1
|
Soto Barros J, Braddock D, Carpenter TO. Hypophosphatemic rickets: An unexplained early feature of craniometaphyseal dysplasia. Bone Rep 2023; 19:101707. [PMID: 37654679 PMCID: PMC10466911 DOI: 10.1016/j.bonr.2023.101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Craniometaphyseal dysplasia (CMD) is an infrequently occurring skeletal dysplasia often caused by a mutation in ANKH. The most common features are early and progressive hyperostosis of craniofacial bones, which may cause obstruction of cranial nerves, and metaphyseal flaring of long bones. Rarely, rickets has been associated with CMD, occurring early in the course of the disease. We report an infant with CMD who presented with elevated serum alkaline phosphatase activity and low serum phosphorus at age 1 month and radiographic changes of rickets at 3 months of age. Further biochemical investigations revealed a high tubular reabsorption of phosphate and suppressed FGF23 level congruent with a deficit of phosphorus availability. Therapy with phosphorus was started at 4 months of age; calcitriol was subsequently added upon emergence of secondary hyperparathyroidism. A heterozygous pathogenic variant in ANKH c.1124_1126del (p.Ser375del) was identified. At 19 months of age therapy was discontinued in view of the corrected biochemical profile and radiographic improvement of rickets. ©The Authors. All rights reserved.
Collapse
Affiliation(s)
- Julio Soto Barros
- Department of Pediatrics, Faculty of Medicine, University of Concepcion, Chacabuco esquina Janequeo S/N, 4070106 Concepcion, Chile
- Las Higueras Hospital, Alto Horno 777, 4270918 Talcahuano, Chile
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, PO Box 208064, New Haven, CT 06520-8064, USA
| | - Demetrios Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Thomas O Carpenter
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, PO Box 208064, New Haven, CT 06520-8064, USA
| |
Collapse
|
2
|
Lopdell TJ. Using QTL to Identify Genes and Pathways Underlying the Regulation and Production of Milk Components in Cattle. Animals (Basel) 2023; 13:ani13050911. [PMID: 36899768 PMCID: PMC10000085 DOI: 10.3390/ani13050911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Milk is a complex liquid, and the concentrations of many of its components are under genetic control. Many genes and pathways are known to regulate milk composition, and the purpose of this review is to highlight how the discoveries of quantitative trait loci (QTL) for milk phenotypes can elucidate these pathways. The main body of this review focuses primarily on QTL discovered in cattle (Bos taurus) as a model species for the biology of lactation, and there are occasional references to sheep genetics. The following section describes a range of techniques that can be used to help identify the causative genes underlying QTL when the underlying mechanism involves the regulation of gene expression. As genotype and phenotype databases continue to grow and diversify, new QTL will continue to be discovered, and although proving the causality of underlying genes and variants remains difficult, these new data sets will further enhance our understanding of the biology of lactation.
Collapse
|
3
|
Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol 2023; 11:1140605. [PMID: 36895788 PMCID: PMC9988951 DOI: 10.3389/fcell.2023.1140605] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.
Collapse
Affiliation(s)
| | - Anne Spang
- *Correspondence: Dominik P. Buser, ; Anne Spang,
| |
Collapse
|
4
|
Seidel F, Holtgrewe M, Al-Wakeel-Marquard N, Opgen-Rhein B, Dartsch J, Herbst C, Beule D, Pickardt T, Klingel K, Messroghli D, Berger F, Schubert S, Kühnisch J, Klaassen S. Pathogenic Variants Associated With Dilated Cardiomyopathy Predict Outcome in Pediatric Myocarditis. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003250. [PMID: 34213952 PMCID: PMC8373449 DOI: 10.1161/circgen.120.003250] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Myocarditis is one of the most common causes leading to heart failure in children and a possible genetic background has been postulated. We sought to characterize the clinical and genetic characteristics in patients with myocarditis ≤18 years of age to predict outcome. METHODS A cohort of 42 patients (Genetics in Pediatric Myocarditis) with biopsy-proven myocarditis underwent genetic testing with targeted panel sequencing of cardiomyopathy-associated genes. Genetics in Pediatric Myocarditis patients were divided into subgroups according to the phenotype of dilated cardiomyopathy (DCM) at presentation, resulting in 22 patients without DCM (myocarditis without phenotype of DCM) and 20 patients with DCM (myocarditis with phenotype of DCM). RESULTS Myocarditis with phenotype of DCM patients (median age 1.4 years) were younger than myocarditis without phenotype of DCM patients (median age 16.1 years; P<0.001) and were corresponding to heart failure-like and coronary syndrome-like phenotypes, respectively. At least one likely pathogenic/pathogenic variant was identified in 9 out of 42 patients (22%), 8 of them were heterozygous, and 7 out of 9 were in myocarditis with phenotype of DCM. Likely pathogenic/pathogenic variants were found in genes validated for primary DCM (BAG3, DSP, LMNA, MYH7, TNNI3, TNNT2, and TTN). Rare variant enrichment analysis revealed significant accumulation of high-impact disease variants in myocarditis with phenotype of DCM versus healthy individuals (P=0.0003). Event-free survival was lower (P=0.008) in myocarditis with phenotype of DCM patients compared with myocarditis without phenotype of DCM and primary DCM. CONCLUSIONS We report heterozygous likely pathogenic/pathogenic variants in biopsy-proven pediatric myocarditis. Myocarditis patients with DCM phenotype were characterized by early-onset heart failure, significant enrichment of likely pathogenic/pathogenic variants, and poor outcome. These phenotype-specific and age group-specific findings will be useful for personalized management of these patients. Genetic evaluation in children newly diagnosed with myocarditis and DCM phenotype is warranted.
Collapse
Affiliation(s)
- Franziska Seidel
- German Heart Center Berlin, Department of Congenital Heart Disease - Pediatric Cardiology (F.S., N.A.-W.-M., F.B., S.S.).,Department of Pediatric Cardiology (F.S., B.O.-R., F.B., S.K.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin & Berlin Institute of Health.,Institute for Imaging Science & Computational Modelling in Cardiovascular Medicine (F.S., N.A.-W.-M.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin & Berlin Institute of Health.,Experimental & Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association & Charité - Universitätsmedizin Berlin (F.S., J.D., C.H., J.K., S.K.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin (F.S., N.A.-W.-M., F.B., S.S., J.K., S.K.)
| | - Manuel Holtgrewe
- Core Facility Bioinformatik (M.H.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin & Berlin Institute of Health.,Berlin Institute of Health (BIH), Core Unit Bioinformatics (M.H., D.B.)
| | - Nadya Al-Wakeel-Marquard
- German Heart Center Berlin, Department of Congenital Heart Disease - Pediatric Cardiology (F.S., N.A.-W.-M., F.B., S.S.).,Institute for Imaging Science & Computational Modelling in Cardiovascular Medicine (F.S., N.A.-W.-M.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin & Berlin Institute of Health.,DZHK (German Centre for Cardiovascular Research), partner site Berlin (F.S., N.A.-W.-M., F.B., S.S., J.K., S.K.)
| | - Bernd Opgen-Rhein
- Department of Pediatric Cardiology (F.S., B.O.-R., F.B., S.K.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin & Berlin Institute of Health
| | - Josephine Dartsch
- Experimental & Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association & Charité - Universitätsmedizin Berlin (F.S., J.D., C.H., J.K., S.K.)
| | - Christopher Herbst
- Experimental & Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association & Charité - Universitätsmedizin Berlin (F.S., J.D., C.H., J.K., S.K.)
| | - Dieter Beule
- Berlin Institute of Health (BIH), Core Unit Bioinformatics (M.H., D.B.).,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (D.B.)
| | - Thomas Pickardt
- Competence Network for Congenital Heart Defects, Berlin (T.P.)
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen (K.K.)
| | - Daniel Messroghli
- Department of Internal Medicine & Cardiology (D.M.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin & Berlin Institute of Health.,German Heart Center Berlin, Department of Internal Medicine - Cardiology (D.M.)
| | - Felix Berger
- German Heart Center Berlin, Department of Congenital Heart Disease - Pediatric Cardiology (F.S., N.A.-W.-M., F.B., S.S.).,Department of Pediatric Cardiology (F.S., B.O.-R., F.B., S.K.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin & Berlin Institute of Health.,DZHK (German Centre for Cardiovascular Research), partner site Berlin (F.S., N.A.-W.-M., F.B., S.S., J.K., S.K.)
| | - Stephan Schubert
- German Heart Center Berlin, Department of Congenital Heart Disease - Pediatric Cardiology (F.S., N.A.-W.-M., F.B., S.S.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin (F.S., N.A.-W.-M., F.B., S.S., J.K., S.K.).,Center for Congenital Heart Disease/Pediatric Cardiology, Heart- and Diabetescenter NRW & University Clinic of Ruhr-University Bochum, Bad Oeynhausen, Germany (S.S.)
| | - Jirko Kühnisch
- Experimental & Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association & Charité - Universitätsmedizin Berlin (F.S., J.D., C.H., J.K., S.K.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin (F.S., N.A.-W.-M., F.B., S.S., J.K., S.K.)
| | - Sabine Klaassen
- Department of Pediatric Cardiology (F.S., B.O.-R., F.B., S.K.), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin & Berlin Institute of Health.,Experimental & Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association & Charité - Universitätsmedizin Berlin (F.S., J.D., C.H., J.K., S.K.).,DZHK (German Centre for Cardiovascular Research), partner site Berlin (F.S., N.A.-W.-M., F.B., S.S., J.K., S.K.)
| |
Collapse
|
5
|
Fujii Y, Kozak E, Dutra E, Varadi A, Reichenberger EJ, Chen IP. Restriction of Dietary Phosphate Ameliorates Skeletal Abnormalities in a Mouse Model for Craniometaphyseal Dysplasia. J Bone Miner Res 2020; 35:2070-2081. [PMID: 33463757 PMCID: PMC9164311 DOI: 10.1002/jbmr.4110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 11/08/2022]
Abstract
Craniometaphyseal dysplasia (CMD), a rare genetic bone disorder, is characterized by lifelong progressive thickening of craniofacial bones and metaphyseal flaring of long bones. The autosomal dominant form of CMD is caused by mutations in the progressive ankylosis gene ANKH (mouse ortholog Ank), encoding a pyrophosphate (PPi) transporter. We previously reported reduced formation and function of osteoblasts and osteoclasts in a knockin (KI) mouse model for CMD (AnkKI/KI) and in CMD patients. We also showed rapid protein degradation of mutant ANK/ANKH. Mutant ANK protein displays reduced PPi transport, which may alter the inorganic phosphate (Pi) and PPi ratio, an important regulatory mechanism for bone mineralization. Here we investigate whether reducing dietary Pi intake can ameliorate the CMD-like skeletal phenotype by comparing male and female Ank+/+ and AnkKI/KI mice exposed to a low (0.3%) and normal (0.7%) Pi diet for 13 weeks from birth. Serum Pi and calcium (Ca) levels were not significantly changed by diet, whereas PTH and 25-hydroxy vitamin D (25-OHD) were decreased by low Pi diet but only in male Ank+/+ mice. Importantly, the 0.3% Pi diet significantly ameliorated mandibular hyperostosis in both sexes of AnkKI/KI mice. A tendency of decreased femoral trabeculation was observed in male and female Ank+/+ mice as well as in male AnkKI/KI mice fed with the 0.3% Pi diet. In contrast, in female AnkKI/KI mice the 0.3% Pi diet resulted in increased metaphyseal trabeculation. This was also the only group that showed increased bone formation rate. Low Pi diet led to increased osteoclast numbers and increased bone resorption in all mice. We conclude that lowering but not depleting dietary Pi delays the development of craniofacial hyperostosis in CMD mice without severely compromising serum levels of Pi, Ca, PTH, and 25-OHD. These findings may have implications for better clinical care of patients with CMD. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Eszter Kozak
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Eliane Dutra
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Andras Varadi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
6
|
Vijen S, Hawes C, Runions J, Russell RGG, Wordsworth BP, Carr AJ, Pink RC, Zhang Y. Differences in intracellular localisation of ANKH mutants that relate to mechanisms of calcium pyrophosphate deposition disease and craniometaphyseal dysplasia. Sci Rep 2020; 10:7408. [PMID: 32366894 PMCID: PMC7198517 DOI: 10.1038/s41598-020-63911-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/07/2020] [Indexed: 11/09/2022] Open
Abstract
ANKH mutations are associated with calcium pyrophosphate deposition disease and craniometaphyseal dysplasia. This study investigated the effects of these ANKH mutants on cellular localisation and associated biochemistry. We generated four ANKH overexpression-plasmids containing either calcium pyrophosphate deposition disease or craniometaphyseal dysplasia linked mutations: P5L, E490del and S375del, G389R. They were transfected into CH-8 articular chondrocytes and HEK293 cells. The ANKH mutants dynamic differential localisations were imaged and we investigated the interactions with the autophagy marker LC3. Extracellular inorganic pyrophosphate, mineralization, ENPP1 activity expression of ENPP1, TNAP and PIT-1 were measured. P5L delayed cell membrane localisation but once recruited into the membrane it increased extracellular inorganic pyrophosphate, mineralization, and ENPP1 activity. E490del remained mostly cytoplasmic, forming punctate co-localisations with LC3, increased mineralization, ENPP1 and ENPP1 activity with an initial but unsustained increase in TNAP and PIT-1. S375del trended to decrease extracellular inorganic pyrophosphate, increase mineralization. G389R delayed cell membrane localisation, trended to decrease extracellular inorganic pyrophosphate, increased mineralization and co-localised with LC3. Our results demonstrate a link between pathological localisation of ANKH mutants with different degrees in mineralization. Furthermore, mutant ANKH functions are related to synthesis of defective proteins, inorganic pyrophosphate transport, ENPP1 activity and expression of ENPP1, TNAP and PIT-1.
Collapse
Affiliation(s)
- Sunny Vijen
- Department of Biology and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biology and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - John Runions
- Department of Biology and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - R Graham G Russell
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Institute of Musculoskeletal Sciences, Windmill Road, Oxford, OX3 7HE, UK
| | - B Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Institute of Musculoskeletal Sciences, Windmill Road, Oxford, OX3 7HE, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford Institute of Musculoskeletal Sciences, Windmill Road, Oxford, OX3 7HE, UK
| | - Ryan C Pink
- Department of Biology and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| | - Yun Zhang
- Department of Biology and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
7
|
Van Gils M, Nollet L, Verly E, Deianova N, Vanakker OM. Cellular signaling in pseudoxanthoma elasticum: an update. Cell Signal 2019; 55:119-129. [PMID: 30615970 DOI: 10.1016/j.cellsig.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Pseudoxanthoma elasticum is an autosomal recessive genodermatosis with variable expression, due to mutations in the ABCC6 or ENPP1 gene. It is characterized by elastic fiber mineralization and fragmentation, resulting in skin, eye and cardiovascular symptoms. Significant advances have been made in the last 20 years with respect to the phenotypic characterization and pathophysiological mechanisms leading to elastic fiber mineralization. Nonetheless, the substrates of the ABCC6 transporter - the main cause of PXE - remain currently unknown. Though the precise mechanisms linking the ABCC6 transporter to mineralization of the extracellular matrix are unclear, several studies have looked into the cellular consequences of ABCC6 deficiency in PXE patients and/or animal models. In this paper, we compile the evidence on cellular signaling in PXE, which seems to revolve mainly around TGF-βs, BMPs and inorganic pyrophosphate signaling cascades. Where conflicting results or fragmented data are present, we address these with novel signaling data. This way, we aim to better understand the up- and down-stream signaling of TGF-βs and BMPs in PXE and we demonstrate that ANKH deficiency can be an additional mechanism contributing to decreased serum PPi levels in PXE patients.
Collapse
Affiliation(s)
- M Van Gils
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - L Nollet
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - E Verly
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - N Deianova
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - O M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium.
| |
Collapse
|
8
|
Kanaujiya J, Bastow E, Luxmi R, Hao Z, Zattas D, Hochstrasser M, Reichenberger EJ, Chen IP. Rapid degradation of progressive ankylosis protein (ANKH) in craniometaphyseal dysplasia. Sci Rep 2018; 8:15710. [PMID: 30356088 PMCID: PMC6200807 DOI: 10.1038/s41598-018-34157-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022] Open
Abstract
Mutations in the progressive ankylosis protein (NP_473368, human ANKH) cause craniometaphyseal dysplasia (CMD), characterized by progressive thickening of craniofacial bones and widened metaphyses in long bones. The pathogenesis of CMD remains largely unknown, and treatment for CMD is limited to surgical intervention. We have reported that knock-in mice (AnkKI/KI) carrying a F377del mutation in ANK (NM_020332, mouse ANK) replicate many features of CMD. Interestingly, ablation of the Ank gene in AnkKO/KO mice also leads to several CMD-like phenotypes. Mutations causing CMD led to decreased steady-state levels of ANK/ANKH protein due to rapid degradation. While wild type (wt) ANK was mostly associated with plasma membranes, endoplasmic reticulum (ER), Golgi apparatus and lysosomes, CMD-linked mutant ANK was aberrantly localized in cytoplasm. Inhibitors of proteasomal degradation significantly restored levels of overexpressed mutant ANK, whereas endogenous CMD-mutant ANK/ANKH levels were more strongly increased by inhibitors of lysosomal degradation. However, these inhibitors do not correct the mislocalization of mutant ANK. Co-expressing wt and CMD-mutant ANK in cells showed that CMD-mutant ANK does not negatively affect wt ANK expression and localization, and vice versa. In conclusion, our finding that CMD mutant ANK/ANKH protein is short-lived and mislocalized in cells may be part of the CMD pathogenesis.
Collapse
Affiliation(s)
- Jitendra Kanaujiya
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, United States
| | - Edward Bastow
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT, 06030, United States
| | - Raj Luxmi
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, United States
| | - Zhifang Hao
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, United States
| | - Dimitrios Zattas
- Program in Structural Biology, Sloan Kettering Institute, New York, NY, 10065, United States
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Department of Molecular, Cellular and Development Biology, Yale University, New Haven, CT, 06520, United States
| | - Ernst J Reichenberger
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT, 06030, United States
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, United States.
| |
Collapse
|