1
|
Saito S, Adachi N. Characterization and regulation of cell cycle-independent noncanonical gene targeting. Nat Commun 2024; 15:5044. [PMID: 38890315 PMCID: PMC11189520 DOI: 10.1038/s41467-024-49385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Homology-dependent targeted DNA integration, generally referred to as gene targeting, provides a powerful tool for precise genome modification; however, its fundamental mechanisms remain poorly understood in human cells. Here we reveal a noncanonical gene targeting mechanism that does not rely on the homologous recombination (HR) protein Rad51. This mechanism is suppressed by Rad52 inhibition, suggesting the involvement of single-strand annealing (SSA). The SSA-mediated gene targeting becomes prominent when DSB repair by HR or end-joining pathways is defective and does not require isogenic DNA, permitting 5% sequence divergence. Intriguingly, loss of Msh2, loss of BLM, and induction of a target-site DNA break all significantly and synergistically enhance SSA-mediated targeted integration. Most notably, SSA-mediated integration is cell cycle-independent, occurring in the G1 phase as well. Our findings provide unequivocal evidence for Rad51-independent targeted integration and unveil multiple mechanisms to regulate SSA-mediated targeted as well as random integration.
Collapse
Affiliation(s)
- Shinta Saito
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan
| | - Noritaka Adachi
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan.
| |
Collapse
|
2
|
Sp N, Kang DY, Kim DH, Lee HG, Park YM, Kim IH, Lee HK, Cho BW, Jang KJ, Yang YM. Methylsulfonylmethane inhibits cortisol-induced stress through p53-mediated SDHA/HPRT1 expression in racehorse skeletal muscle cells: A primary step against exercise stress. Exp Ther Med 2019; 19:214-222. [PMID: 31853292 PMCID: PMC6909739 DOI: 10.3892/etm.2019.8196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/25/2019] [Indexed: 11/05/2022] Open
Abstract
Cortisol is a hormone involved in stress during exercise. The application of natural compounds is a new potential approach for controlling cortisol-induced stress. Tumour suppressor protein p53 is activated during cellular stress. Succinate dehydrogenase complex subunit A (SDHA) and hypoxanthine phosphoribosyl transferase 1 (HPRT1) are considered to be two of the most stable reference genes when measuring stress during exercise in horses. In the present study cells were considered to be in a 'stressed state' if the levels of these stable genes and the highly stress responsive gene p53 were altered. It was hypothesized that a natural organic sulphur-containing compound, methylsulfonylmethane (MSM), could inhibit cortisol-induced stress in racing horse skeletal muscle cells by regulating SDHA, HPRT1 and p53 expression. After assessing cell viability using MTT assays, 20 µg/ml cortisol and 50 mM MSM were applied to horse skeletal muscle cell cultures. Reverse transcription-quantitative PCR and western blot analysis demonstrated increases in SDHA, HPRT1 and p53 expression in cells in response to cortisol treatment, which was inhibited or normalized by MSM treatment. To determine the relationship between p53 and SDHA/HPRT1 expression at a transcriptional level, horse gene sequences of SDHA and HPRT1 were probed to identify novel binding sites for p53 in the gene promoters, which were confirmed using a chromatin immunoprecipitation assay. The relationship between p53 and SDHA/HPRT1 expression was confirmed using western blot analysis following the application of pifithrin-α, a p53 inhibitor. These results suggested that MSM is a potential candidate drug for the inhibition of cortisol-induced stress in racehorse skeletal muscle cells.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Do Hoon Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Hyo Gun Lee
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Il Ho Kim
- Nara Biotech Co., Ltd., Jeonju, Jeollabuk 54852, Republic of Korea
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| |
Collapse
|
3
|
Baker O, Tsurkan S, Fu J, Klink B, Rump A, Obst M, Kranz A, Schröck E, Anastassiadis K, Stewart AF. The contribution of homology arms to nuclease-assisted genome engineering. Nucleic Acids Res 2017; 45:8105-8115. [PMID: 28582546 PMCID: PMC5570031 DOI: 10.1093/nar/gkx497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023] Open
Abstract
Designer nucleases like CRISPR/Cas9 enable fluent site-directed damage or small mutations in many genomes. Strategies for their use to achieve more complex tasks like regional exchanges for gene humanization or the establishment of conditional alleles are still emerging. To optimize Cas9-assisted targeting, we measured the relationship between targeting frequency and homology length in targeting constructs using a hypoxanthine-guanine phosphoribosyl-transferase assay in mouse embryonic stem cells. Targeting frequency with supercoiled plasmids improved steeply up to 2 kb total homology and continued to increase with even longer homology arms, thereby implying that Cas9-assisted targeting efficiencies can be improved using homology arms of 1 kb or greater. To humanize the Kmt2d gene, we built a hybrid mouse/human targeting construct in a bacterial artificial chromosome by recombineering. To simplify the possible outcomes, we employed a single Cas9 cleavage strategy and best achieved the intended 42 kb regional exchange with a targeting construct including a very long homology arm to recombine ∼42 kb away from the cleavage site. We recommend the use of long homology arm targeting constructs for accurate and efficient complex genome engineering, particularly when combined with the simplifying advantages of using just one Cas9 cleavage at the genome target site.
Collapse
Affiliation(s)
- Oliver Baker
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany.,Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Sarah Tsurkan
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Jun Fu
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany.,Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Andreas Rump
- Institute for Clinical Genetics, Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Mandy Obst
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany.,Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Andrea Kranz
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden 01307, Germany
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - A Francis Stewart
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| |
Collapse
|
4
|
Ahrabi S, Sarkar S, Pfister SX, Pirovano G, Higgins GS, Porter ACG, Humphrey TC. A role for human homologous recombination factors in suppressing microhomology-mediated end joining. Nucleic Acids Res 2016; 44:5743-57. [PMID: 27131361 PMCID: PMC4937322 DOI: 10.1093/nar/gkw326] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022] Open
Abstract
DNA double-strand breaks (DSBs) are toxic lesions, which if improperly repaired can result in cell death or genomic instability. DSB repair is usually facilitated by the classical non-homologous end joining (C-NHEJ), or homologous recombination (HR) pathways. However, a mutagenic alternative NHEJ pathway, microhomology-mediated end joining (MMEJ), can also be deployed. While MMEJ is suppressed by C-NHEJ, the relationship between HR and MMEJ is less clear. Here, we describe a role for HR genes in suppressing MMEJ in human cells. By monitoring DSB mis-repair using a sensitive HPRT assay, we found that depletion of HR proteins, including BRCA2, BRCA1 or RPA, resulted in a distinct mutational signature associated with significant increases in break-induced mutation frequencies, deletion lengths and the annealing of short regions of microhomology (2-6 bp) across the break-site. This signature was dependent on CtIP, MRE11, POLQ and PARP, and thus indicative of MMEJ. In contrast to CtIP or MRE11, depletion of BRCA1 resulted in increased partial resection and MMEJ, thus revealing a functional distinction between these early acting HR factors. Together these findings indicate that HR factors suppress mutagenic MMEJ following DSB resection.
Collapse
Affiliation(s)
- Sara Ahrabi
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sovan Sarkar
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sophia X Pfister
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Giacomo Pirovano
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Geoff S Higgins
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W12 0NN, UK
| | - Timothy C Humphrey
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|