 and is believed to out compete for substrate binding and so in effect act as a tumor suppressor. So far, all attempts to show specific HPSE2 endoglycosidase activity against HS have failed suggesting that the enzyme may act as a pseudoenzyme that has evolved to retain only certain non-catalytic heparanase like functions. A breakthrough in the elucidation of functional roles for HPSE2 came about in 2010 with the linkage of HPSE2 gene deletions and mutations to the development of Ochoa/Urofacial Syndrome. Future work into the mechanistic analysis of HPSE2's role in signalling, tumor suppression and bladder/nerve functioning are needed to fully explore the role of this family of proteins.
Collapse
|
12
|
Heparanase 2 and Urofacial Syndrome, a Genetic Neuropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:807-819. [DOI: 10.1007/978-3-030-34521-1_35] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Wu L, Davies GJ. An Overview of the Structure, Mechanism and Specificity of Human Heparanase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:139-167. [PMID: 32274709 DOI: 10.1007/978-3-030-34521-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The retaining endo-β-D-glucuronidase Heparanase (HPSE) is the primary mammalian enzyme responsible for breakdown of the glycosaminoglycan heparan sulfate (HS). HPSE activity is essential for regulation and turnover of HS in the extracellular matrix, and its activity affects diverse processes such as inflammation, angiogenesis and cell migration. Aberrant heparanase activity is strongly linked to cancer metastasis, due to structural breakdown of extracellular HS networks and concomitant release of sequestered HS-binding growth factors. A full appreciation of HPSE activity in health and disease requires a structural understanding of the enzyme, and how it engages with its HS substrates. This chapter summarizes key findings from the recent crystal structures of human HPSE and its proenzyme. We present details regarding the 3-dimensional protein structure of HPSE and the molecular basis for its interaction with HS substrates of varying sulfation states. We also examine HPSE in a wider context against related β-D-glucuronidases from other species, highlighting the structural features that control exo/endo - glycosidase selectivity in this family of enzymes.
Collapse
Affiliation(s)
- Liang Wu
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK.
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, UK
| |
Collapse
|
14
|
Roberts NA, Hilton EN, Lopes FM, Singh S, Randles MJ, Gardiner NJ, Chopra K, Coletta R, Bajwa Z, Hall RJ, Yue WW, Schaefer F, Weber S, Henriksson R, Stuart HM, Hedman H, Newman WG, Woolf AS. Lrig2 and Hpse2, mutated in urofacial syndrome, pattern nerves in the urinary bladder. Kidney Int 2019; 95:1138-1152. [PMID: 30885509 PMCID: PMC6481288 DOI: 10.1016/j.kint.2018.11.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022]
Abstract
Mutations in leucine-rich-repeats and immunoglobulin-like-domains 2 (LRIG2) or in heparanase 2 (HPSE2) cause urofacial syndrome, a devastating autosomal recessive disease of functional bladder outlet obstruction. It has been speculated that urofacial syndrome has a neural basis, but it is unknown whether defects in urinary bladder innervation are present. We hypothesized that urofacial syndrome features a peripheral neuropathy of the bladder. Mice with homozygous targeted Lrig2 mutations had urinary defects resembling those found in urofacial syndrome. There was no anatomical blockage of the outflow tract, consistent with a functional bladder outlet obstruction. Transcriptome analysis revealed differential expression of 12 known transcripts in addition to Lrig2, including 8 with established roles in neurobiology. Mice with homozygous mutations in either Lrig2 or Hpse2 had increased nerve density within the body of the urinary bladder and decreased nerve density around the urinary outflow tract. In a sample of 155 children with chronic kidney disease and urinary symptoms, we discovered novel homozygous missense LRIG2 variants that were predicted to be pathogenic in 2 individuals with non-syndromic bladder outlet obstruction. These observations provide evidence that a peripheral neuropathy is central to the pathobiology of functional bladder outlet obstruction in urofacial syndrome, and emphasize the importance of LRIG2 and heparanase 2 for nerve patterning in the urinary tract.
Collapse
Affiliation(s)
- Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK.
| | - Emma N Hilton
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Subir Singh
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Michael J Randles
- School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Natalie J Gardiner
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Karl Chopra
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Riccardo Coletta
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Zunera Bajwa
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Robert J Hall
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - Franz Schaefer
- Division of Pediatric Nephrology, Centre for Pediatric and Adolescent Medicine, University Hospital of Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Stefanie Weber
- Pediatric Nephrology, University-Children's Hospital Marburg, Philipps-University Marburg, Germany
| | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden; Regional Cancer Center Stockholm/Gotland, Stockholm, Sweden
| | - Helen M Stuart
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
15
|
Jin H, Cui M. New Advances of Heparanase and Heparanase-2 in Human Diseases. Arch Med Res 2019; 49:423-429. [PMID: 30850186 DOI: 10.1016/j.arcmed.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/17/2019] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
Abstract
As we all know, heparanase plays an important role in human diseases. As a kind of endo-β-glucuronidase, heparanase is the known only enzyme in mammals which could degrade heparan sulfate(HS) specifically. HS is a vital component of extracellular matrix(ECM). Heparanase takes effect by cleaving theβ(1,4)-glycosidic between glucosamine residue and glucuronic acid of HS. This cleavage will cause ECM remodelling and HS-linked biological molecules release, including cytokines, growth factors and a lot of biological molecules regulating various pathological activities. Experiments already proved that heparanase gene over-expresses in cancers of gastrointestinal tract, esophagus, breast and so on. Various studies have demonstrated the heparanase's pro-metastatic function and the reduced survival rate of patients could be indicated by high heparanase levels. Besides, pathological processes including procoagulant activities, preeclamptic placentas and inflammation are all verified to be associated with heparanase activity. In recent years, many functions other than pro-tumor effect was found in heparanase and worldwide researchers conducted varieties of experiments to identify the new function of this significant enzyme. Also, these newly-found functions are closely connected to certain cellular activities, for example epithelial to mesenchymal transition (EMT). It has already been demonstrated that EMT is related to some clinical disorders, like renal diseases. Given that heparanase is the only enzyme capable of this function, it could be concluded that heparanase would be a potential and valuable therapy target. This mini-review aims to retrospect literatures about heparanase published in 2017 and 2018 and provide a direction for therapy methods targeting heparanase.
Collapse
Affiliation(s)
- Hao Jin
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, China
| | - Min Cui
- The Second Department of General Surgery, Zhuhai People's Hospital, No. 79 of Kangning Road, Xiangzhou District, Zhuhai City, Guangdong Province, China.
| |
Collapse
|
16
|
Woolf AS, Lopes FM, Ranjzad P, Roberts NA. Congenital Disorders of the Human Urinary Tract: Recent Insights From Genetic and Molecular Studies. Front Pediatr 2019; 7:136. [PMID: 31032239 PMCID: PMC6470263 DOI: 10.3389/fped.2019.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
The urinary tract comprises the renal pelvis, the ureter, the urinary bladder, and the urethra. The tract acts as a functional unit, first propelling urine from the kidney to the bladder, then storing it at low pressure inside the bladder which intermittently and completely voids urine through the urethra. Congenital diseases of these structures can lead to a range of diseases sometimes associated with fetal losses or kidney failure in childhood and later in life. In some of these disorders, parts of the urinary tract are severely malformed. In other cases, the organs appear grossly intact yet they have functional deficits that compromise health. Human studies are beginning to indicate monogenic causes for some of these diseases. Here, the implicated genes can encode smooth muscle, neural or urothelial molecules, or transcription factors that regulate their expression. Furthermore, certain animal models are informative about how such molecules control the development and functional differentiation of the urinary tract. In future, novel therapies, including those based on gene transfer and stem cell technologies, may be used to treat these diseases to complement conventional pharmacological and surgical clinical therapies.
Collapse
Affiliation(s)
- Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Parisa Ranjzad
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Whitehead MJ, McGonigal R, Willison HJ, Barnett SC. Heparanase attenuates axon degeneration following sciatic nerve transection. Sci Rep 2018; 8:5219. [PMID: 29581478 PMCID: PMC5980233 DOI: 10.1038/s41598-018-23070-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/02/2018] [Indexed: 02/01/2023] Open
Abstract
Axon degeneration underlies many nervous system diseases; therefore understanding the regulatory signalling pathways is fundamental to identifying potential therapeutics. Previously, we demonstrated heparan sulphates (HS) as a potentially new target for promoting CNS repair. HS modulate cell signalling by both acting as cofactors in the formation of ligand-receptor complexes and in sequestering ligands in the extracellular matrix. The enzyme heparanase (Hpse) negatively regulates these processes by cleaving HS and releasing the attached proteins, thereby attenuating their ligand-receptor interaction. To explore a comparative role for HS in PNS axon injury/repair we data mined published microarrays from distal sciatic nerve injury. We identified Hpse as a previously unexplored candidate, being up-regulated following injury. We confirmed these results and demonstrated inhibition of Hpse led to an acceleration of axonal degeneration, accompanied by an increase in β-catenin. Inhibition of β-catenin and the addition of Heparinase I both attenuated axonal degeneration. Furthermore the inhibition of Hpse positively regulates transcription of genes associated with peripheral neuropathies and Schwann cell de-differentiation. Thus, we propose Hpse participates in the regulation of the Schwann cell injury response and axo-glia support, in part via the regulation of Schwann cell de-differentiation and is a potential therapeutic that warrants further investigation.
Collapse
Affiliation(s)
- Michael J Whitehead
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Rhona McGonigal
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
18
|
Gross-Cohen M, Feld S, Naroditsky I, Nativ O, Ilan N, Vlodavsky I. Heparanase 2 expression inversely correlates with bladder carcinoma grade and stage. Oncotarget 2017; 7:22556-65. [PMID: 26968815 PMCID: PMC5008381 DOI: 10.18632/oncotarget.8003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 02/06/2023] Open
Abstract
While the pro-tumorigenic function of heparanase is well taken, the role of its close homolog, heparanase 2 (Hpa2) in cancer is by far less investigated. Utilizing immunohistochemical analysis we found that Hpa2 is expressed by normal bladder transitional epithelium and its levels are decreased substantially in bladder cancer. Notably, tumors that retain high levels of Hpa2 were diagnosed as low grade (p=0.001) and low stage (p=0.002), suggesting that Hpa2 is required to preserve cell differentiation and halt cell motility. Indeed, migration of 5637 bladder carcinoma cells was attenuated significantly by exogenous addition of purified Hpa2, and over expression of Hpa2 in 5637 cells resulted in smaller tumors that were diagnosed as low grade. We also noted that tumors produced by Hpa2 over expressing cells are abundantly decorated with stromal cells and collagen deposition evident by Masson's/Trichrome staining, correlating with a marked increase in lysyl oxidase (LOX) staining. The association between Hpa2 and LOX was further confirmed clinically, because of the 16 cases that exhibited strong staining of Hpa2, 14 (87.5%) were also stained strongly for LOX (p=0.05). Collectively, our results suggest that Hpa2 functions as a tumor suppressor in bladder cancer, maintaining cellular differentiation and decreasing cell motility in a manner that appears to be independent of regulating heparanase activity.
Collapse
Affiliation(s)
- Miriam Gross-Cohen
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Sari Feld
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Ofer Nativ
- Department of Urology, Bnai-Zion Medical Center, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
19
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
20
|
Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem 2016; 8:647-80. [PMID: 27057774 DOI: 10.4155/fmc-2016-0012] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, heparanase has attracted considerable attention as a promising target for innovative pharmacological applications. Heparanase is a multifaceted protein endowed with enzymatic activity, as an endo-β-D-glucuronidase, and nonenzymatic functions. It is responsible for the cleavage of heparan sulfate side chains of proteoglycans, resulting in structural alterations of the extracellular matrix. Heparanase appears to be involved in major human diseases, from the most studied tumors to chronic inflammation, diabetic nephropathy, bone osteolysis, thrombosis and atherosclerosis, in addition to more recent investigation in various rare diseases. The present review provides an overview on heparanase, its biological role, inhibitors and possible clinical applications, covering the latest findings in these areas.
Collapse
|
21
|
Gross-Cohen M, Feld S, Doweck I, Neufeld G, Hasson P, Arvatz G, Barash U, Naroditsky I, Ilan N, Vlodavsky I. Heparanase 2 Attenuates Head and Neck Tumor Vascularity and Growth. Cancer Res 2016; 76:2791-801. [PMID: 27013193 DOI: 10.1158/0008-5472.can-15-1975] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 02/26/2016] [Indexed: 12/18/2022]
Abstract
The endoglycosidase heparanase specifically cleaves the heparan sulfate (HS) side chains on proteoglycans, an activity that has been implicated strongly in tumor metastasis and angiogenesis. Heparanase-2 (Hpa2) is a close homolog of heparanase that lacks intrinsic HS-degrading activity but retains the capacity to bind HS with high affinity. In head and neck cancer patients, Hpa2 expression was markedly elevated, correlating with prolonged time to disease recurrence and inversely correlating with tumor cell dissemination to regional lymph nodes, suggesting that Hpa2 functions as a tumor suppressor. The molecular mechanism associated with favorable prognosis following Hpa2 induction is unclear. Here we provide evidence that Hpa2 overexpression in head and neck cancer cells markedly reduces tumor growth. Restrained tumor growth was associated with a prominent decrease in tumor vascularity (blood and lymph vessels), likely due to reduced Id1 expression, a transcription factor highly implicated in VEGF-A and VEGF-C gene regulation. We also noted that tumors produced by Hpa2-overexpressing cells are abundantly decorated with stromal cells and collagen deposition, correlating with a marked increase in lysyl oxidase expression. Notably, heparanase enzymatic activity was unimpaired in cells overexpressing Hpa2, suggesting that reduced tumor growth is not caused by heparanase regulation. Moreover, growth of tumor xenografts by Hpa2-overexpressing cells was unaffected by administration of a mAb that targets the heparin-binding domain of Hpa2, implying that Hpa2 function does not rely on heparanase or heparan sulfate. Cancer Res; 76(9); 2791-801. ©2016 AACR.
Collapse
Affiliation(s)
- Miriam Gross-Cohen
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sari Feld
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ilana Doweck
- Department of Otolaryngology, Head and Neck Surgery, Carmel Medical Center, Haifa, Israel
| | - Gera Neufeld
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Peleg Hasson
- Department of Anatomy and Cell Biology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gil Arvatz
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Uri Barash
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inna Naroditsky
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
22
|
Hoeritzauer I, Phé V, Panicker JN. Urologic symptoms and functional neurologic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 139:469-481. [PMID: 27719863 DOI: 10.1016/b978-0-12-801772-2.00038-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The term functional urologic disorders covers a wide range of conditions related broadly to altered function rather than structure of the lower urinary tract, mainly of impaired urine voiding or storage. Confusingly, for a neurologic readership, these disorders of function may often be due to a urologic, gynecologic, or neurologic cause. However, there is a subset of functional urologic disorders where the cause remains uncertain and, in this chapter, we describe the clinical features of these disorders in turn: psychogenic urinary retention; Fowler's syndrome; paruresis (shy-bladder syndrome); dysfunctional voiding; idiopathic overactive bladder, and interstitial cystitis/bladder pain syndrome. Some of these overlap in terms of symptoms, but have become historically separated. Psychogenic urinary retention in particular has now largely been abandoned as a concept, in part because of the finding of specific urethral electromyogram findings in patients with this symptom now described as having Fowler's syndrome, and their successful treatment with sacral neurostimulation. In this chapter we review the poorly researched interface between these "idiopathic" functional urologic disorders and other functional disorders (e.g., irritable-bowel syndrome, fibromyalgia) as well as specifically functional neurologic disorders. We conclude that there may be a relationship and overlap between them and that this requires further research, especially in those idiopathic functional urologic disorders which involve disorders of the urethral sphincter (i.e., voluntary muscle).
Collapse
Affiliation(s)
- I Hoeritzauer
- Centre for Clinical Brain Sciences, University of Edinburgh, UK
| | - V Phé
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery, London, UK and Department of Urology, Pitié-Salpêtrière Academic Hospital, Paris, France
| | - J N Panicker
- Department of Uro-Neurology, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London.
| |
Collapse
|
23
|
Roberts NA, Hilton EN, Woolf AS. From gene discovery to new biological mechanisms: heparanases and congenital urinary bladder disease. Nephrol Dial Transplant 2015; 31:534-40. [PMID: 26315301 PMCID: PMC4805131 DOI: 10.1093/ndt/gfv309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/29/2015] [Indexed: 12/29/2022] Open
Abstract
We present a scientific investigation into the pathogenesis of a urinary bladder disease. The disease in question is called urofacial syndrome (UFS), a congenital condition inherited in an autosomal recessive manner. UFS features incomplete urinary bladder emptying and vesicoureteric reflux, with a high risk of recurrent urosepsis and end-stage renal disease. The story starts from a human genomic perspective, then proceeds through experiments that seek to determine the roles of the implicated molecules in embryonic frogs and newborn mice. A future aim would be to use such biological knowledge to intelligently choose novel therapies for UFS. We focus on heparanase proteins and the peripheral nervous system, molecules and tissues that appear to be key players in the pathogenesis of UFS and therefore must also be critical for functional differentiation of healthy bladders. These considerations allow the envisioning of novel biological treatments, although the potential difficulties of targeting the developing bladder in vivo should not be underestimated.
Collapse
Affiliation(s)
- Neil A Roberts
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Royal Manchester Children's Hospital, Manchester, UK
| | - Emma N Hilton
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Royal Manchester Children's Hospital, Manchester, UK
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Royal Manchester Children's Hospital, Manchester, UK
| |
Collapse
|
24
|
Stuart HM, Roberts NA, Hilton EN, McKenzie EA, Daly SB, Hadfield KD, Rahal JS, Gardiner NJ, Tanley SW, Lewis MA, Sites E, Angle B, Alves C, Lourenço T, Rodrigues M, Calado A, Amado M, Guerreiro N, Serras I, Beetz C, Varga RE, Silay MS, Darlow JM, Dobson MG, Barton DE, Hunziker M, Puri P, Feather SA, Goodship JA, Goodship THJ, Lambert HJ, Cordell HJ, Saggar A, Kinali M, Lorenz C, Moeller K, Schaefer F, Bayazit AK, Weber S, Newman WG, Woolf AS. Urinary tract effects of HPSE2 mutations. J Am Soc Nephrol 2014; 26:797-804. [PMID: 25145936 DOI: 10.1681/asn.2013090961] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Urofacial syndrome (UFS) is an autosomal recessive congenital disease featuring grimacing and incomplete bladder emptying. Mutations of HPSE2, encoding heparanase 2, a heparanase 1 inhibitor, occur in UFS, but knowledge about the HPSE2 mutation spectrum is limited. Here, seven UFS kindreds with HPSE2 mutations are presented, including one with deleted asparagine 254, suggesting a role for this amino acid, which is conserved in vertebrate orthologs. HPSE2 mutations were absent in 23 non-neurogenic neurogenic bladder probands and, of 439 families with nonsyndromic vesicoureteric reflux, only one carried a putative pathogenic HPSE2 variant. Homozygous Hpse2 mutant mouse bladders contained urine more often than did wild-type organs, phenocopying human UFS. Pelvic ganglia neural cell bodies contained heparanase 1, heparanase 2, and leucine-rich repeats and immunoglobulin-like domains-2 (LRIG2), which is mutated in certain UFS families. In conclusion, heparanase 2 is an autonomic neural protein implicated in bladder emptying, but HPSE2 variants are uncommon in urinary diseases resembling UFS.
Collapse
Affiliation(s)
- Helen M Stuart
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Neil A Roberts
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Emma N Hilton
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | | | - Sarah B Daly
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Kristen D Hadfield
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Jeffery S Rahal
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | | | - Simon W Tanley
- Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, United Kingdom
| | - Malcolm A Lewis
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Emily Sites
- Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - Brad Angle
- Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - Cláudia Alves
- Genetica Med. e Diagnostico Pre-Natal, Prof. Sergio Castedo, S.A., Porto, Portugal
| | - Teresa Lourenço
- Department of Medical Genetics, Hospital de Dona Estefânia, Lisboa, Portugal
| | - Márcia Rodrigues
- Department of Medical Genetics, Hospital de Dona Estefânia, Lisboa, Portugal
| | - Angelina Calado
- Department of Pediatrics, Centro Hospitalar do Barlavento Algarvio, Portimão, Portugal
| | - Marta Amado
- Department of Pediatrics, Centro Hospitalar do Barlavento Algarvio, Portimão, Portugal
| | - Nancy Guerreiro
- Department of Pediatrics, Centro Hospitalar do Barlavento Algarvio, Portimão, Portugal
| | - Inês Serras
- Department of Pediatrics, Centro Hospitalar do Barlavento Algarvio, Portimão, Portugal
| | | | - Rita-Eva Varga
- Faculty of Life Sciences and Faculty of Life Sciences and
| | - Mesrur Selcuk Silay
- Department of Urology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - John M Darlow
- National Centre for Medical Genetics and National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Mark G Dobson
- National Centre for Medical Genetics and National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - David E Barton
- National Centre for Medical Genetics and School of Medicine and Medical Sciences and
| | - Manuela Hunziker
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland; School of Medicine and Medical Sciences and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | - Judith A Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Timothy H J Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heather J Lambert
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Anand Saggar
- Department of Clinical Genetics, St George's, University of London, London, United Kingdom
| | - Maria Kinali
- Department of Paediatric Neurology, Chelsea and Westminster Hospital and Imperial College London, and Bupa Cromwell Hospital, London, United Kingdom
| | | | - Christian Lorenz
- Department of Pediatric Surgery and Urology, Klinikum Bremen-Mitte, Bremen, Germany
| | - Kristina Moeller
- Department of Pediatrics, Klinikum Links der Weser, Bremen, Germany
| | - Franz Schaefer
- Division of Paediatric Nephrology, Centre for Paediatric and Adolescent Medicine, University Hospital of Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Aysun K Bayazit
- Pediatric Nephrology, Cukurova University School of Medicine, Adana, Turkey; and
| | - Stefanie Weber
- Pediatrics II, University Children's Hospital Essen, Essen, Germany
| | - William G Newman
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester, United Kingdom;
| |
Collapse
|
25
|
Simion C, Cedano-Prieto ME, Sweeney C. The LRIG family: enigmatic regulators of growth factor receptor signaling. Endocr Relat Cancer 2014; 21:R431-43. [PMID: 25183430 PMCID: PMC4182143 DOI: 10.1530/erc-14-0179] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The leucine-rich repeats and immunoglobulin-like domains (LRIG) family of transmembrane proteins contains three vertebrate members (LRIG1, LRIG2 and LRIG3) and one member each in flies (Lambik) and worms (Sma-10). LRIGs have stepped into the spotlight as essential regulators of growth factor receptors, including receptor tyrosine and serine/threonine kinases. LRIGs have been found to both negatively (LRIG1 and LRIG3) and positively (Sma-10 and LRIG3) regulate growth factor receptor expression and signaling, although the precise molecular mechanisms by which LRIGs function are not yet understood. The most is known about LRIG1, which was recently demonstrated to be a tumor suppressor. Indeed, in vivo experiments reinforce the essential link between LRIG1 and repression of its targets for tissue homeostasis. LRIG1 has also been identified as a stem cell marker and regulator of stem cell quiescence in a variety of tissues, discussed within. Comparably, less is known about LRIG2 and LRIG3, although studies to date suggest that their functions are largely distinct from that of LRIG1 and that they likely do not serve as growth/tumor suppressors. Finally, the translational applications of expressing soluble forms of LRIG1 in LRIG1-deficient tumors are being explored and hold tremendous promise.
Collapse
Affiliation(s)
- Catalina Simion
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of Medicine, 4645 2nd Avenue, Sacramento, California 95817, USA
| | - Maria Elvira Cedano-Prieto
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of Medicine, 4645 2nd Avenue, Sacramento, California 95817, USA
| | - Colleen Sweeney
- Department of Biochemistry and Molecular MedicineUniversity of California Davis School of Medicine, 4645 2nd Avenue, Sacramento, California 95817, USA
| |
Collapse
|