1
|
Caparali EB, De Gregorio V, Barua M. Genotype-Based Molecular Mechanisms in Alport Syndrome. J Am Soc Nephrol 2025:00001751-990000000-00551. [PMID: 39899372 DOI: 10.1681/asn.0000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Alport syndrome is an inherited disorder characterized by kidney disease, sensorineural hearing loss, and ocular abnormalities. Alport syndrome is caused by pathogenic variants in COL4A3 , COL4A4 , or COL4A5 , which encode the α 3, α 4, and α 5 chains of type 4 collagen that forms a heterotrimer expressed in the glomerular basement membrane. Knowledge of its genetic basis has informed the development of different models in dogs, mice, and rats that reflect its autosomal and X-linked inheritance patterns as well as different mutation types, including protein-truncating and missense variants. A key difference between these two types is the synthesis of α 3 α 4 α 5(IV), which is not made in autosomal Alport syndrome (two pathogenic variants in trans or biallelic) or male patients with X-linked Alport syndrome due to protein-truncating variants. By contrast, α 3 α 4 α 5(IV) is synthesized in Alport syndrome because of missense variants. For missense variants, in vitro studies suggest that these cause impaired type 4 collagen trafficking and endoplasmic reticulum stress. For protein-truncating variants, knockout models suggest that persistence of an immature α 1 α 1 α 2(IV) network is associated with biomechanical strain, which activates endothelin-A receptors leading to mesangial filopodia formation. Moreover, studies suggest that activation of collagen receptors, integrins and discoidin domain receptor 1, play a role in disease propagation. In this review, we provide an overview of how these genotype-phenotype mechanisms are key for a precision medicine-based approach in the future.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | | | - Moumita Barua
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Miskin RP, DiPersio CM. Roles for epithelial integrin α3β1 in regulation of the microenvironment during normal and pathological tissue remodeling. Am J Physiol Cell Physiol 2024; 326:C1308-C1319. [PMID: 38497112 PMCID: PMC11371326 DOI: 10.1152/ajpcell.00128.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Integrin receptors for the extracellular matrix activate intracellular signaling pathways that are critical for tissue development, homeostasis, and regeneration/repair, and their loss or dysregulation contributes to many developmental defects and tissue pathologies. This review will focus on tissue remodeling roles for integrin α3β1, a receptor for laminins found in the basement membranes (BMs) that underlie epithelial cell layers. As a paradigm, we will discuss literature that supports a role for α3β1 in promoting ability of epidermal keratinocytes to modify their tissue microenvironment during skin development, wound healing, or tumorigenesis. Preclinical and clinical studies have shown that this role depends largely on ability of α3β1 to govern the keratinocyte's repertoire of secreted proteins, or the "secretome," including 1) matrix proteins and proteases involved in matrix remodeling and 2) paracrine-acting growth factors/cytokines that stimulate other cells with important tissue remodeling functions (e.g., endothelial cells, fibroblasts, inflammatory cells). Moreover, α3β1 signaling controls gene expression that helps epithelial cells carry out these functions, including genes that encode secreted matrix proteins, proteases, growth factors, or cytokines. We will review what is known about α3β1-dependent gene regulation through both transcription and posttranscriptional mRNA stability. Regarding the latter, we will discuss examples of α3β1-dependent alternative splicing (AS) or alternative polyadenylation (APA) that prevents inclusion of cis-acting mRNA sequences that would otherwise target the transcript for degradation via nonsense-mediated decay or destabilizing AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR). Finally, we will discuss prospects and anticipated challenges of exploiting α3β1 as a clinical target for the treatment of cancer or wound healing.
Collapse
Affiliation(s)
| | - C Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, New York, United States
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States
| |
Collapse
|
3
|
Drzewicka K, Zasłona Z. Metabolism-driven glycosylation represents therapeutic opportunities in interstitial lung diseases. Front Immunol 2024; 15:1328781. [PMID: 38550597 PMCID: PMC10973144 DOI: 10.3389/fimmu.2024.1328781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Metabolic changes are coupled with alteration in protein glycosylation. In this review, we will focus on macrophages that are pivotal in the pathogenesis of pulmonary fibrosis and sarcoidosis and thanks to their adaptable metabolism are an attractive therapeutic target. Examples presented in this review demonstrate that protein glycosylation regulates metabolism-driven immune responses in macrophages, with implications for fibrotic processes and granuloma formation. Targeting proteins that regulate glycosylation, such as fucosyltransferases, neuraminidase 1 and chitinase 1 could effectively block immunometabolic changes driving inflammation and fibrosis, providing novel avenues for therapeutic interventions.
Collapse
|
4
|
Frommherz LH, Sayar SB, Wang Y, Trefzer LK, He Y, Leppert J, Eßer P, Has C. Integrin α3 negative podocytes: A gene expression study. Matrix Biol Plus 2022; 16:100119. [PMID: 36060790 PMCID: PMC9429797 DOI: 10.1016/j.mbplus.2022.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022] Open
Abstract
New cell model to investigate the impact of loss of integrin α3 in podocytes. In this novel model, genes of the extracellular matrix and adhesome are mostly downregulated. Loss of integrin α3 results in changes of cell adhesion and spreading.
Integrin α3β1 is a cell adhesion receptor widely expressed in epithelial cells. Pathogenic variants in the gene encoding the integrin α3 subunit ITGA3 lead to a syndrome including interstitial lung disease, nephrotic syndrome, and epidermolysis bullosa (ILNEB). Renal involvement mainly consists of glomerular disease caused by loss of adhesion between podocytes and the glomerular basement membrane. The aim of this study was to characterize the impact of loss of integrin α3 on human podocytes. ITGA3 was stably knocked-out in the human podocyte cell line AB8/13, designated as PodoA3−, and in human proximal tubule epithelial cell line HK2 using the targeted genome editing technique CRISPR/Cas9. Cell clones were characterized by Sanger sequencing, quantitative PCR, Western Blot and immunofluorescence staining. RNASeq of integrin α3 negative cells and controls was performed to identify differential gene expression patterns. Differentiated PodoA3− did not substantially change morphology and adhesion under standard culture conditions, but displayed significantly reduced spreading and adhesion when seed on laminin 511 in serum free medium. Gene expression studies demonstrated a distinct dysregulation of the adhesion network with downregulation of most integrin α3 interaction partners. In agreement with this, biological processes such as “extracellular matrix organization” and “cell differentiation” as well as KEGG pathways such as “ECM-receptor interaction”, “focal adhesion” and the “PI3K-Akt signaling pathway” were significantly downregulated in human podocytes lacking the integrin α3 subunit.
Collapse
Affiliation(s)
- L H Frommherz
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Dermatology and Allergology, University Hospital, LMU Munich, Germany
| | - S B Sayar
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Y Wang
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - L K Trefzer
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Y He
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - J Leppert
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - P Eßer
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - C Has
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Nephrotic syndrome, skin involvement, and chronic lung disease: Answers. Pediatr Nephrol 2022; 38:1481-1483. [PMID: 35960348 DOI: 10.1007/s00467-022-05711-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
|
6
|
Lee SG, Kim SE, Kim SC, Lee SE. Biallelic Missense Mutations in the Integrin Alpha 3 Gene Causes Skin Fragility Without Structural Defects in Lungs and Kidneys. Acta Derm Venereol 2021; 102:adv00642. [PMID: 34904685 DOI: 10.2340/actadv.v101.897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract is missing (Short communication)
Collapse
Affiliation(s)
| | | | | | - Sang Eun Lee
- Department of Dermatology, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea.
| |
Collapse
|
7
|
Abstract
As the crucial non-cellular component of tissues, the extracellular matrix (ECM) provides both physical support and signaling regulation to cells. Some ECM molecules provide a fibrillar environment around cells, while others provide a sheet-like basement membrane scaffold beneath epithelial cells. In this Review, we focus on recent studies investigating the mechanical, biophysical and signaling cues provided to developing tissues by different types of ECM in a variety of developing organisms. In addition, we discuss how the ECM helps to regulate tissue morphology during embryonic development by governing key elements of cell shape, adhesion, migration and differentiation. Summary: This Review discusses our current understanding of how the extracellular matrix helps guide developing tissues by influencing cell adhesion, migration, shape and differentiation, emphasizing the biophysical cues it provides.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
8
|
Has C, Liu L, Bolling MC, Charlesworth AV, El Hachem M, Escámez MJ, Fuentes I, Büchel S, Hiremagalore R, Pohla-Gubo G, van den Akker PC, Wertheim-Tysarowska K, Zambruno G. Clinical practice guidelines for laboratory diagnosis of epidermolysis bullosa. Br J Dermatol 2019; 182:574-592. [PMID: 31090061 PMCID: PMC7064925 DOI: 10.1111/bjd.18128] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
Linked Comment: https://doi.org/10.1111/bjd.18377. https://doi.org/10.1111/bjd.18829 available online
Collapse
Affiliation(s)
- C Has
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - L Liu
- Viapath, St Thomas' Hospital, London, U.K
| | - M C Bolling
- Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - A V Charlesworth
- Centre de Reference des Maladies Rares de la Peau et des Muqueuses d'Origine Génétique, L'Archet Hôpital, Nice, France
| | - M El Hachem
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M J Escámez
- Bioengineering Department at Universidad Carlos III de Madrid (UC3M), Regenerative Medicine Unit at CIEMAT - U714 CIBER on Rare Diseases (ISCIII), Instituto de Investigación Sanitaria Fundación Jiménez Diaz (IISFJD), Madrid, Spain
| | - I Fuentes
- Fundación DEBRA Chile, Santiago, Chile.,Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - S Büchel
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - R Hiremagalore
- Adjunct Faculty, Centre for Human Genetics and Department of Dermatology and Pediatrics, Manipal Hospital, Bengaluru, India
| | - G Pohla-Gubo
- EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - P C van den Akker
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - G Zambruno
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
9
|
|
10
|
Reimer A, He Y, Has C. Update on Genetic Conditions Affecting the Skin and the Kidneys. Front Pediatr 2018; 6:43. [PMID: 29552546 PMCID: PMC5840143 DOI: 10.3389/fped.2018.00043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/14/2018] [Indexed: 01/01/2023] Open
Abstract
Genetic conditions affecting the skin and kidney are clinically and genetically heterogeneous, and target molecular components present in both organs. The molecular pathology involves defects of cell-matrix adhesion, metabolic or signaling pathways, as well as tumor suppressor genes. This article gives a clinically oriented overview of this group of disorders, highlighting entities which have been recently described, as well as the progress made in understanding well-known entities. The genetic bases as well as molecular cell biological mechanisms are described, with therapeutic applications.
Collapse
Affiliation(s)
- Antonia Reimer
- Department of Dermatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yinghong He
- Department of Dermatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Has C, He Y. Renal-skin syndromes. Cell Tissue Res 2017; 369:63-73. [DOI: 10.1007/s00441-017-2623-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 12/16/2022]
|
12
|
He Y, Maier K, Leppert J, Hausser I, Schwieger-Briel A, Weibel L, Theiler M, Kiritsi D, Busch H, Boerries M, Hannula-Jouppi K, Heikkilä H, Tasanen K, Castiglia D, Zambruno G, Has C. Monoallelic Mutations in the Translation Initiation Codon of KLHL24 Cause Skin Fragility. Am J Hum Genet 2016; 99:1395-1404. [PMID: 27889062 DOI: 10.1016/j.ajhg.2016.11.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/07/2016] [Indexed: 11/28/2022] Open
Abstract
The genetic basis of epidermolysis bullosa, a group of genetic disorders characterized by the mechanically induced formation of skin blisters, is largely known, but a number of cases still remain genetically unsolved. Here, we used whole-exome and targeted sequencing to identify monoallelic mutations, c.1A>G and c.2T>C, in the translation initiation codon of the gene encoding kelch-like protein 24 (KLHL24) in 14 individuals with a distinct skin-fragility phenotype and skin cleavage within basal keratinocytes. Remarkably, mutation c.1A>G occurred de novo and was recurrent in families originating from different countries. The striking similarities of the clinical features of the affected individuals point to a unique and very specific pathomechanism. We showed that mutations in the translation initiation codon of KLHL24 lead to the usage of a downstream translation initiation site with the same reading frame and formation of a truncated polypeptide. The pathobiology was examined in keratinocytes and fibroblasts of the affected individuals and via expression of mutant KLHL24, and we found mutant KLHL24 to be associated with abnormalities of intermediate filaments in keratinocytes and fibroblasts. In particular, KLHL24 mutations were associated with irregular and fragmented keratin 14. Recombinant overexpression of normal KLHL24 promoted keratin 14 degradation, whereas mutant KLHL24 showed less activity than the normal molecule. These findings identify KLHL24 mutations as a cause of skin fragility and identify a role for KLHL24 in maintaining the balance between intermediate filament stability and degradation required for skin integrity.
Collapse
Affiliation(s)
- Yinghong He
- Department of Dermatology, University Medical Center Freiburg, Freiburg 79104, Germany
| | - Kristin Maier
- Department of Dermatology, University Medical Center Freiburg, Freiburg 79104, Germany
| | - Juna Leppert
- Department of Dermatology, University Medical Center Freiburg, Freiburg 79104, Germany
| | - Ingrid Hausser
- Department of Pathology, University of Heidelberg, Heidelberg 69120, Germany
| | - Agnes Schwieger-Briel
- Department of Paediatric Dermatology, University Children's Hospital Zurich, Zurich 8091, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Lisa Weibel
- Department of Paediatric Dermatology, University Children's Hospital Zurich, Zurich 8091, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Martin Theiler
- Department of Paediatric Dermatology, University Children's Hospital Zurich, Zurich 8091, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Dimitra Kiritsi
- Department of Dermatology, University Medical Center Freiburg, Freiburg 79104, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Comprehensive Cancer Center Freiburg, Freiburg 79106, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Comprehensive Cancer Center Freiburg, Freiburg 79106, Germany
| | - Katariina Hannula-Jouppi
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland; Folkhälsan Institute of Genetics, University of Helsinki, Helsinki 00014, Finland
| | - Hannele Heikkilä
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland
| | - Kaisa Tasanen
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90014, Finland
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, Rome 00167, Italy
| | - Giovanna Zambruno
- Genetic and Rare Diseases Research Area, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome 00165, Italy
| | - Cristina Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg 79104, Germany.
| |
Collapse
|
13
|
Colombo EA, Spaccini L, Volpi L, Negri G, Cittaro D, Lazarevic D, Zirpoli S, Farolfi A, Gervasini C, Cubellis MV, Larizza L. Viable phenotype of ILNEB syndrome without nephrotic impairment in siblings heterozygous for unreported integrin alpha3 mutations. Orphanet J Rare Dis 2016; 11:136. [PMID: 27717396 PMCID: PMC5054609 DOI: 10.1186/s13023-016-0514-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integrin α3 (ITGA3) gene mutations are associated with Interstitial Lung disease, Nephrotic syndrome and Epidermolysis bullosa (ILNEB syndrome). To date only six patients are reported: all carried homozygous ITGA3 mutations and presented a dramatically severe phenotype leading to death before age 2 years, from multi-organ failure due to interstitial lung disease and congenital nephrotic syndrome. The involvement of skin and cutaneous adnexa was variable with sparse hair and nail dysplasia combined or not to skin lesions ranging from skin fragility to epidermolysis bullosa-like blistering. RESULTS We report on two siblings of 13 and 9 years born to non-consanguineous healthy parents, who display growth delay, severe pulmonary fibrosis with fatigue, dyspnea on exertion and wheezing, atrophic skin with erythematosus lesions, rare eyelashes/eyebrows and pachyonychia. By exome sequencing, we identified two unreported ITGA3 missense mutations, c.373G>A (p.(G125R)) in exon 3 and c.821G>A (p.(R274Q)) in exon 6, affecting highly conserved residues in the integrin α3 extracellular N-terminal β-propeller domain. Homology modelling of α3β1 heterodimer fragment, encompassing the mutation sites, showed that G125 plays a pivotal structural role in the β-propeller, while R274 might prevent the interaction between integrin and urokinase complex. CONCLUSION We report a variant of ILNEB syndrome in two siblings differing from the previously reported patients in the lack of nephrotic impairment and survival beyond childhood. Our siblings are the first reported compound heterozygous for ITGA3 mutations; this state as well as the hypomorphic nature of their p.(R274Q) mutation likely account for their survival.
Collapse
Affiliation(s)
- Elisa Adele Colombo
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Antonio di Rudinì 8, 20142, Milan, Italy.
| | - Luigina Spaccini
- Genetica Medica, Ospedale Buzzi, Azienda Ospedaliera Istituti Clinici di perfezionamento, Via Castelvetro 32, 20154, Milan, Italy
| | - Ludovica Volpi
- Dipartimento di Biotecnologie Mediche e di Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, 20133, Milan, Italy
| | - Gloria Negri
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Antonio di Rudinì 8, 20142, Milan, Italy
| | - Davide Cittaro
- Center for Translational Genomics and BioInformatics, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and BioInformatics, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Salvatore Zirpoli
- SC Radiologia e Neuroradiologia Pediatrica, Ospedale Buzzi, Azienda Ospedaliera Istituti Clinici di perfezionamento, Via Castelvetro 32, 20154, Milan, Italy
| | - Andrea Farolfi
- Dipartmento di Pediatria, Ospedale Buzzi, Azienda Ospedaliera Istituti Clinici di perfezionamento, Via Castelvetro 32, 20154, Milan, Italy
| | - Cristina Gervasini
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Antonio di Rudinì 8, 20142, Milan, Italy
| | - Maria Vittoria Cubellis
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Cupa Nuova Cintia 21, 80126, Naples, Italy
| | - Lidia Larizza
- Laboratorio di Citogenetica Medica e Genetica Molecolare, Centro di Ricerche e Tecnologie Biomediche IRCCS-Istituto Auxologico Italiano, Via Zucchi 18, 20095, Cusano Milanino, Italy
| |
Collapse
|
14
|
McGrath JA. Recently Identified Forms of Epidermolysis Bullosa. Ann Dermatol 2015; 27:658-66. [PMID: 26719633 PMCID: PMC4695416 DOI: 10.5021/ad.2015.27.6.658] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 12/03/2022] Open
Abstract
Epidermolysis bullosa (EB) comprises a collection of clinically diverse inherited blistering diseases that affect the skin and, in some subtypes, mucous membranes and other organs. Currently classified into four main subtypes (EB simplex, junctional EB, dystrophic EB, and Kindler syndrome, mainly based on the level of skin cleavage), the spectrum of EB extends to more than 30 clinical subtypes with pathogenic mutations in at least 18 distinct genes. This review focuses on three recent additions to variants of EB: all are autosomal recessive, and result from mutations in either DST-e (coding for epidermal dystonin, also known as the 230 kDa bullous pemphigoid antigen, BP230), EXPH5 (coding for exophilin-5, also known as Slac2-b), or ITGA3 (coding for the integrin alpha-3 subunit). Each of these new forms of EB is reviewed with respect to the initial gene discovery, clinical features, the current mutation database, and skin pathology. Awareness of these recently described forms of EB is helpful in the clinical evaluation of patients with EB and in defining genotype-phenotype correlation for inherited blistering skin diseases.
Collapse
Affiliation(s)
- John A McGrath
- St John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| |
Collapse
|