1
|
Yaghootfam C, Sylvester M, Turk B, Gieselmann V, Matzner U. Engineered arylsulfatase A with increased activity, stability and brain delivery for therapy of metachromatic leukodystrophy. Mol Ther 2023; 31:2962-2974. [PMID: 37644722 PMCID: PMC10556224 DOI: 10.1016/j.ymthe.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
A deficiency of human arylsulfatase A (hASA) causes metachromatic leukodystrophy (MLD), a lysosomal storage disease characterized by sulfatide accumulation and central nervous system (CNS) demyelination. Efficacy of enzyme replacement therapy (ERT) is increased by genetic engineering of hASA to elevate its activity and transfer across the blood-brain barrier (BBB), respectively. To further improve the enzyme's bioavailability in the CNS, we mutated a cathepsin cleavage hot spot and obtained hASAs with substantially increased half-lives. We then combined the superstabilizing exchange E424A with the activity-promoting triple substitution M202V/T286L/R291N and the ApoEII-tag for BBB transfer in a trimodal modified neoenzyme called SuPerTurbo-ASA. Compared with wild-type hASA, half-life, activity, and M6P-independent uptake were increased more than 7-fold, about 3-fold, and more than 100-fold, respectively. ERT of an MLD-mouse model with immune tolerance to wild-type hASA did not induce antibody formation, indicating absence of novel epitopes. Compared with wild-type hASA, SuPerTurbo-ASA was 8- and 12-fold more efficient in diminishing sulfatide storage of brain and spinal cord. In both tissues, storage was reduced by ∼60%, roughly doubling clearance achieved with a 65-fold higher cumulative dose of wild-type hASA previously. Due to its enhanced therapeutic potential, SuPerTurbo-ASA might be a decisive advancement for ERT and gene therapy of MLD.
Collapse
Affiliation(s)
- Claudia Yaghootfam
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | - Marc Sylvester
- Core Facility Analytical Proteomics, Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | - Ulrich Matzner
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
2
|
Al‐Saady M, Beerepoot S, Plug BC, Breur M, Galabova H, Pouwels PJW, Boelens J, Lindemans C, van Hasselt PM, Matzner U, Vanderver A, Bugiani M, van der Knaap MS, Wolf NI. Neurodegenerative disease after hematopoietic stem cell transplantation in metachromatic leukodystrophy. Ann Clin Transl Neurol 2023; 10:1146-1159. [PMID: 37212343 PMCID: PMC10351661 DOI: 10.1002/acn3.51796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023] Open
Abstract
OBJECTIVE Metachromatic leukodystrophy is a lysosomal storage disease caused by deficient arylsulfatase A. It is characterized by progressive demyelination and thus mainly affects the white matter. Hematopoietic stem cell transplantation may stabilize and improve white matter damage, yet some patients deteriorate despite successfully treated leukodystrophy. We hypothesized that post-treatment decline in metachromatic leukodystrophy might be caused by gray matter pathology. METHODS Three metachromatic leukodystrophy patients treated with hematopoietic stem cell transplantation with a progressive clinical course despite stable white matter pathology were clinically and radiologically analyzed. Longitudinal volumetric MRI was used to quantify atrophy. We also examined histopathology in three other patients deceased after treatment and compared them with six untreated patients. RESULTS The three clinically progressive patients developed cognitive and motor deterioration after transplantation, despite stable mild white matter abnormalities on MRI. Volumetric MRI identified cerebral and thalamus atrophy in these patients, and cerebellar atrophy in two. Histopathology showed that in brain tissue of transplanted patients, arylsulfatase A expressing macrophages were clearly present in the white matter, but absent in the cortex. Arylsulfatase A expression within patient thalamic neurons was lower than in controls, the same was found in transplanted patients. INTERPRETATION Neurological deterioration may occur after hematopoietic stem cell transplantation in metachromatic leukodystrophy despite successfully treated leukodystrophy. MRI shows gray matter atrophy, and histological data demonstrate absence of donor cells in gray matter structures. These findings point to a clinically relevant gray matter component of metachromatic leukodystrophy, which does not seem sufficiently affected by transplantation.
Collapse
Affiliation(s)
- Murtadha Al‐Saady
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
| | - Shanice Beerepoot
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Nierkens and Lindemans GroupPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
| | - Bonnie C. Plug
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVU University and Neuroscience Campus AmsterdamAmsterdamthe Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVU University and Neuroscience Campus AmsterdamAmsterdamthe Netherlands
| | - Hristina Galabova
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam University Medical CentersVU universityAmsterdamthe Netherlands
| | - Petra J. W. Pouwels
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam University Medical CentersVU universityAmsterdamthe Netherlands
| | - Jaap‐Jan Boelens
- Stem Cell Transplantation and Cellular Therapies Program, Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Caroline Lindemans
- Stem Cell Transplantation and Cellular Therapies Program, Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Pediatric Blood and Bone Marrow Transplantation, Princess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
| | - Peter M. van Hasselt
- Stem Cell Transplantation and Cellular Therapies Program, Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Ulrich Matzner
- Institute of Biochemistry and Molecular Biology, Medical FacultyRheinische Friedrich‐Wilhelm UniversityBonnGermany
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children's Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Marianna Bugiani
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVU University and Neuroscience Campus AmsterdamAmsterdamthe Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Department of Integrative NeurophysiologyVU UniversityAmsterdamthe Netherlands
| | - Nicole I. Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
| |
Collapse
|
3
|
Jiang Y, Ran X, Yang ZJ. Data-driven enzyme engineering to identify function-enhancing enzymes. Protein Eng Des Sel 2023; 36:gzac009. [PMID: 36214500 PMCID: PMC10365845 DOI: 10.1093/protein/gzac009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 01/22/2023] Open
Abstract
Identifying function-enhancing enzyme variants is a 'holy grail' challenge in protein science because it will allow researchers to expand the biocatalytic toolbox for late-stage functionalization of drug-like molecules, environmental degradation of plastics and other pollutants, and medical treatment of food allergies. Data-driven strategies, including statistical modeling, machine learning, and deep learning, have largely advanced the understanding of the sequence-structure-function relationships for enzymes. They have also enhanced the capability of predicting and designing new enzymes and enzyme variants for catalyzing the transformation of new-to-nature reactions. Here, we reviewed the recent progresses of data-driven models that were applied in identifying efficiency-enhancing mutants for catalytic reactions. We also discussed existing challenges and obstacles faced by the community. Although the review is by no means comprehensive, we hope that the discussion can inform the readers about the state-of-the-art in data-driven enzyme engineering, inspiring more joint experimental-computational efforts to develop and apply data-driven modeling to innovate biocatalysts for synthetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Xinchun Ran
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Data Science Institute, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
4
|
Ahonen MA, Höring M, Nguyen VD, Qadri S, Taskinen JH, Nagaraj M, Wabitsch M, Fischer-Posovszky P, Zhou Y, Liebisch G, Haridas PAN, Yki-Järvinen H, Olkkonen VM. Insulin-inducible THRSP maintains mitochondrial function and regulates sphingolipid metabolism in human adipocytes. Mol Med 2022; 28:68. [PMID: 35715726 PMCID: PMC9204892 DOI: 10.1186/s10020-022-00496-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/08/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Thyroid hormone responsive protein (THRSP) is a lipogenic nuclear protein that is highly expressed in murine adipose tissue, but its role in humans remains unknown. METHODS We characterized the insulin regulation of THRSP in vivo in human adipose tissue biopsies and in vitro in Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. To this end, we measured whole-body insulin sensitivity using the euglycemic insulin clamp technique in 36 subjects [age 40 ± 9 years, body mass index (BMI) 27.3 ± 5.0 kg/m2]. Adipose tissue biopsies were obtained at baseline and after 180 and 360 min of euglycemic hyperinsulinemia for measurement of THRSP mRNA concentrations. To identify functions affected by THRSP, we performed a transcriptomic analysis of THRSP-silenced SGBS adipocytes. Mitochondrial function was assessed by measuring mitochondrial respiration as well as oxidation and uptake of radiolabeled oleate and glucose. Lipid composition in THRSP silencing was studied by lipidomic analysis. RESULTS We found insulin to increase THRSP mRNA expression 5- and 8-fold after 180 and 360 min of in vivo euglycemic hyperinsulinemia. This induction was impaired in insulin-resistant subjects, and THRSP expression was closely correlated with whole-body insulin sensitivity. In vitro, insulin increased both THRSP mRNA and protein concentrations in SGBS adipocytes in a phosphoinositide 3-kinase (PI3K)-dependent manner. A transcriptomic analysis of THRSP-silenced adipocytes showed alterations in mitochondrial functions and pathways of lipid metabolism, which were corroborated by significantly impaired mitochondrial respiration and fatty acid oxidation. A lipidomic analysis revealed decreased hexosylceramide concentrations, supported by the transcript concentrations of enzymes regulating sphingolipid metabolism. CONCLUSIONS THRSP is regulated by insulin both in vivo in human adipose tissue and in vitro in adipocytes, and its expression is downregulated by insulin resistance. As THRSP silencing decreases mitochondrial respiration and fatty acid oxidation, its downregulation in human adipose tissue could contribute to mitochondrial dysfunction. Furthermore, disturbed sphingolipid metabolism could add to metabolic dysfunction in obese adipose tissue.
Collapse
Affiliation(s)
- Maria A Ahonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland.,Doctoral Programme in Clinical Research, University of Helsinki, Helsinki, Finland
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Van Dien Nguyen
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Sami Qadri
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland.,Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Meghana Nagaraj
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Martin Wabitsch
- Systems Immunity University Research Institute, and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - You Zhou
- Systems Immunity University Research Institute, and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland.,Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland. .,Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Deep proteomic profiling unveils arylsulfatase A as a non-alcoholic steatohepatitis inducible hepatokine and regulator of glycemic control. Nat Commun 2022; 13:1259. [PMID: 35273160 PMCID: PMC8913628 DOI: 10.1038/s41467-022-28889-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) and type 2 diabetes are closely linked, yet the pathophysiological mechanisms underpinning this bidirectional relationship remain unresolved. Using proteomic approaches, we interrogate hepatocyte protein secretion in two models of murine NASH to understand how liver-derived factors modulate lipid metabolism and insulin sensitivity in peripheral tissues. We reveal striking hepatokine remodelling that is associated with insulin resistance and maladaptive lipid metabolism, and identify arylsulfatase A (ARSA) as a hepatokine that is upregulated in NASH and type 2 diabetes. Mechanistically, hepatic ARSA reduces sulfatide content and increases lysophosphatidylcholine (LPC) accumulation within lipid rafts and suppresses LPC secretion from the liver, thereby lowering circulating LPC and lysophosphatidic acid (LPA) levels. Reduced LPA is linked to improvements in skeletal muscle insulin sensitivity and systemic glycemic control. Hepatic silencing of Arsa or inactivation of ARSA's enzymatic activity reverses these effects. Together, this study provides a unique resource describing global changes in hepatokine secretion in NASH, and identifies ARSA as a regulator of liver to muscle communication and as a potential therapeutic target for type 2 diabetes.
Collapse
|
6
|
Abed Rabbo M, Khodour Y, Kaguni LS, Stiban J. Sphingolipid lysosomal storage diseases: from bench to bedside. Lipids Health Dis 2021; 20:44. [PMID: 33941173 PMCID: PMC8094529 DOI: 10.1186/s12944-021-01466-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023] Open
Abstract
Johann Ludwig Wilhelm Thudicum described sphingolipids (SLs) in the late nineteenth century, but it was only in the past fifty years that SL research surged in importance and applicability. Currently, sphingolipids and their metabolism are hotly debated topics in various biochemical fields. Similar to other macromolecular reactions, SL metabolism has important implications in health and disease in most cells. A plethora of SL-related genetic ailments has been described. Defects in SL catabolism can cause the accumulation of SLs, leading to many types of lysosomal storage diseases (LSDs) collectively called sphingolipidoses. These diseases mainly impact the neuronal and immune systems, but other systems can be affected as well. This review aims to present a comprehensive, up-to-date picture of the rapidly growing field of sphingolipid LSDs, their etiology, pathology, and potential therapeutic strategies. We first describe LSDs biochemically and briefly discuss their catabolism, followed by general aspects of the major diseases such as Gaucher, Krabbe, Fabry, and Farber among others. We conclude with an overview of the available and potential future therapies for many of the diseases. We strive to present the most important and recent findings from basic research and clinical applications, and to provide a valuable source for understanding these disorders.
Collapse
Affiliation(s)
- Muna Abed Rabbo
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine
| | - Yara Khodour
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, P.O. Box 14, Ramallah, West Bank, 627, Palestine.
| |
Collapse
|
7
|
Rosenberg JB, Chen A, De BP, Dyke JP, Ballon DJ, Monette S, Ricart Arbona RJ, Kaminsky SM, Crystal RG, Sondhi D. Safety of Direct Intraparenchymal AAVrh.10-Mediated Central Nervous System Gene Therapy for Metachromatic Leukodystrophy. Hum Gene Ther 2021; 32:563-580. [PMID: 33380277 DOI: 10.1089/hum.2020.269] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metachromatic leukodystrophy, a fatal pediatric neurodegenerative lysosomal storage disease caused by mutations in the arylsulfatase A (ARSA) gene, is characterized by intracellular accumulation of sulfatides in the lysosomes of cells of the central nervous system (CNS). In previous studies, we have demonstrated efficacy of AAVrh.10hARSA, an adeno-associated virus (AAV) serotype rh.10 vector coding for the human ARSA gene to the CNS of a mouse model of the disease, and that catheter-based intraparenchymal administration of AAVrh.10hARSA to the CNS of nonhuman primates (NHPs) white matter results in widespread expression of ARSA. As a formal dose-escalating safety/toxicology study, we assessed the safety of intraparenchymal delivery of AAVrh.10hARSA vector to 12 sites in the white matter of the CNS of NHPs at 2.85 × 1010 (total low dose, 2.4 × 109 genome copies [gc]/site) and 1.5 × 1012 (total high dose, 1.3 × 1011 gc/site) gc, compared to AAVrh.10Null (1.5 × 1012 gc total, 1.3 × 1011 gc/site) as a vector control, and phosphate buffered saline for a sham surgical control. No significant adverse effects were observed in animals treated with low dose AAVrh.10hARSA. However, animals treated with the high dose AAVrh.10ARSA and the high dose Null vector had highly localized CNS abnormalities on magnetic resonance imaging scans at the sites of catheter infusions, and histopathology demonstrated that these sites were associated with infiltrates of T cells, B cells, microglial cells, and/or macrophages. Although these findings had no clinical consequences, these safety data contribute to understanding the dose limits for CNS white matter direct intraparenchymal administration of AAVrh.10 vectors for treatment of CNS disorders.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jonathan P Dyke
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medical College, New York, New York, USA
| | - Douglas J Ballon
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medical College, New York, New York, USA
| | - Sebastien Monette
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | - Rodolfo J Ricart Arbona
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
8
|
Hendrikse NM, Sandegren A, Andersson T, Blomqvist J, Makower Å, Possner D, Su C, Thalén N, Tjernberg A, Westermark U, Rockberg J, Svensson Gelius S, Syrén PO, Nordling E. Ancestral lysosomal enzymes with increased activity harbor therapeutic potential for treatment of Hunter syndrome. iScience 2021; 24:102154. [PMID: 33665572 PMCID: PMC7907806 DOI: 10.1016/j.isci.2021.102154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
We show the successful application of ancestral sequence reconstruction to enhance the activity of iduronate-2-sulfatase (IDS), thereby increasing its therapeutic potential for the treatment of Hunter syndrome—a lysosomal storage disease caused by impaired function of IDS. Current treatment, enzyme replacement therapy with recombinant human IDS, does not alleviate all symptoms, and an unmet medical need remains. We reconstructed putative ancestral sequences of mammalian IDS and compared them with extant IDS. Some ancestral variants displayed up to 2-fold higher activity than human IDS in in vitro assays and cleared more substrate in ex vivo experiments in patient fibroblasts. This could potentially allow for lower dosage or enhanced therapeutic effect in enzyme replacement therapy, thereby improving treatment outcomes and cost efficiency, as well as reducing treatment burden. In summary, we showed that ancestral sequence reconstruction can be applied to lysosomal enzymes that function in concert with modern enzymes and receptors in cells. Reconstruction of ancestral lysosomal enzymes that function in complex cellular context Ancestral iduronate-2-sulfatases with increased activity compared with the human enzyme Increased clearance of substrate in patient fibroblasts indicates therapeutic potential
Collapse
Affiliation(s)
- Natalie M. Hendrikse
- Swedish Orphan Biovitrum AB, Stockholm 112 76, Sweden
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna 171 21, Sweden
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | | | | | | | - Åsa Makower
- Swedish Orphan Biovitrum AB, Stockholm 112 76, Sweden
| | | | - Chao Su
- Swedish Orphan Biovitrum AB, Stockholm 112 76, Sweden
| | - Niklas Thalén
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10691, Sweden
| | | | | | - Johan Rockberg
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10691, Sweden
| | | | - Per-Olof Syrén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna 171 21, Sweden
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10691, Sweden
- Corresponding author
| | - Erik Nordling
- Swedish Orphan Biovitrum AB, Stockholm 112 76, Sweden
- Corresponding author
| |
Collapse
|
9
|
Mingbunjerdsuk D, Wong M, Bozarth X, Sun A. Co-occurrence of Metachromatic Leukodystrophy in Phelan-McDermid Syndrome. J Child Neurol 2021; 36:148-151. [PMID: 32991243 DOI: 10.1177/0883073820960308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phelan-McDermid syndrome or 22q13.3 deletion syndrome is a rare neurodevelopmental disorder characterized by neonatal hypotonia, severe speech delay, moderate to profound intellectual disability, and minor dysmorphic features. Regression of developmental milestones is often recognized as characteristic of this syndrome. We report a 6-year-old patient with Phelan-McDermid syndrome who presented with rapid neurologic deterioration secondary to metachromatic leukodystrophy due to a mutation of the arylsulfatase A gene (ARSA) on the other allele of 22q13.3. Metachromatic leukodystrophy was diagnosed later after clinical deterioration. Currently, there are no guidelines for screening Phelan-McDermid syndrome patients for metachromatic leukodystrophy. We propose screening for urine sulfatides at the time of Phelan-McDermid syndrome diagnosis to identify patients with pre-symptomatic or early symptomatic metachromatic leukodystrophy as it is important to facilitate discussion of treatment options and prognosis and provide medical surveillance for associated complications.
Collapse
Affiliation(s)
- Dararat Mingbunjerdsuk
- Department of Neurology, Division of Pediatric Neurology, 7274Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Melissa Wong
- Department of Neurology, Division of Pediatric Neurology, 7274Seattle Children's Hospital, University of Washington, Seattle, WA, USA.,12353School of Medicine, University of Washington, Seattle, WA, USA
| | - Xiuhua Bozarth
- Department of Neurology, Division of Pediatric Neurology, 7274Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Angela Sun
- Department of Pediatrics, Division of Biochemical Genetics, 7274Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Í Dali C, Groeschel S, Moldovan M, Farah MH, Krägeloh-Mann I, Wasilewski M, Li J, Barton N, Krarup C. Intravenous arylsulfatase A in metachromatic leukodystrophy: a phase 1/2 study. Ann Clin Transl Neurol 2020; 8:66-80. [PMID: 33332761 PMCID: PMC7818087 DOI: 10.1002/acn3.51254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disease caused by deficient activity of arylsulfatase A (ASA), resulting in severe motor and cognitive dysfunction. This phase 1/2 study evaluated the safety and efficacy of intravenous (IV) recombinant human ASA (rhASA; HGT-1111, previously known as Metazym) in children with MLD. METHODS Thirteen children with MLD (symptom onset < 4 years of age) were enrolled in an open-label, nonrandomized, dose-escalation trial and received IV rhASA at 50, 100, or 200 U/kg body weight every 14 (± 4) days for 52 weeks (NCT00418561; NCT00633139). Eleven children continued to receive rhASA at 100 or 200 U/kg during a 24-month extension period (NCT00681811). Outcome measures included safety observations, changes in motor and cognitive function, and changes in nerve conduction and morphometry. RESULTS There were no serious adverse events considered related to IV rhASA. Motor function and developmental testing scores declined during the study in all dose groups; no significant differences were observed between groups. Nerve conduction studies and morphometric analysis indicated that peripheral nerve pathology did not worsen during the study in any dose group. INTERPRETATION IV rhASA was generally well tolerated. There was no evidence of efficacy in preventing motor and cognitive deterioration, suggesting that IV rhASA may not cross the blood-brain barrier in therapeutic quantities. The relative stability of peripheral nerve function during the study indicates that rhASA may be beneficial if delivered to the appropriate target site and supports the development of rhASA for intrathecal administration in MLD.
Collapse
Affiliation(s)
- Christine Í Dali
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Samuel Groeschel
- Department of Neuropediatrics, University Children's Hospital Tübingen, Tübingen, Germany
| | - Mihai Moldovan
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ingeborg Krägeloh-Mann
- Department of Neuropediatrics, University Children's Hospital Tübingen, Tübingen, Germany
| | - Margaret Wasilewski
- Shire (a member of the Takeda group of companies), Lexington, Massachusetts, USA
| | - Jing Li
- Shire (a member of the Takeda group of companies), Lexington, Massachusetts, USA
| | - Norman Barton
- Shire (a member of the Takeda group of companies), Lexington, Massachusetts, USA
| | - Christian Krarup
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Lysosomal sulfatases: a growing family. Biochem J 2020; 477:3963-3983. [PMID: 33120425 DOI: 10.1042/bcj20200586] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Sulfatases constitute a family of enzymes that specifically act in the hydrolytic degradation of sulfated metabolites by removing sulfate monoesters from various substrates, particularly glycolipids and glycosaminoglycans. A common essential feature of all known eukaryotic sulfatases is the posttranslational modification of a critical cysteine residue in their active site by oxidation to formylglycine (FGly), which is mediated by the FGly-generating enzyme in the endoplasmic reticulum and is indispensable for catalytic activity. The majority of the so far described sulfatases localize intracellularly to lysosomes, where they act in different catabolic pathways. Mutations in genes coding for lysosomal sulfatases lead to an accumulation of the sulfated substrates in lysosomes, resulting in impaired cellular function and multisystemic disorders presenting as lysosomal storage diseases, which also cover the mucopolysaccharidoses and metachromatic leukodystrophy. Bioinformatics analysis of the eukaryotic genomes revealed, besides the well described and long known disease-associated sulfatases, additional genes coding for putative enzymes with sulfatases activity, including arylsulfatase G as well as the arylsulfatases H, I, J and K, respectively. In this article, we review current knowledge about lysosomal sulfatases with a special focus on the just recently characterized family members arylsulfatase G and arylsulfatase K.
Collapse
|
12
|
Datta S, Rajnish KN, George Priya Doss C, Melvin Samuel S, Selvarajan E, Zayed H. Enzyme therapy: a forerunner in catalyzing a healthy society? Expert Opin Biol Ther 2020; 20:1151-1174. [PMID: 32597245 DOI: 10.1080/14712598.2020.1787980] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The use of enzymes in various industries has been prevalent for centuries. However, their potency as therapeutics remained latent until the late 1950 s, when scientists finally realized the gold mine they were sitting on. Enzyme therapy has seen rapid development over the past few decades and has been widely used for the therapy of myriad diseases, including lysosomal storage disorders, cancer, Alzheimer's disease, irritable bowel syndrome, exocrine pancreatic insufficiency, and hyperuricemia. Enzymes are also used for wound healing, the treatment of microbial infections, and gene therapy. AREAS COVERED This is a comprehensive review of the therapeutic use of enzymes that can act as a guidepost for researchers and academicians and presents a general overview of the developments in enzyme therapy over the years, along with updates on recent advancements in enzyme therapy research. EXPERT OPINION Although enzyme therapy is immensely beneficial and induces little auxiliary damage, it has several drawbacks, ranging from high cost, low stability, low production, and hyperimmune responses to the failure to cure a variety of the problems associated with a disease. Further fine-tuning and additional clinical efficacy studies are required to establish enzyme therapy as a forerunner to catalyzing a healthy society.
Collapse
Affiliation(s)
- Saptashwa Datta
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology , Kattankulathur, TN, India
| | - K Narayanan Rajnish
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology , Kattankulathur, TN, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology , Vellore, TN, India
| | - S Melvin Samuel
- Materials Science and Engineering, University of Wisconsin-Milwaukee , Milwaukee, WI, United States
| | - E Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology , Kattankulathur, TN, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University , Doha, Qatar
| |
Collapse
|
13
|
Beerepoot S, Nierkens S, Boelens JJ, Lindemans C, Bugiani M, Wolf NI. Peripheral neuropathy in metachromatic leukodystrophy: current status and future perspective. Orphanet J Rare Dis 2019; 14:240. [PMID: 31684987 PMCID: PMC6829806 DOI: 10.1186/s13023-019-1220-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/09/2019] [Indexed: 11/23/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is an autosomal recessively inherited metabolic disease characterized by deficient activity of the lysosomal enzyme arylsulfatase A. Its deficiency results in accumulation of sulfatides in neural and visceral tissues, and causes demyelination of the central and peripheral nervous system. This leads to a broad range of neurological symptoms and eventually premature death. In asymptomatic patients with juvenile and adult MLD, treatment with allogeneic hematopoietic stem cell transplantation (HCT) provides a symptomatic and survival benefit. However, this treatment mainly impacts brain white matter, whereas the peripheral neuropathy shows no or only limited response. Data about the impact of peripheral neuropathy in MLD patients are currently lacking, although in our experience peripheral neuropathy causes significant morbidity due to neuropathic pain, foot deformities and neurogenic bladder disturbances. Besides, the reasons for residual and often progressive peripheral neuropathy after HCT are not fully understood. Preliminary studies suggest that peripheral neuropathy might respond better to gene therapy due to higher enzyme levels achieved than with HCT. However, histopathological and clinical findings also suggest a role of neuroinflammation in the pathology of peripheral neuropathy in MLD. In this literature review, we discuss clinical aspects, pathological findings, distribution of mutations, and treatment approaches in MLD with particular emphasis on peripheral neuropathy. We believe that future therapies need more emphasis on the management of peripheral neuropathy, and additional research is needed to optimize care strategies.
Collapse
Affiliation(s)
- Shanice Beerepoot
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Pediatric Blood and Marrow Transplantation Program, Princess Máxima Center and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap Jan Boelens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Pediatrics, Stem Cell Transplant and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline Lindemans
- Pediatric Blood and Marrow Transplantation Program, Princess Máxima Center and University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative medicine institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|