1
|
Meyer N, Torrent J, Balme S. Characterizing Prion-Like Protein Aggregation: Emerging Nanopore-Based Approaches. SMALL METHODS 2024; 8:e2400058. [PMID: 38644684 PMCID: PMC11672191 DOI: 10.1002/smtd.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/10/2024] [Indexed: 04/23/2024]
Abstract
Prion-like protein aggregation is characteristic of numerous neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This process involves the formation of aggregates ranging from small and potentially neurotoxic oligomers to highly structured self-propagating amyloid fibrils. Various approaches are used to study protein aggregation, but they do not always provide continuous information on the polymorphic, transient, and heterogeneous species formed. This review provides an updated state-of-the-art approach to the detection and characterization of a wide range of protein aggregates using nanopore technology. For each type of nanopore, biological, solid-state polymer, and nanopipette, discuss the main achievements for the detection of protein aggregates as well as the significant contributions to the understanding of protein aggregation and diagnostics.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonCedex 5Montpellier34095France
- INMUniversity of MontpellierINSERMMontpellier34095France
| | - Joan Torrent
- INMUniversity of MontpellierINSERMMontpellier34095France
| | - Sébastien Balme
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonCedex 5Montpellier34095France
| |
Collapse
|
2
|
Zhuang J, Jiang Y, Chen Y, Mao A, Chen J, Chen C. Third-generation sequencing identified two rare α-chain variants leading to hemoglobin variants in Chinese population. Mol Genet Genomic Med 2024; 12:e2365. [PMID: 38284449 PMCID: PMC10801340 DOI: 10.1002/mgg3.2365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/16/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Rare and novel variants of HBA1/2 and HBB genes resulting in thalassemia and hemoglobin (Hb) variants have been increasingly identified. Our goal was to identify two rare Hb variants in Chinese population using third-generation sequencing (TGS) technology. METHODS Enrolled in this study were two Chinese families from Fujian Province. Hematological screening was conducted using routine blood analysis and Hb capillary electrophoresis analysis. Routine thalassemia gene testing was carried out to detect the common mutations of α- and β-thalassemia in Chinese population. Rare or novel α- and β-globin gene variants were further investigated by TGS. RESULTS The proband of family 1 was a female aged 32, with decreased levels of mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), Hb A2, and abnormal Hb bands in zone 5 and zone 12. No common thalassemia mutations were detected by routine thalassemia analysis, while a rare α-globin gene variant Hb Jilin [α139(HC1)Lys>Gln (AAA>CAA); HBA2:c.418A>C] was identified by TGS. Subsequent pedigree analysis showed that the proband's son also harbored the Hb Jilin variant with slightly low levels of MCH, Hb A2, and abnormal Hb bands. The proband of family 2 was a male at 41 years of age, exhibiting normal MCV and MCH, but a low level of Hb A2 and an abnormal Hb band in zone 12 without any common α- and β-thalassemia mutations. The subsequent TGS detection demonstrated a rare Hb Beijing [α16(A14)Lys>Asn (AAG>AAT); HBA2:c.51G>T] variant in HBA2 gene. CONCLUSION In this study, for the first time, we present two rare Hb variants of Hb Jilin and Hb Beijing in Fujian Province, Southeast China, using TGS technology.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian, China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian, China
| | - Yu'e Chen
- Department of Ultrasound, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian, China
| | - Aiping Mao
- Department of TGS Research and Development, Berry Genomics Corporation, Beijing, China
| | - Junwei Chen
- Department of Children Health Care, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
3
|
Wilkinson H, McCarthy HS, Perry J, Smith T, Wright K, Cool P. Genomic Sequencing to Diagnose Prosthetic Joint Infection in the Knee: A Case Report. Cureus 2023; 15:e38788. [PMID: 37303456 PMCID: PMC10250129 DOI: 10.7759/cureus.38788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
There is currently no "gold-standard" method to diagnose prosthetic joint infections (PJI), and the current practice of using microbiological cultures has many limitations. The identification of the bacterial species causing the infection is crucial to guide treatment; therefore, a robust method needs to be developed. Here, we attempt to use genomic sequencing with the MinION device from Oxford Nanopore Technologies to identify the species of bacteria causing PJI in a 61-year-old male. Genomic sequencing with the MinION presents an opportunity to produce species identification in real-time and at a smaller cost than current methods. By comparing results with standard hospital microbiological cultures, this study suggests that nanopore sequencing using the MinION could be a faster and more sensitive method to diagnose PJI than microbiological cultures.
Collapse
Affiliation(s)
| | - Helen S McCarthy
- Spinal Studies, The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, GBR
- School of Pharmacy and Bioengineering, Keele University, Keele, GBR
| | - Jade Perry
- Spinal Studies, The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, GBR
- School of Pharmacy and Bioengineering, Keele University, Keele, GBR
| | - Tony Smith
- Surgery, The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, GBR
| | - Karina Wright
- Spinal Studies, The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, GBR
- School of Pharmacy and Bioengineering, Keele University, Keele, GBR
| | - Paul Cool
- Orthopaedic Oncology, The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, GBR
- Medical Sciences, Keele University, Keele, GBR
| |
Collapse
|
4
|
Zhuang J, Chen C, Fu W, Wang Y, Zhuang Q, Lu Y, Xie T, Xu R, Zeng S, Jiang Y, Xie Y, Wang G. Third-Generation Sequencing as a New Comprehensive Technology for Identifying Rare α- and β-Globin Gene Variants in Thalassemia Alleles in the Chinese Population. Arch Pathol Lab Med 2023; 147:208-214. [PMID: 35639603 DOI: 10.5858/arpa.2021-0510-oa] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 02/05/2023]
Abstract
CONTEXT.— Identification of rare thalassemia variants requires a combination of multiple diagnostic technologies. OBJECTIVE.— To investigate a new approach of comprehensive analysis of thalassemia alleles based on third-generation sequencing (TGS) for identification of α- and β-globin gene variants. DESIGN.— Enrolled in this study were 70 suspected carriers of rare thalassemia variants. Routine gap-polymerase chain reaction and DNA sequencing were used to detect rare thalassemia variants, and TGS technology was performed to identify α- and β-globin gene variants. RESULTS.— Twenty-three cases that carried rare variants in α- and β-globin genes were identified by the routine detection methods. TGS technology yielded a 7.14% (5 of 70) increment of rare α- and β-globin gene variants as compared with the routine methods. Among them, the rare deletional genotype of -THAI was the most common variant. In addition, rare variants of CD15 (G>A) (HBA2:c.46G>A), CD117/118(+TCA) (HBA1:c.354_355insTCA), and β-thalassemia 3.5-kilobase gene deletion were first identified in Fujian Province, China; to the best of our knowledge, this is the second report in the Chinese population. Moreover, HBA1:c.-24C>G, IVS-II-55 (G>T) (HBA1:c.300+55G>T) and hemoglobin (Hb) Maranon (HBA2:c.94A>G) were first identified in the Chinese population. We also identified rare Hb variants of HbC, HbG-Honolulu, Hb Miyashiro, and HbG-Coushatta in this study. CONCLUSIONS.— TGS technology can effectively and accurately detect deletional and nondeletional thalassemia variants simultaneously in one experiment. Our study also demonstrated the application value of TGS-based comprehensive analysis of thalassemia alleles in the detection of rare thalassemia gene variants.
Collapse
Affiliation(s)
- Jianlong Zhuang
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Chunnuan Chen
- From the Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China (Chen)
| | - Wanyu Fu
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Yuanbai Wang
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Qianmei Zhuang
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Yulin Lu
- From the Third-Generation Sequencing Business Unit, Berry Genomics Corporation, Beijing, China (Lu, T. Xie, Xu)
| | - Tiantian Xie
- From the Third-Generation Sequencing Business Unit, Berry Genomics Corporation, Beijing, China (Lu, T. Xie, Xu).,From the Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (Y. Xie)
| | - Ruofan Xu
- From the Third-Generation Sequencing Business Unit, Berry Genomics Corporation, Beijing, China (Lu, T. Xie, Xu)
| | - Shuhong Zeng
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Yuying Jiang
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China.,Authors Jiang, Y. Xie and G. Wang are co-lead authors
| | - Yingjun Xie
- From the Third-Generation Sequencing Business Unit, Berry Genomics Corporation, Beijing, China (Lu, T. Xie, Xu).,From the Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China (Y. Xie).,Authors Jiang, Y. Xie and G. Wang are co-lead authors
| | - Gaoxiong Wang
- From the Prenatal Diagnosis Center (J. Zhuang, Fu, Y. Wang, Q. Zhuang, Zeng, Jiang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China.,From the Department of Surgery (G. Wang), Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China.,Authors Jiang, Y. Xie and G. Wang are co-lead authors
| |
Collapse
|
5
|
Wang Q, Zhang C, Liu S, Liu T, Ni R, Liu X, Zhong P, Wu Q, Xu T, Ke H, Tian W, Cao L. Long-read sequencing identified intronic (GGCCTG)n expansion in NOP56 in one SCA36 family and literature review. Clin Neurol Neurosurg 2022; 223:107503. [DOI: 10.1016/j.clineuro.2022.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/03/2022]
|
6
|
De Coster W, Strazisar M, De Rijk P. Critical length in long-read resequencing. NAR Genom Bioinform 2020; 2:lqz027. [PMID: 33575574 PMCID: PMC7671308 DOI: 10.1093/nargab/lqz027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/06/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022] Open
Abstract
Long-read sequencing has substantial advantages for structural variant discovery and phasing of variants compared to short-read technologies, but the required and optimal read length has not been assessed. In this work, we used long reads simulated from human genomes and evaluated structural variant discovery and variant phasing using current best practice bioinformatics methods. We determined that optimal discovery of structural variants from human genomes can be obtained with reads of minimally 20 kb. Haplotyping variants across genes only reaches its optimum from reads of 100 kb. These findings are important for the design of future long-read sequencing projects.
Collapse
Affiliation(s)
- Wouter De Coster
- VIB-UAntwerp Center for Molecular Neurology, 2610 Antwerp, Belgium
| | - Mojca Strazisar
- VIB-UAntwerp Center for Molecular Neurology, 2610 Antwerp, Belgium
| | - Peter De Rijk
- VIB-UAntwerp Center for Molecular Neurology, 2610 Antwerp, Belgium
| |
Collapse
|
7
|
Saettone A, Ponce M, Nabeel-Shah S, Fillingham J. RACS: rapid analysis of ChIP-Seq data for contig based genomes. BMC Bioinformatics 2019; 20:533. [PMID: 31664892 PMCID: PMC6819487 DOI: 10.1186/s12859-019-3100-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chromatin immunoprecipitation coupled to next generation sequencing (ChIP-Seq) is a widely-used molecular method to investigate the function of chromatin-related proteins by identifying their associated DNA sequences on a genomic scale. ChIP-Seq generates large quantities of data that is difficult to process and analyze, particularly for organisms with a contig-based sequenced genomes that typically have minimal annotation on their associated set of genes other than their associated coordinates primarily predicted by gene finding programs. Poorly annotated genome sequence makes comprehensive analysis of ChIP-Seq data difficult and as such standardized analysis pipelines are lacking. RESULTS We present a one-stop computational pipeline, "Rapid Analysis of ChIP-Seq data" (RACS), that utilizes traditional High-Performance Computing (HPC) techniques in association with open source tools for processing and analyzing raw ChIP-Seq data. RACS is an open source computational pipeline available from any of the following repositories https://bitbucket.org/mjponce/RACS or https://gitrepos.scinet.utoronto.ca/public/?a=summary&p=RACS . RACS is particularly useful for ChIP-Seq in organisms with contig-based genomes that have poor gene annotation to aid protein function discovery.To test the performance and efficiency of RACS, we analyzed ChIP-Seq data previously published in a model organism Tetrahymena thermophila which has a contig-based genome. We assessed the generality of RACS by analyzing a previously published data set generated using the model organism Oxytricha trifallax, whose genome sequence is also contig-based with poor annotation. CONCLUSIONS The RACS computational pipeline presented in this report is an efficient and reliable tool to analyze genome-wide raw ChIP-Seq data generated in model organisms with poorly annotated contig-based genome sequence. Because RACS segregates the found read accumulations between genic and intergenic regions, it is particularly efficient for rapid downstream analyses of proteins involved in gene expression.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St, Toronto, M5B 2K3 Canada
| | - Marcelo Ponce
- SciNet High Performance Computing Consortium, University of Toronto, 661 University Ave, Toronto, M5G 1M1 Canada
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King’s College Cir, Toronto, M5S 1A8 Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St, Toronto, M5B 2K3 Canada
| |
Collapse
|
8
|
Caspar SM, Dubacher N, Kopps AM, Meienberg J, Henggeler C, Matyas G. Clinical sequencing: From raw data to diagnosis with lifetime value. Clin Genet 2019; 93:508-519. [PMID: 29206278 DOI: 10.1111/cge.13190] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022]
Abstract
High-throughput sequencing (HTS) has revolutionized genetics by enabling the detection of sequence variants at hitherto unprecedented large scale. Despite these advances, however, there are still remaining challenges in the complete coverage of targeted regions (genes, exome or genome) as well as in HTS data analysis and interpretation. Moreover, it is easy to get overwhelmed by the plethora of available methods and tools for HTS. Here, we review the step-by-step process from the generation of sequence data to molecular diagnosis of Mendelian diseases. Highlighting advantages and limitations, this review addresses the current state of (1) HTS technologies, considering targeted, whole-exome, and whole-genome sequencing on short- and long-read platforms; (2) read alignment, variant calling and interpretation; as well as (3) regulatory issues related to genetic counseling, reimbursement, and data storage.
Collapse
Affiliation(s)
- S M Caspar
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - N Dubacher
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - A M Kopps
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - J Meienberg
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - C Henggeler
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - G Matyas
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
De Coster W, Van Broeckhoven C. Newest Methods for Detecting Structural Variations. Trends Biotechnol 2019; 37:973-982. [DOI: 10.1016/j.tibtech.2019.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 01/28/2023]
|
10
|
Au CH, Ho DN, Ip BBK, Wan TSK, Ng MHL, Chiu EKW, Chan TL, Ma ESK. Rapid detection of chromosomal translocation and precise breakpoint characterization in acute myeloid leukemia by nanopore long-read sequencing. Cancer Genet 2019; 239:22-25. [PMID: 31473470 DOI: 10.1016/j.cancergen.2019.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/21/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
Abstract
Detection of chromosomal translocation is a key component in diagnosis and management of acute myeloid leukemia (AML). Targeted RNA next-generation sequencing (NGS) is emerging as a powerful and clinically practical tool, but it depends on expression of RNA transcript from the underlying DNA translocation. Here, we show the clinical utility of nanopore long-read sequencing in rapidly detecting DNA translocation with exact breakpoints. In a newly diagnosed patient with AML, conventional karyotyping showed translocation t(10;12)(q22;p13) but RNA NGS detected NUP98-NSD1 fusion transcripts from a known cryptic translocation t(5;11)(q35;p15). Rapid PCR-free nanopore whole-genome sequencing yielded a 26,194 bp sequencing read and revealed the t(10;12) breakpoint to be DUSP13 and GRIN2B in head-to-head configuration. This translocation was then classified as a passenger structural variant. The sequencing also yielded a 20,709 bp sequencing read and revealed the t(5;11) breakpoint of the driver NUP98-NSD1 fusion. The identified DNA breakpoints also served as markers for molecular monitoring, in addition to fusion transcript expression by digital PCR and sequence mutations by NGS. We illustrate that third-generation nanopore sequencing is a simple and low-cost workflow for DNA translocation detection.
Collapse
Affiliation(s)
- Chun Hang Au
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, 1/F Li Shu Fan Block, 2 Village Road, Happy Valley, Hong Kong.
| | - Dona N Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, 1/F Li Shu Fan Block, 2 Village Road, Happy Valley, Hong Kong.
| | - Beca B K Ip
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, 1/F Li Shu Fan Block, 2 Village Road, Happy Valley, Hong Kong.
| | - Thomas S K Wan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong.
| | - Margaret H L Ng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong.
| | - Edmond K W Chiu
- Honorary Consultant in Hematology and Hematological Oncology, Hong Kong Sanatorium and Hospital, Hong Kong.
| | - Tsun Leung Chan
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, 1/F Li Shu Fan Block, 2 Village Road, Happy Valley, Hong Kong.
| | - Edmond S K Ma
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, 1/F Li Shu Fan Block, 2 Village Road, Happy Valley, Hong Kong.
| |
Collapse
|
11
|
De Coster W, De Rijk P, De Roeck A, De Pooter T, D'Hert S, Strazisar M, Sleegers K, Van Broeckhoven C. Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. Genome Res 2019; 29:1178-1187. [PMID: 31186302 PMCID: PMC6633254 DOI: 10.1101/gr.244939.118] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/06/2019] [Indexed: 01/17/2023]
Abstract
We sequenced the genome of the Yoruban reference individual NA19240 on the long-read sequencing platform Oxford Nanopore PromethION for evaluation and benchmarking of recently published aligners and germline structural variant calling tools, as well as a comparison with the performance of structural variant calling from short-read sequencing data. The structural variant caller Sniffles after NGMLR or minimap2 alignment provides the most accurate results, but additional confidence or sensitivity can be obtained by a combination of multiple variant callers. Sensitive and fast results can be obtained by minimap2 for alignment and a combination of Sniffles and SVIM for variant identification. We describe a scalable workflow for identification, annotation, and characterization of tens of thousands of structural variants from long-read genome sequencing of an individual or population. By discussing the results of this well-characterized reference individual, we provide an approximation of what can be expected in future long-read sequencing studies aiming for structural variant identification.
Collapse
Affiliation(s)
- Wouter De Coster
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Peter De Rijk
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Neuromics Support Facility, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
| | - Arne De Roeck
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Tim De Pooter
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Neuromics Support Facility, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
| | - Svenn D'Hert
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Neuromics Support Facility, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
| | - Mojca Strazisar
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Neuromics Support Facility, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
12
|
Maroilley T, Tarailo-Graovac M. Uncovering Missing Heritability in Rare Diseases. Genes (Basel) 2019; 10:E275. [PMID: 30987386 PMCID: PMC6523881 DOI: 10.3390/genes10040275] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The problem of 'missing heritability' affects both common and rare diseases hindering: discovery, diagnosis, and patient care. The 'missing heritability' concept has been mainly associated with common and complex diseases where promising modern technological advances, like genome-wide association studies (GWAS), were unable to uncover the complete genetic mechanism of the disease/trait. Although rare diseases (RDs) have low prevalence individually, collectively they are common. Furthermore, multi-level genetic and phenotypic complexity when combined with the individual rarity of these conditions poses an important challenge in the quest to identify causative genetic changes in RD patients. In recent years, high throughput sequencing has accelerated discovery and diagnosis in RDs. However, despite the several-fold increase (from ~10% using traditional to ~40% using genome-wide genetic testing) in finding genetic causes of these diseases in RD patients, as is the case in common diseases-the majority of RDs are also facing the 'missing heritability' problem. This review outlines the key role of high throughput sequencing in uncovering genetics behind RDs, with a particular focus on genome sequencing. We review current advances and challenges of sequencing technologies, bioinformatics approaches, and resources.
Collapse
Affiliation(s)
- Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
13
|
Abstract
Diagnosing fungal infections poses a number of unique problems, including a decline in expertise needed for identifying fungi, and a reduced number of instruments and assays specific for fungal identification compared to that of bacteria and viruses.These problems are exacerbated by the fact that patients with fungal infections are often immunosuppressed, which predisposes to infections from both commonly and rarely seen fungi. In this review, we discuss current and future molecular technologies used for fungal identification, and some of the problems associated with development and implementation of these technologies in today’s clinical microbiology laboratories. Diagnosing fungal infections poses a number of unique problems. In this Review, Wickes and Wiederhold discuss molecular technologies used for fungal identification, and the problems associated with their development and implementation in today’s clinical microbiology laboratories.
Collapse
|
14
|
Griffin DK, Ogur C. Chromosomal analysis in IVF: just how useful is it? Reproduction 2018; 156:F29-F50. [PMID: 29945889 DOI: 10.1530/rep-17-0683] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Designed to minimize chances of genetically abnormal embryos, preimplantation genetic diagnosis (PGD) involves in vitro fertilization (IVF), embryo biopsy, diagnosis and selective embryo transfer. Preimplantation genetic testing for aneuploidy (PGT-A) aims to avoid miscarriage and live born trisomic offspring and to improve IVF success. Diagnostic approaches include fluorescence in situ hybridization (FISH) and more contemporary comprehensive chromosome screening (CCS) including array comparative genomic hybridization (aCGH), quantitative polymerase chain reaction (PCR), next-generation sequencing (NGS) and karyomapping. NGS has an improved dynamic range, and karyomapping can detect chromosomal and monogenic disorders simultaneously. Mosaicism (commonplace in human embryos) can arise by several mechanisms; those arising initially meiotically (but with a subsequent post-zygotic 'trisomy rescue' event) usually lead to adverse outcomes, whereas the extent to which mosaics that are initially chromosomally normal (but then arise purely post-zygotically) can lead to unaffected live births is uncertain. Polar body (PB) biopsy is the least common sampling method, having drawbacks including cost and inability to detect any paternal contribution. Historically, cleavage-stage (blastomere) biopsy has been the most popular; however, higher abnormality levels, mosaicism and potential for embryo damage have led to it being superseded by blastocyst (trophectoderm - TE) biopsy, which provides more cells for analysis. Improved biopsy, diagnosis and freeze-all strategies collectively have the potential to revolutionize PGT-A, and there is increasing evidence of their combined efficacy. Nonetheless, PGT-A continues to attract criticism, prompting questions of when we consider the evidence base sufficient to justify routine PGT-A? Basic biological research is essential to address unanswered questions concerning the chromosome complement of human embryos, and we thus entreat companies, governments and charities to fund more. This will benefit both IVF patients and prospective parents at risk of aneuploid offspring following natural conception. The aim of this review is to appraise the 'state of the art' in terms of PGT-A, including the controversial areas, and to suggest a practical 'way forward' in terms of future diagnosis and applied research.
Collapse
Affiliation(s)
- Darren K Griffin
- School of BiosciencesCentre for Interdisciplinary Studies of Reproduction, University of Kent, Canterbury, UK
| | - Cagri Ogur
- Bahceci Genetic Diagnosis Centerİstanbul, Turkey.,Department of BioengineeringYildiz Technical University, İstanbul, Turkey
| |
Collapse
|
15
|
Opportunities in biotechnology. J Biotechnol 2018; 282:38-45. [DOI: 10.1016/j.jbiotec.2018.06.303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022]
|
16
|
Maggi N, Gazzarata R, Ruggiero C, Lombardo C, Giacomini M. Cancer precision medicine today: Towards omic information in healthcare systems. TUMORI JOURNAL 2018; 105:38-46. [PMID: 30117369 DOI: 10.1177/0300891618792473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION: This article focuses on the integration of omics data in electronic health records and on interoperability aspects relating to big data analysis for precision medicine. METHODS: Omics data integration methods for electronic health record and for systems interoperability are considered, with special reference to the high number of specific software tools used to manage different aspects of patient treatment. This is an important barrier against the use of this integrated approach in daily clinical routine. RESULTS: The correct use of all three levels of interoperability (technical, semantic, and process interoperability) plays a key role in order to achieve an easy access to a significant amount of data, all with correct contextualization, which is the only way to obtain a real value from data for precision medicine. CONCLUSIONS: The proposed architecture could improve the potentialities of data routinely collected in many health information systems to form a real patient center information environment.
Collapse
Affiliation(s)
- Norbert Maggi
- 1 Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | | | - Carmelina Ruggiero
- 1 Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy.,2 Healthropy s.r.l., Savona, Italy
| | - Claudio Lombardo
- 3 Sos Europe s.r.l., Genova, Italy.,4 Organisation of European Cancer Institutes-European Economic Interest Grouping, Brussels, Belgium
| | - Mauro Giacomini
- 1 Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy.,2 Healthropy s.r.l., Savona, Italy.,5 Centre of Excellence for the study of molecular mechanisms involved in cell-to-cell communication: from basic research to the clinic (CEBR), Genova, Italy
| |
Collapse
|
17
|
Shaw LP, Sugden NC. Portable sequencing, genomic data, and scale in global emerging infectious disease surveillance. GEO : GEOGRAPHY AND ENVIRONMENT 2018; 5:e00066. [PMID: 32337052 PMCID: PMC7165603 DOI: 10.1002/geo2.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2018] [Indexed: 05/31/2023]
Abstract
Emerging infectious diseases (EIDs) occur when pathogens unpredictably spread into new contexts. EID surveillance systems seek to rapidly identify EID outbreaks to contain spread and improve public health outcomes. Sequencing data has historically not been integrated into real-time responses, but portable DNA sequencing technology has prompted optimism among epidemiologists. Specifically, attention has focused on the goal of a "sequencing singularity": the integration of portable sequencers in a worldwide event-based surveillance network with other digital data (Gardy & Loman, Nature Reviews Genetics, 19, 2018, p. 9). The sequencing singularity vision is a powerful socio-technical imaginary, shaping the discourse around the future of portable sequencing. Ethical and practical issues are bound by the vision in two ways: they are framed only as obstacles, and they are formulated only at the scales made visible by its implicit geography. This geography privileges two extremes of scale - the genomic and the global - and leaves intermediate scales comparatively unmapped. We explore how widespread portable sequencing could challenge this geography. Portable sequencers put the ability to produce genomic data in the hands of the individual. The explicit assertion of rights over data may therefore become a matter disputed more at an interpersonal scale than an international one. Portable sequencers also promise ubiquitous, indiscriminate sequencing of the total metagenomic content of samples, raising the question of what (or who) is under surveillance and inviting consideration of the human microbiome and more-than-human geographies. We call into question a conception of a globally integrated stream of sequencing data as composed mostly of "noise," within which signals of pathogen "emergence" are "hidden," considering it instead from the perspective of recent work into more-than-human geographies. Our work highlights a practical need for researchers to consider both the alternative possibilities they foreclose as well as the exciting opportunities they move towards when they deploy their visions of the future.
Collapse
Affiliation(s)
- Liam P. Shaw
- UCL Genetics InstituteUCLLondonUK
- Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Nicola C. Sugden
- Centre for the History of Science Technology and MedicineUniversity of ManchesterManchesterUK
| |
Collapse
|
18
|
Ferapontova EE. DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:197-218. [PMID: 29894229 DOI: 10.1146/annurev-anchem-061417-125811] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sensitive, specific, and fast analysis of nucleic acids (NAs) is strongly needed in medicine, environmental science, biodefence, and agriculture for the study of bacterial contamination of food and beverages and genetically modified organisms. Electrochemistry offers accurate, simple, inexpensive, and robust tools for the development of such analytical platforms that can successfully compete with other approaches for NA detection. Here, electrode reactions of DNA, basic principles of electrochemical NA analysis, and their relevance for practical applications are reviewed and critically discussed.
Collapse
Affiliation(s)
- Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
19
|
Wang Y, Yan S, Zhang P, Zeng Z, Zhao D, Wang J, Chen H, Huang S. Osmosis-Driven Motion-Type Modulation of Biological Nanopores for Parallel Optical Nucleic Acid Sensing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7788-7797. [PMID: 29431423 DOI: 10.1021/acsami.7b18347] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent developments in nanopore sequencing have inspired new concepts in precision medicine but limited in throughput. By optically encoding calcium flux from an array of nanopores, parallel measurements from hundreds of nanopores were reported, while lateral drifts of biological nanopores set obstacles for signal processing. In this paper, optical single-channel recording (oSCR) serves to track nanopores with high precision and a general principle of nanopore motion kinetics is quantitatively investigated. By finely adjusting the osmosis-oriented interactions between the lipid/substrate interfaces, motions of nanopores could be controllably restricted. Improved signal-to-noise ratio is observed from motion-restricted nanopores, which is experimentally demonstrated. To systematically evaluate oSCR with asymmetric salt concentrations, a finite element method simulation is established. oSCR with an array of immobilized nanopores suggests new strategies for sequencing DNA by microscopic imaging in high throughput and is widely applicable to the investigation of other transmembrane proteins.
Collapse
Affiliation(s)
| | | | | | - Zidao Zeng
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | | | | | | | | |
Collapse
|
20
|
Lalonde E, Wertheim G, Li MM. Clinical Impact of Genomic Information in Pediatric Leukemia. Front Pediatr 2017; 5:263. [PMID: 29312903 PMCID: PMC5735078 DOI: 10.3389/fped.2017.00263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/24/2017] [Indexed: 12/21/2022] Open
Abstract
Pediatric leukemia remains a significant contributor to childhood lethality rates. However, recent development of new technologies including next-generation sequencing (NGS) has increased our understanding of the biological and genetic underpinnings of leukemia, resulting in novel diagnostic and treatment paradigms. The most prevalent pediatric leukemias include B-cell acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML). These leukemias are highly heterogeneous, both clinically and genetically. There are multiple genetic subgroups defined by the World Health Organization, each with distinct clinical management. Clinical laboratories have started adopting genomic testing strategies to include high-throughput sequencing assays which, together with conventional cytogenetic techniques, enable optimal patient care. This review summarizes genetic and genomic techniques used in clinical laboratories to support management of pediatric leukemia, highlighting technical, biological, and clinical advances. We illustrate clinical utilities of comprehensive genomic evaluation of leukemia genomes through clinical case examples, which includes the interrogations of hundreds of genes and multiple mutation mechanisms using NGS technologies. Finally, we provide a future perspective on clinical genomics and precision medicine.
Collapse
Affiliation(s)
- Emilie Lalonde
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gerald Wertheim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Marilyn M. Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Del Vecchio F, Mastroiaco V, Di Marco A, Compagnoni C, Capece D, Zazzeroni F, Capalbo C, Alesse E, Tessitore A. Next-generation sequencing: recent applications to the analysis of colorectal cancer. J Transl Med 2017; 15:246. [PMID: 29221448 PMCID: PMC5723063 DOI: 10.1186/s12967-017-1353-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Since the establishment of the Sanger sequencing method, scientists around the world focused their efforts to progress in the field to produce the utmost technology. The introduction of next-generation sequencing (NGS) represents a revolutionary step and promises to lead to massive improvements in our understanding on the role of nucleic acids functions. Cancer research began to use this innovative and highly performing method, and interesting results started to appear in colorectal cancer (CRC) analysis. Several studies produced high-quality data in terms of mutation discovery, especially about actionable or less frequently mutated genes, epigenetics, transcriptomics. Analysis of results is unveiling relevant perspectives aiding to evaluate the response to therapies. Novel evidences have been presented also in other directions such as gut microbiota or CRC circulating tumor cells. However, despite its unquestioned potential, NGS poses some issues calling for additional studies. This review intends to offer a view of the state of the art of NGS applications to CRC through examination of the most important technologies and discussion of recent published results.
Collapse
Affiliation(s)
- Filippo Del Vecchio
- Division of Cancer Sciences, University of Southampton, Southampton, Hampshire, SO16 6YD UK
| | - Valentina Mastroiaco
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Antinisca Di Marco
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Daria Capece
- Department of Medicine, Centre for Cell Signaling and Inflammation, Imperial College London, London, W12 0NN UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, La Sapienza University, Rome, 00161 Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| |
Collapse
|
22
|
Higgins SA, Savage DF. Protein Science by DNA Sequencing: How Advances in Molecular Biology Are Accelerating Biochemistry. Biochemistry 2017; 57:38-46. [DOI: 10.1021/acs.biochem.7b00886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sean A. Higgins
- Department
of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - David F. Savage
- Department
of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|