1
|
Spallotta F, Illi B. The Role of HDAC6 in Glioblastoma Multiforme: A New Avenue to Therapeutic Interventions? Biomedicines 2024; 12:2631. [PMID: 39595195 PMCID: PMC11591585 DOI: 10.3390/biomedicines12112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the great advances in basic research results, glioblastoma multiforme (GBM) still remains an incurable tumour. To date, a GBM diagnosis is a death sentence within 15-18 months, due to the high recurrence rate and resistance to conventional radio- and chemotherapy approaches. The effort the scientific community is lavishing on the never-ending battle against GBM is reflected by the huge number of clinical trials launched, about 2003 on 10 September 2024. However, we are still far from both an in-depth comprehension of the biological and molecular processes leading to GBM onset and progression and, importantly, a cure. GBM is provided with high intratumoral heterogeneity, immunosuppressive capacity, and infiltrative ability due to neoangiogenesis. These features impact both tumour aggressiveness and therapeutic vulnerability, which is further limited by the presence in the tumour core of niches of glioblastoma stem cells (GSCs) that are responsible for the relapse of this brain neoplasm. Epigenetic alterations may both drive and develop along GBM progression and also rely on changes in the expression of the genes encoding histone-modifying enzymes, including histone deacetylases (HDACs). Among them, HDAC6-a cytoplasmic HDAC-has recently gained attention because of its role in modulating several biological aspects of GBM, including DNA repair ability, massive growth, radio- and chemoresistance, and de-differentiation through primary cilia disruption. In this review article, the available information related to HDAC6 function in GBM will be presented, with the aim of proposing its inhibition as a valuable therapeutic route for this deadly brain tumour.
Collapse
Affiliation(s)
- Francesco Spallotta
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy;
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), 00185 Rome, Italy
| |
Collapse
|
2
|
Hana T, Mukasa A, Nomura M, Nagae G, Yamamoto S, Tatsuno K, Ueda H, Fukuda S, Umeda T, Tanaka S, Nejo T, Kitagawa Y, Yamazawa E, Takahashi S, Koike T, Kushihara Y, Takami H, Takayanagi S, Aburatani H, Saito N. Region-specific DNA hydroxymethylation along the malignant progression of IDH-mutant gliomas. Cancer Sci 2024; 115:1706-1717. [PMID: 38433527 PMCID: PMC11093199 DOI: 10.1111/cas.16127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
The majority of low-grade isocitrate dehydrogenase-mutant (IDHmt) gliomas undergo malignant progression (MP), but their underlying mechanism remains unclear. IDHmt gliomas exhibit global DNA methylation, and our previous report suggested that MP could be partly attributed to passive demethylation caused by accelerated cell cycles. However, during MP, there is also active demethylation mediated by ten-eleven translocation, such as DNA hydroxymethylation. Hydroxymethylation is reported to potentially contribute to gene expression regulation, but its role in MP remains under investigation. Therefore, we conducted a comprehensive analysis of hydroxymethylation during MP of IDHmt astrocytoma. Five primary/malignantly progressed IDHmt astrocytoma pairs were analyzed with oxidative bisulfite and the Infinium EPIC methylation array, detecting 5-hydroxymethyl cytosine at over 850,000 locations for region-specific hydroxymethylation assessment. Notably, we observed significant sharing of hydroxymethylated genomic regions during MP across the samples. Hydroxymethylated CpGs were enriched in open sea and intergenic regions (p < 0.001), and genes undergoing hydroxymethylation were significantly associated with cancer-related signaling pathways. RNA sequencing data integration identified 91 genes with significant positive/negative hydroxymethylation-expression correlations. Functional analysis suggested that positively correlated genes are involved in cell-cycle promotion, while negatively correlated ones are associated with antineoplastic functions. Analyses of The Cancer Genome Atlas clinical data on glioma were in line with these findings. Motif-enrichment analysis suggested the potential involvement of the transcription factor KLF4 in hydroxymethylation-based gene regulation. Our findings shed light on the significance of region-specific DNA hydroxymethylation in glioma MP and suggest its potential role in cancer-related gene expression and IDHmt glioma malignancy.
Collapse
Affiliation(s)
- Taijun Hana
- Department of Neurosurgery, Graduate School of MedicineThe University of TokyoTokyoJapan
- Genome Science & Medicine Laboratory, Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Masashi Nomura
- Department of Neurosurgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Genta Nagae
- Genome Science & Medicine Laboratory, Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Shogo Yamamoto
- Genome Science & Medicine Laboratory, Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Kenji Tatsuno
- Genome Science & Medicine Laboratory, Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Hiroki Ueda
- Genome Science & Medicine Laboratory, Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
- Advanced Data Science Division, Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Shiro Fukuda
- Genome Science & Medicine Laboratory, Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Takayoshi Umeda
- Genome Science & Medicine Laboratory, Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Takahide Nejo
- Department of Neurosurgery, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Neurological SurgeryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yosuke Kitagawa
- Department of Neurosurgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Erika Yamazawa
- Department of Neurosurgery, Graduate School of MedicineThe University of TokyoTokyoJapan
- Genome Science & Medicine Laboratory, Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Satoshi Takahashi
- Department of Neurosurgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tsukasa Koike
- Department of Neurosurgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yoshihiro Kushihara
- Department of Neurosurgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroyuki Aburatani
- Genome Science & Medicine Laboratory, Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
3
|
Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol 2024; 115:589-606. [PMID: 38301269 PMCID: PMC10980576 DOI: 10.1093/jleuko/qiae026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.
Collapse
Affiliation(s)
- Blake A. Caldwell
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| |
Collapse
|
4
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Noushmehr H, Herrgott G, Morosini NS, Castro AV. Noninvasive approaches to detect methylation-based markers to monitor gliomas. Neurooncol Adv 2022; 4:ii22-ii32. [PMID: 36380867 PMCID: PMC9650474 DOI: 10.1093/noajnl/vdac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
In this review, we summarize the current approaches used to detect glioma tissue-derived DNA methylation markers in liquid biopsy specimens with the aim to diagnose, prognosticate and potentially track treatment response and evolution of patients with gliomas.
Collapse
Affiliation(s)
- Houtan Noushmehr
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Grayson Herrgott
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Natalia S Morosini
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| | - Ana Valeria Castro
- Department of Neurosurgery, Omics Laboratory, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
6
|
Ramasamy D, Rao AKDM, Balaiah M, Vittal Rangan A, Sundersingh S, Veluswami S, Thangarajan R, Mani S. Locus-Specific Enrichment Analysis of 5-Hydroxymethylcytosine Reveals Novel Genes Associated with Breast Carcinogenesis. Cells 2022; 11:cells11192939. [PMID: 36230901 PMCID: PMC9562672 DOI: 10.3390/cells11192939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Highlights Abstract An imbalance in DNA methylation is a hallmark epigenetic alteration in cancer. The conversion of 5-methylcytosine (5-mC) to 5-hydroxymethyl cytosine (5-hmC), which causes the imbalance, results in aberrant gene expression. The precise functional role of 5-hydroxymethylcytosine in breast cancer remains elusive. In this study, we describe the landscape of 5-mC and 5-hmC and their association with breast cancer development. We found a distinguishable global loss of 5-hmC in the localized and invasive types of breast cancer that strongly correlate with TET expression. Genome-wide analysis revealed a unique 5-mC and 5-hmC signature in breast cancer. The differentially methylated regions (DMRs) were primarily concentrated in the proximal regulatory regions such as the promoters and UTRs, while the differentially hydroxymethylated regions (DhMRs) were densely packed in the distal regulatory regions, such as the intergenic regions (>−5 kb from TSSs). Our results indicate 4809 DMRs and 4841 DhMRs associated with breast cancer. Validation of nine 5-hmC enriched loci in a distinct set of breast cancer and normal samples positively correlated with their corresponding gene expression. The novel 5-hmC candidates such as TXNL1, and CNIH3 implicate a pro-oncogenic role in breast cancer. Overall, these results provide new insights into the loci-specific accumulation of 5-mC and 5-hmC, which are aberrantly methylated and demethylated in breast cancer.
Collapse
Affiliation(s)
- Deepa Ramasamy
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai 600036, Tamilnadu, India
| | | | - Meenakumari Balaiah
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai 600036, Tamilnadu, India
| | - Arvinden Vittal Rangan
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai 600036, Tamilnadu, India
| | - Shirley Sundersingh
- Department of Oncopathology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai 600036, Tamilnadu, India
| | - Sridevi Veluswami
- Department of Surgical Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai 600036, Tamilnadu, India
| | - Rajkumar Thangarajan
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai 600036, Tamilnadu, India
| | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai 600036, Tamilnadu, India
- Correspondence: ; Tel.: +91-44-22350131 (ext. 196)
| |
Collapse
|
7
|
Brągiel-Pieczonka A, Lipka G, Stapińska-Syniec A, Czyżewski M, Żybura-Broda K, Sobstyl M, Rylski M, Grabiec M. The Profiles of Tet-Mediated DNA Hydroxymethylation in Human Gliomas. Front Oncol 2022; 12:621460. [PMID: 35494033 PMCID: PMC9047681 DOI: 10.3389/fonc.2022.621460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common primary malignant intracranial brain tumors. Their proliferative and invasive behavior is controlled by various epigenetic mechanisms. 5-hydroxymethylcytosine (5-hmC) is one of the epigenetic DNA modifications that employs ten-eleven translocation (TET) enzymes to its oxidation. Previous studies demonstrated altered expression of 5-hmC across gliomagenesis. However, its contribution to the initiation and progression of human gliomas still remains unknown. To characterize the expression profiles of 5-hmC and TET in human glioma samples we used the EpiJET 5-hmC and 5-mC Analysis Kit, quantitative real-time PCR, and Western blot analysis. A continuous decline of 5-hmC levels was observed in solid tissue across glioma grades. However, in glioblastoma (GBM), we documented uncommon heterogeneity in 5-hmC expression. Further analysis showed that the levels of TET proteins, but not their transcripts, may influence the 5-hmC abundance in GBM. Early tumor-related biomarkers may also be provided by the study of aberrant DNA hydroxymethylation in the blood of glioma patients. Therefore, we explored the patterns of TET transcripts in plasma samples and we found that their profiles were variously regulated, with significant value for TET2. The results of our study confirmed that DNA hydroxymethylation is an important mechanism involved in the pathogenesis of gliomas, with particular reference to glioblastoma. Heterogeneity of 5-hmC and TET proteins expression across GBM may provide novel insight into define subtype-specific patterns of hydroxymethylome, and thus help to interpret the heterogeneous outcomes of patients with the same disease.
Collapse
Affiliation(s)
| | - Gabriela Lipka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Michał Czyżewski
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Katarzyna Żybura-Broda
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marcin Rylski
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Radiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marta Grabiec
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
8
|
Lopez-Bertoni H, Johnson A, Rui Y, Lal B, Sall S, Malloy M, Coulter JB, Lugo-Fagundo M, Shudir S, Khela H, Caputo C, Green JJ, Laterra J. Sox2 induces glioblastoma cell stemness and tumor propagation by repressing TET2 and deregulating 5hmC and 5mC DNA modifications. Signal Transduct Target Ther 2022; 7:37. [PMID: 35136034 PMCID: PMC8826438 DOI: 10.1038/s41392-021-00857-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is a reversible process catalyzed by the ten-eleven translocation (TET) family of enzymes (TET1, TET2, TET3) that convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Altered patterns of 5hmC and 5mC are widely reported in human cancers and loss of 5hmC correlates with poor prognosis. Understanding the mechanisms leading to 5hmC loss and its role in oncogenesis will advance the development of epigenetic-based therapeutics. We show that TET2 loss associates with glioblastoma (GBM) stem cells and correlates with poor survival of GBM patients. We further identify a SOX2:miR-10b-5p:TET2 axis that represses TET2 expression, represses 5hmC, increases 5mC levels, and induces GBM cell stemness and tumor-propagating potential. In vivo delivery of a miR-10b-5p inhibitor that normalizes TET2 expression and 5hmC levels inhibits tumor growth and prolongs survival of animals bearing pre-established orthotopic GBM xenografts. These findings highlight the importance of TET2 and 5hmC loss in Sox2-driven oncogenesis and their potential for therapeutic targeting.
Collapse
Affiliation(s)
- Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Amanda Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophie Sall
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
| | - Maureen Malloy
- Bloomberg School of Public Health, Department of Environmental Health and Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan B Coulter
- Bloomberg School of Public Health, Department of Environmental Health and Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Sweta Shudir
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
| | - Harmon Khela
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA
| | | | - Jordan J Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Materials Science & Engineering and Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Stapińska-Syniec A, Grabiec M, Rylski M, Acewicz A, Sobstyl M. DNA hydroxymethylation in high-grade gliomas. J Neurol Surg A Cent Eur Neurosurg 2021; 83:568-572. [PMID: 34872125 DOI: 10.1055/a-1713-7699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Background and Study Aims Since the new WHO classification of nervous system tumors (2016 revised 4th edition) has been released, gliomas are classified depending on molecular and genetic markers in connection with histopathology, instead of histopathology itself as it was in the previous classification. Over the last years, epigenetic analysis has taken on increased importance in the diagnosis and treatment of different cancers. Multiple studies confirmed that DNA methylation and hydroxymethylation play an important role in the regulation of gene expression during carcinogenesis. In this review, we aim to present the current state of knowledge on DNA hydroxymethylation in human high-grade gliomas (WHO grade III and IV). Results The correlation of DNA hydroxymethylation and survival in glioblastoma patients was evaluated by different studies. The majority of them showed that the expression of 5-hydroxymethylcytosine (5-hmC) and Ten-eleven translocation (TET) enzymes were significantly reduced, sometimes almost undetectable in high-grade gliomas in comparison with the control brain. A decreased level of 5-hmC was associated with poor survival in patients, but high expression of the TET3 enzyme was related to a better prognosis for GBM patients. This points to the relevance of DNA hydroxymethylation in molecular diagnostics of human gliomas, including survival estimation or differentiating patients in terms of response to the treatment. Conclusion Future studies may shed some more light on this epigenetic mechanism involved in the pathogenesis of human high-grade gliomas and help to develop new targeted therapies.
Collapse
Affiliation(s)
| | - Marta Grabiec
- Department of Clinical Cytology, Centrum Medyczne Ksztalcenia Podyplomowego, Warszawa, Poland
| | - Marcin Rylski
- Department of Clinical Cytology, Centrum Medyczne Ksztalcenia Podyplomowego, Warszawa, Poland.,Department of Neuroradiology, Instytut Psychiatrii i Neurologii, Warsaw, Poland
| | - Albert Acewicz
- Department of Neuropathology, Instytut Psychiatrii i Neurologii, Warsaw, Poland
| | - Michał Sobstyl
- Department of Neurosurgery, Instytut Psychiatrii i Neurologii, Warsaw, Poland
| |
Collapse
|
10
|
López V, Tejedor JR, Carella A, García MG, Santamarina-Ojeda P, Pérez RF, Mangas C, Urdinguio RG, Aranburu A, de la Nava D, Corte-Torres MD, Astudillo A, Mollejo M, Meléndez B, Fernández AF, Fraga MF. Epigenetic Deregulation of the Histone Methyltransferase KMT5B Contributes to Malignant Transformation in Glioblastoma. Front Cell Dev Biol 2021; 9:671838. [PMID: 34447744 PMCID: PMC8383299 DOI: 10.3389/fcell.2021.671838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor in adulthood. Epigenetic mechanisms are known to play a key role in GBM although the involvement of histone methyltransferase KMT5B and its mark H4K20me2 has remained largely unexplored. The present study shows that DNA hypermethylation and loss of DNA hydroxymethylation is associated with KMT5B downregulation and genome-wide reduction of H4K20me2 levels in a set of human GBM samples and cell lines as compared with non-tumoral specimens. Ectopic overexpression of KMT5B induced tumor suppressor-like features in vitro and in a mouse tumor xenograft model, as well as changes in the expression of several glioblastoma-related genes. H4K20me2 enrichment was found immediately upstream of the promoter regions of a subset of deregulated genes, thus suggesting a possible role for KMT5B in GBM through the epigenetic modulation of key target cancer genes.
Collapse
Affiliation(s)
- Virginia López
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Antonella Carella
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - María G García
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Pablo Santamarina-Ojeda
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Raúl F Pérez
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Cristina Mangas
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Rocío G Urdinguio
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Aitziber Aranburu
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Daniel de la Nava
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - María D Corte-Torres
- Biobanco del Principado de Asturias, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Aurora Astudillo
- Departamento de Anatomía Patológica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Manuela Mollejo
- Departamento de Patología, Hospital Virgen de la Salud (CHT), Toledo, Spain
| | - Bárbara Meléndez
- Departamento de Patología, Hospital Virgen de la Salud (CHT), Toledo, Spain
| | - Agustín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Department of Organisms and Systems Biology, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), University of Oviedo, Oviedo, Spain
| |
Collapse
|
11
|
Wu Q, Berglund AE, Etame AB. The Impact of Epigenetic Modifications on Adaptive Resistance Evolution in Glioblastoma. Int J Mol Sci 2021; 22:8324. [PMID: 34361090 PMCID: PMC8347012 DOI: 10.3390/ijms22158324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is a highly lethal cancer that is universally refractory to the standard multimodal therapies of surgical resection, radiation, and chemotherapy treatment. Temozolomide (TMZ) is currently the best chemotherapy agent for GBM, but the durability of response is epigenetically dependent and often short-lived secondary to tumor resistance. Therapies that can provide synergy to chemoradiation are desperately needed in GBM. There is accumulating evidence that adaptive resistance evolution in GBM is facilitated through treatment-induced epigenetic modifications. Epigenetic alterations of DNA methylation, histone modifications, and chromatin remodeling have all been implicated as mechanisms that enhance accessibility for transcriptional activation of genes that play critical roles in GBM resistance and lethality. Hence, understanding and targeting epigenetic modifications associated with GBM resistance is of utmost priority. In this review, we summarize the latest updates on the impact of epigenetic modifications on adaptive resistance evolution in GBM to therapy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Arnold B. Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| |
Collapse
|
12
|
Crake RLI, Burgess ER, Royds JA, Phillips E, Vissers MCM, Dachs GU. The Role of 2-Oxoglutarate Dependent Dioxygenases in Gliomas and Glioblastomas: A Review of Epigenetic Reprogramming and Hypoxic Response. Front Oncol 2021; 11:619300. [PMID: 33842321 PMCID: PMC8027507 DOI: 10.3389/fonc.2021.619300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Gliomas are a heterogeneous group of cancers that predominantly arise from glial cells in the brain, but may also arise from neural stem cells, encompassing low-grade glioma and high-grade glioblastoma. Whereas better diagnosis and new treatments have improved patient survival for many cancers, glioblastomas remain challenging with a highly unfavorable prognosis. This review discusses a super-family of enzymes, the 2-oxoglutarate dependent dioxygenase enzymes (2-OGDD) that control numerous processes including epigenetic modifications and oxygen sensing, and considers their many roles in the pathology of gliomas. We specifically describe in more detail the DNA and histone demethylases, and the hypoxia-inducible factor hydroxylases in the context of glioma, and discuss the substrate and cofactor requirements of the 2-OGDD enzymes. Better understanding of how these enzymes contribute to gliomas could lead to the development of new treatment strategies.
Collapse
Affiliation(s)
- Rebekah L. I. Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Janice A. Royds
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
13
|
Al-Yozbaki M, Jabre I, Syed NH, Wilson CM. Targeting DNA methyltransferases in non-small-cell lung cancer. Semin Cancer Biol 2021; 83:77-87. [PMID: 33486076 DOI: 10.1016/j.semcancer.2021.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/30/2022]
Abstract
Despite the advances in treatment using chemotherapy or targeted therapies, due to static survival rates, non-small cell lung cancer (NSCLC) is the major cause of cancer-related deaths worldwide. Epigenetic-based therapies have been developed for NSCLC by targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. However, treatment using single epigenetic agents on solid tumours has been inadequate; whereas, treatment with a combination of DNMTs inhibitors with chemotherapy and immunotherapy has shown great promise. Dietary sources of phytochemicals could also inhibit DNMTs and cancer stem cells, representing a novel and promising way to prevent and treat cancer. Herein, we will discuss the different DNMTs, DNA methylation profiling in NSCLC as well as current demethylating agents in ongoing clinical trials. Therefore, providing a concise overview of future developments in the field of epigenetic therapy in NSCLC.
Collapse
Affiliation(s)
- Minnatallah Al-Yozbaki
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Ibtissam Jabre
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Naeem H Syed
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Cornelia M Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK; University of Liverpool, Institute of Translation Medicine, Dept of Molecular & Clinical Cancer Medicine, UK.
| |
Collapse
|
14
|
He L, Zhang J, He C, Zhao B, Chen W, Patil SR. Effect of cytosine hydroxymethylation on DNA charge transport. Mol Cell Biochem 2021; 476:1599-1603. [PMID: 33405086 DOI: 10.1007/s11010-020-03957-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/15/2020] [Indexed: 10/22/2022]
Abstract
DNA hydroxymethylation plays a very important role in some biological processes, such as DNA methylation process. In addition, its presence can also cause some diseases. In this paper, the electrical properties of cytosine hydroxymethylated (Chm) DNA sequences are studied. The density functional theory (DFT) and Landauer-Büttiker framework are used to study the decoherence conductance and transmission of the Chm strands in different configurations, which provides a theoretical basis for the detection of Chm. The results show that the conductance of the hydroxymethylated DNA strand is smaller than that of the native and methylated strands. The length dependence of the Chm strands is also studied. With the length increasing, the conductance becomes larger. This study shows that DNA methylation can be detected electrically.
Collapse
Affiliation(s)
- Lijun He
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Jinsha Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Chengyun He
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Boyang Zhao
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Weizhong Chen
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Sunil R Patil
- Department of Physics, Institute of Science, Nagpur, 440008, India
| |
Collapse
|
15
|
Mohr H, Ballke S, Bechmann N, Gulde S, Malekzadeh-Najafabadi J, Peitzsch M, Ntziachristos V, Steiger K, Wiedemann T, Pellegata NS. Mutation of the Cell Cycle Regulator p27kip1 Drives Pseudohypoxic Pheochromocytoma Development. Cancers (Basel) 2021; 13:cancers13010126. [PMID: 33401758 PMCID: PMC7794757 DOI: 10.3390/cancers13010126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Pheochromocytomas and paragangliomas (PPGLs) can be subdivided into at least three different subgroups associated with different clinical manifestations and depending on the risk to metastasize. A shortage in human tumor material, the lack of a functional human cell line and very limited animal models were major drawbacks for PPGL research and consequently for the development of patient-tailored targeted therapies. We have previously reported that the MENX rat model develops pheochromocytoma with a full penetrance at the age of 8–10 months, however, it was unclear which human group the rat tumors modeled best. In order to characterize the rat pheochromocytomas, we analyzed gene expression, the catecholamine profile, TCA-cycle metabolism, methylation, angiogenesis, histology and mitochondrial ultrastructure. In all aspects, rat MENX pheochromocytomas resemble the features of the human pseudohypoxia group, the most aggressive one and in need of effective therapeutic approaches. Abstract Background: Pseudohypoxic tumors activate pro-oncogenic pathways typically associated with severe hypoxia even when sufficient oxygen is present, leading to highly aggressive tumors. Prime examples are pseudohypoxic pheochromocytomas and paragangliomas (p-PPGLs), neuroendendocrine tumors currently lacking effective therapy. Previous attempts to generate mouse models for p-PPGLs all failed. Here, we describe that the rat MENX line, carrying a Cdkn1b (p27) frameshift-mutation, spontaneously develops pseudohypoxic pheochromocytoma (p-PCC). Methods: We compared rat p-PCCs with their cognate human tumors at different levels: histology, immunohistochemistry, catecholamine profiling, electron microscopy, transcriptome and metabolome. The vessel architecture and angiogenic potential of pheochromocytomas (PCCs) was analyzed by light-sheet fluorescence microscopy ex vivo and multi-spectral optoacoustic tomography (MSOT) in vivo. Results: The analysis of tissues at various stages, from hyperplasia to advanced grades, allowed us to correlate tumor characteristics with progression. Pathological changes affecting the mitochrondrial ultrastructure where present already in hyperplasias. Rat PCCs secreted high levels of norepinephrine and dopamine. Transcriptomic and metabolomic analysis revealed changes in oxidative phosphorylation that aggravated over time, leading to an accumulation of the oncometabolite 2-hydroxyglutarate, and to hypermethylation, evident by the loss of the epigenetic mark 5-hmC. While rat PCC xenografts showed high oxygenation, induced by massive neoangiogenesis, rat primary PCC transcriptomes possessed a pseudohypoxic signature of high Hif2a, Vegfa, and low Pnmt expression, thereby clustering with human p-PPGL. Conclusion: Endogenous rat PCCs recapitulate key phenotypic features of human p-PPGLs. Thus, MENX rats emerge as the best available animal model of these aggressive tumors. Our study provides evidence of a link between cell cycle dysregulation and pseudohypoxia.
Collapse
Affiliation(s)
- Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Centre Munich, Ingolstaedter Landstr.1, 85764 Neuherberg, Germany; (H.M.); (S.G.); (T.W.)
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Simone Ballke
- Institute of Pathology, School of Medicine, Technical University Munich, Trogerstr. 18, 81675 Munich, Germany; (S.B.); (K.S.)
| | - Nicole Bechmann
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany;
- Institute of Clinical Chemistry and Laboratory, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany;
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Centre Munich, Ingolstaedter Landstr.1, 85764 Neuherberg, Germany; (H.M.); (S.G.); (T.W.)
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jaber Malekzadeh-Najafabadi
- Chair of Biological Imaging, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (J.M.-N.); (V.N.)
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany;
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; (J.M.-N.); (V.N.)
- Institute for Biomedical Imaging, Helmholtz Centre Munich, Ingolstaedter Landstr.1, 85764 Neuherberg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University Munich, Trogerstr. 18, 81675 Munich, Germany; (S.B.); (K.S.)
| | - Tobias Wiedemann
- Institute for Diabetes and Cancer, Helmholtz Centre Munich, Ingolstaedter Landstr.1, 85764 Neuherberg, Germany; (H.M.); (S.G.); (T.W.)
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Natalia S. Pellegata
- Institute for Diabetes and Cancer, Helmholtz Centre Munich, Ingolstaedter Landstr.1, 85764 Neuherberg, Germany; (H.M.); (S.G.); (T.W.)
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-(0)89-3187-2633
| |
Collapse
|
16
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM. Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semin Cancer Biol 2020; 83:100-120. [PMID: 33370605 DOI: 10.1016/j.semcancer.2020.12.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer and one of the most aggressive cancers found in humans. Most of the signs and symptoms of GBM can be mild and slowly aggravated, although other symptoms might demonstrate it as an acute ailment. However, the precise mechanisms of the development of GBM remain unknown. Due to the improvement of molecular pathology, current researches have reported that glioma progression is strongly connected with different types of epigenetic phenomena, such as histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA. Furthermore, the genes and the proteins that control these alterations have become novel targets for treating glioma because of the reversibility of epigenetic modifications. In some cases, gene mutations including P16, TP53, and EGFR, have been observed in GBM. In contrast, monosomies, including removals of chromosome 10, particularly q23 and q25-26, are considered the standard markers for determining the development and aggressiveness of GBM. Recently, amid the epigenetic therapies, histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors have been used for treating tumors, either single or combined. Specifically, HDACIs are served as a good choice and deliver a novel pathway to treat GBM. In this review, we focus on the epigenetics of GBM and the consequence of its mutations. We also highlight various treatment approaches, namely gene editing, epigenetic drugs, and microRNAs to combat GBM.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687, Reims Cedex 2, France
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
17
|
Havusha-Laufer S, Kosenko A, Kisliouk T, Barash I. H2AX Promoter Demethylation at Specific Sites Plays a Role in STAT5-Induced Tumorigenesis. J Mammary Gland Biol Neoplasia 2020; 25:205-218. [PMID: 32748326 DOI: 10.1007/s10911-020-09455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022] Open
Abstract
Deregulated STAT5 activity in the mammary gland of transgenic mice results in parity-dependent latent tumorigenesis. The trigger for cell transformation was previously associated with hyperactivation of the H2AX proximal promoter in a small basal cell population during pregnancy. The current study focuses on the latent activation of tumor development. H2AX was highly expressed in carcinoma and adenocarcinoma as compared to the multiparous mammary gland, whereas pSTAT5 expression decreased in a tumor type-dependent manner. In contrast to the pregnant gland, no positive correlation between H2AX and pSTAT5 expression could be defined in carcinoma and adenocarcinoma. Using targeted methylation analysis, the methylation profile of the H2AX promoter was characterized in the intact gland and tumors. Average H2AX promoter methylation in the tumors was relatively high (~90%), but did not exceed that of the multiparous gland; 5mC methylation was higher in the differentiated tumors and negatively correlated with its oxidative product 5hmC and H2AX expression. Individual analysis of 25 H2AX promoter-methylation sites revealed two consecutive CpGs at positions -77 and - 54 that were actively demethylated in the multiparous gland, but not in their age-matched virgin counterpart. The different methylation profiles at these sites distinguished tumor types and may assume a prognostic role. In-silico and ChIP analyses revealed overlapping methylation-independent SP1-binding and methylation-dependent p53-binding to these sites. We propose that interference with SP1-assisted p53-binding to these sites abrogates H2AX's ability to arrest the cell cycle upon DNA damage, and contributes to triggering latent development of STAT5-induced tumors in estrapausal multiparous mice.
Collapse
Affiliation(s)
- Sharon Havusha-Laufer
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Ana Kosenko
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Itamar Barash
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
18
|
Morin A, Goncalves J, Moog S, Castro-Vega LJ, Job S, Buffet A, Fontenille MJ, Woszczyk J, Gimenez-Roqueplo AP, Letouzé E, Favier J. TET-Mediated Hypermethylation Primes SDH-Deficient Cells for HIF2α-Driven Mesenchymal Transition. Cell Rep 2020; 30:4551-4566.e7. [DOI: 10.1016/j.celrep.2020.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 01/24/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
|
19
|
Zhang J, Li J, Zhu Y, Miao Z, Tian Y. Forced running exercise mitigates radiation-induced cognitive deficits via regulated DNA hydroxymethylation. Epigenomics 2020; 12:385-396. [PMID: 32041423 DOI: 10.2217/epi-2019-0370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Roles of forced running exercise (FE) in remediation of neurogenesis inhibition and radiation-induced cognitive dysfunction were investigated in a whole-brain irradiation mice model via the regulation of DNA 5-hydroxymethylation modification (5 hmC) and its catalytic enzymes ten-eleven translocation (Tet) proteins. Materials & methods: Hippocampal neurogenesis and cognitive function, DNA 5 hmC level and Tet expression were determined in mice. Results: The expression of DNA 5 hmC and Tet2, brain-derived neurotrophic factor significantly decreased in hippocampus postradiation. FE mitigated radiation-induced neurogenesis deficits and cognitive dysfunction. Furthermore, FE increased 5 hmC and brain-derived neurotrophic factor expression. SC1, a Tet inhibitor, reversed partly such changes. Conclusion: Tet-mediated 5 hmC modification represents a kind of diagnostic biomarkers of radiation-induced cognitive dysfunction. Targeting Tet-related epigenetic modification may be a novel therapeutic strategy for radiation-induced brain injury.
Collapse
Affiliation(s)
- Junjun Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215000, PR China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou City, 215000, PR China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou City, 215000, PR China
| | - Junyan Li
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215000, PR China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou City, 215000, PR China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou City, 215000, PR China
| | - Yiwen Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215000, PR China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou City, 215000, PR China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou City, 215000, PR China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, 215000, PR China
| | - Ye Tian
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215000, PR China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou City, 215000, PR China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou City, 215000, PR China
| |
Collapse
|
20
|
Wu T, Zhang ZW, Li S, Wang B, Yang Z, Li P, Zhang J, Tong WM, Li C, Zhao F, Niu Y, Liu P. Characterization of global 5-hydroxymethylcytosine in pediatric posterior fossa ependymoma. Clin Epigenetics 2020; 12:19. [PMID: 31992357 PMCID: PMC6988368 DOI: 10.1186/s13148-020-0809-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Background 5-Hydroxymethylcytosine (5hmC) is a novel epigenetic mark and may be involved in the mechanisms of tumorigenesis and malignant transformation. However, the role of 5hmC in ependymoma, the third most common brain tumor in children, remains unclear. The aim of this study sought to identify the characterization of 5hmC levels in pediatric posterior fossa ependymoma and to evaluate whether 5hmC levels could be a potential factor to predict clinical outcomes. Results Our results showed that 5hmC levels were globally decreased in posterior fossa ependymoma compared with normal cerebellum tissues (P < 0.001). Group A posterior fossa ependymomas had higher 5hmC levels than group B tumors (P = 0.007). Moreover, 5hmC levels positively correlated with Ki-67 index in posterior fossa ependymoma (r = 0.428, P = 0.003). Multivariate Cox hazards model revealed that patients with high 5hmC levels (> 0.102%) had worse PFS and OS than patients with lower 5hmC levels (< 0.102%) (PFS: HR = 3.014; 95% CI, 1.040–8.738; P = 0.042; OS: HR = 2.788; 95% CI, 0.974–7.982; P = 0.047). Conclusions Our findings suggest that loss of 5hmC is an epigenetic hallmark for pediatric posterior fossa ependymoma. 5hmC levels may represent a potential biomarker to predict prognosis in children with posterior fossa ependymoma.
Collapse
Affiliation(s)
- Tao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119# South 4th Ring Road, Fengtai District, Beijing, 100070, China.,Department of Neural reconstruction, Beijing Neurosurgical Institute, Capital Medical University, No. 119, South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Zhi-Wei Zhang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Shiwei Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119# South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119# South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Zhijun Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119# South 4th Ring Road, Fengtai District, Beijing, 100070, China.,Department of Neural reconstruction, Beijing Neurosurgical Institute, Capital Medical University, No. 119, South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Peng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119# South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Jing Zhang
- Department of Neural reconstruction, Beijing Neurosurgical Institute, Capital Medical University, No. 119, South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Chunde Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119# South 4th Ring Road, Fengtai District, Beijing, 100070, China.,Department of Neural reconstruction, Beijing Neurosurgical Institute, Capital Medical University, No. 119, South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Fu Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119# South 4th Ring Road, Fengtai District, Beijing, 100070, China.,Department of Neural reconstruction, Beijing Neurosurgical Institute, Capital Medical University, No. 119, South 4th Ring Road, Fengtai District, Beijing, 100070, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Science, School of Basic Medicine Peking Union Medical College; Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119# South 4th Ring Road, Fengtai District, Beijing, 100070, China. .,Department of Neural reconstruction, Beijing Neurosurgical Institute, Capital Medical University, No. 119, South 4th Ring Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
21
|
Global DNA Methylation Patterns in Human Gliomas and Their Interplay with Other Epigenetic Modifications. Int J Mol Sci 2019; 20:ijms20143478. [PMID: 31311166 PMCID: PMC6678179 DOI: 10.3390/ijms20143478] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
Abstract
During the last two decades, several international consortia have been established to unveil the molecular background of human cancers including gliomas. As a result, a huge outbreak of new genetic and epigenetic data appeared. It was not only shown that gliomas share some specific DNA sequence aberrations, but they also present common alterations of chromatin. Many researchers have reported specific epigenetic features, such as DNA methylation and histone modifications being involved in tumor pathobiology. Unlike mutations in DNA, epigenetic changes are more global in nature. Moreover, many studies have shown an interplay between different types of epigenetic changes. Alterations in DNA methylation in gliomas are one of the best described epigenetic changes underlying human pathology. In the following work, we present the state of knowledge about global DNA methylation patterns in gliomas and their interplay with histone modifications that may affect transcription factor binding, global gene expression and chromatin conformation. Apart from summarizing the impact of global DNA methylation on glioma pathobiology, we provide an extract of key mechanisms of DNA methylation machinery.
Collapse
|
22
|
Margalit S, Avraham S, Shahal T, Michaeli Y, Gilat N, Magod P, Caspi M, Loewenstein S, Lahat G, Friedmann-Morvinski D, Kariv R, Rosin-Arbesfeld R, Zirkin S, Ebenstein Y. 5-Hydroxymethylcytosine as a clinical biomarker: Fluorescence-based assay for high-throughput epigenetic quantification in human tissues. Int J Cancer 2019; 146:115-122. [PMID: 31211411 DOI: 10.1002/ijc.32519] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022]
Abstract
Epigenetic transformations may provide early indicators for cancer and other disease. Specifically, the amount of genomic 5-hydroxymethylcytosine (5-hmC) was shown to be globally reduced in a wide range of cancers. The integration of this global biomarker into diagnostic workflows is hampered by the limitations of current 5-hmC quantification methods. Here we present and validate a fluorescence-based platform for high-throughput and cost-effective quantification of global genomic 5-hmC levels. We utilized the assay to characterize cancerous tissues based on their 5-hmC content, and observed a pronounced reduction in 5-hmC level in various cancer types. We present data for glioblastoma, colorectal cancer, multiple myeloma, chronic lymphocytic leukemia and pancreatic cancer, compared to corresponding controls. Potentially, the technique could also be used to follow response to treatment for personalized treatment selection. We present initial proof-of-concept data for treatment of familial adenomatous polyposis.
Collapse
Affiliation(s)
- Sapir Margalit
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Avraham
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Shahal
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Michaeli
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noa Gilat
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Prerna Magod
- Sagol School of Neuroscience, Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Loewenstein
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Guy Lahat
- Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dinorah Friedmann-Morvinski
- Sagol School of Neuroscience, Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Revital Kariv
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Zirkin
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Carella A, Tejedor JR, García MG, Urdinguio RG, Bayón GF, Sierra M, López V, García‐Toraño E, Santamarina‐Ojeda P, Pérez RF, Bigot T, Mangas C, Corte‐Torres MD, Sáenz‐de‐Santa‐María I, Mollejo M, Meléndez B, Astudillo A, Chiara MD, Fernández AF, Fraga MF. Epigenetic downregulation of TET3 reduces genome‐wide 5hmC levels and promotes glioblastoma tumorigenesis. Int J Cancer 2019; 146:373-387. [DOI: 10.1002/ijc.32520] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/13/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Antonella Carella
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
| | - Juan R. Tejedor
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
- Fundación para la Investigación Biosanitaria de Asturias (FINBA)Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - María G. García
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
| | - Rocío G. Urdinguio
- Nanomaterials and Nanotechnology Research Center (CINN‐CSIC)Universidad de Oviedo Oviedo Spain
| | - Gustavo F. Bayón
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
| | - Marta Sierra
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
| | - Virginia López
- Nanomaterials and Nanotechnology Research Center (CINN‐CSIC)Universidad de Oviedo Oviedo Spain
| | - Estela García‐Toraño
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
| | - Pablo Santamarina‐Ojeda
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
- Fundación para la Investigación Biosanitaria de Asturias (FINBA)Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - Raúl F. Pérez
- Nanomaterials and Nanotechnology Research Center (CINN‐CSIC)Universidad de Oviedo Oviedo Spain
| | - Timothée Bigot
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
- Fundación para la Investigación Biosanitaria de Asturias (FINBA)Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - Cristina Mangas
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
| | - María D. Corte‐Torres
- Hospital Universitario Central de Asturias (HUCA)Biobanco del Principado de Asturias Oviedo Spain
| | - Inés Sáenz‐de‐Santa‐María
- Hospital Universitario Central de Asturias (HUCA), Servicio de Otorrinolaringología, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de Oviedo, CIBERONC Oviedo Spain
| | - Manuela Mollejo
- Departamento de PatologíaHospital Virgen de la Salud (CHT) Toledo Spain
| | - Bárbara Meléndez
- Departamento de PatologíaHospital Virgen de la Salud (CHT) Toledo Spain
| | - Aurora Astudillo
- Departamento de Anatomía PatológicaHospital Universitario Central de Asturias (HUCA) Oviedo Spain
| | - María D. Chiara
- Hospital Universitario Central de Asturias (HUCA), Servicio de Otorrinolaringología, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de Oviedo, CIBERONC Oviedo Spain
| | - Agustín F. Fernández
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA)Universidad de Oviedo Oviedo Spain
- Fundación para la Investigación Biosanitaria de Asturias (FINBA)Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo Spain
| | - Mario F. Fraga
- Nanomaterials and Nanotechnology Research Center (CINN‐CSIC)Universidad de Oviedo Oviedo Spain
| |
Collapse
|
24
|
Krais AM, Park YJ, Reifenberger G, Meister M, Plass C, Schmeiser HH. Sensitive detection of hydroxymethylcytosine levels in normal and neoplastic cells and tissues. Electrophoresis 2019; 40:1293-1297. [PMID: 30724377 DOI: 10.1002/elps.201800523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/27/2019] [Accepted: 01/27/2019] [Indexed: 12/22/2022]
Abstract
A new sensitive analytical method using capillary electrophoresis with laser induced fluorescence (CE-LIF) was applied for the simultaneous detection of DNA methylation and hydroxymethylation levels in human cancers of different origin. DNA hydroxymethylation, measured as 5-hydroxymethylcytosine (5hmC) levels, was decreased in gliomas with mutation in the isocitrate dehydrogenase 1 (IDH1) gene when compared to IDH1-wildtype gliomas. Independent from IDH1 mutation, 5hmC levels were decreased in lung carcinomas when compared to normal lung tissue. Reduced DNA hydroxymethylation was also observed upon dedifferentiation in cultured murine embryonic fibroblasts. Our data show that reduced DNA hydroxymethylation is related to cellular dedifferentiation and can be detected in various types of cancers, independent from the IDH1 mutation status. Quantitative determination of altered 5hmC levels may therefore have potential as a biomarker linked to cellular differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Annette M Krais
- Division of Radiopharmaceutical Chemistry, Heidelberg, Germany.,Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Yoon Jung Park
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea
| | | | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg.,Translational Lung Research Center Heidelberg, German Centre for Lung Research (DZL-TLRC), Heidelberg
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
25
|
Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential Epigenetic-Based Therapeutic Targets for Glioma. Front Mol Neurosci 2018; 11:408. [PMID: 30498431 PMCID: PMC6249994 DOI: 10.3389/fnmol.2018.00408] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications. Owing to the reversibility of epigenetic modifications, the proteins and genes that regulate these changes have become new targets in the treatment of glioma. In this review, we present a summary of the potential therapeutic targets of glioma and related effective treating drugs from the four aspects mentioned above. We further illustrate how epigenetic mechanisms dynamically regulate the pathogenesis and discuss the challenges of glioma treatment. Currently, among the epigenetic treatments, DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors (HDACIs) can be used for the treatment of tumors, either individually or in combination. In the treatment of glioma, only HDACIs remain a good option and they provide new directions for the treatment. Due to the complicated pathogenesis of glioma, epigenetic applications to glioma clinical treatment are still limited.
Collapse
Affiliation(s)
- Lanlan Zang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shukkoor Muhammed Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Fengyuan Che
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lijuan Wang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|