1
|
Liu X, Sun W, Liu H, Wang L, Manzoor MA, Wang J, Jiu S, Zhang C. PavSPLs are key regulators of growth, development, and stress response in sweet cherry. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112279. [PMID: 39401543 DOI: 10.1016/j.plantsci.2024.112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes are plant-specific transcription factors essential for plant growth, development, and stress responses. Their roles in sweet cherry are not well understood. In this study, we identified and isolated 16 SPL genes from the sweet cherry genome, categorizing them into 5 subfamilies, with 12 PavSPLs predicted as miR156 targets. Promoter regions of PavSPLs contain cis-elements associated with light, stress, and phytohormone responses, indicating their role in biological processes and abiotic stress responses. Seasonal expression analysis showed that PavSPL regulates sweet cherry recovery after dormancy. Gibberellin (GA) treatment reduced PavSPL expression, indicating its role in GA-mediated processes. PavSPL14 overexpression in Arabidopsis thaliana resulted in earlier flowering and increased plant height and growth. Yeast two-hybrid assays showed an interaction between PavSPL14 and DELLA protein PavDWARF8, suggesting PavSPL14 and PavDWARF8 co-regulate growth and development. These findings lay the groundwork for further research on PavSPL function in sweet cherry.
Collapse
Affiliation(s)
- Xunju Liu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Wanxia Sun
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Haobo Liu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Li Wang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Muhammad Aamir Manzoor
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Jiyuan Wang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Songtao Jiu
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| | - Caixi Zhang
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China.
| |
Collapse
|
2
|
Liu Z, Bernard A, Wang Y, Dirlewanger E, Wang X. Genomes and integrative genomic insights into the genetic architecture of main agronomic traits in the edible cherries. HORTICULTURE RESEARCH 2025; 12:uhae269. [PMID: 39802740 PMCID: PMC11718393 DOI: 10.1093/hr/uhae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 01/16/2025]
Abstract
Cherries are one of the economically important fruit crops in the Rosaceae family, Prunus genus. As the first fruits of the spring season in the northern hemisphere, their attractive appearance, intensely desirable tastes, high nutrients content, and consumer-friendly size captivate consumers worldwide. In the past 30 years, although cherry geneticists and breeders have greatly progressed in understanding the genetic and molecular basis underlying fruit quality, adaptation to climate change, and biotic and abiotic stress resistance, the utilization of cherry genomic data in genetics and molecular breeding has remained limited to date. Here, we thoroughly investigated recent discoveries in constructing genetic linkage maps, identifying quantitative trait loci (QTLs), genome-wide association studies (GWAS), and validating functional genes of edible cherries based on available de novo genomes and genome resequencing data of edible cherries. We further comprehensively demonstrated the genetic architecture of the main agronomic traits of edible cherries by methodically integrating QTLs, GWAS loci, and functional genes into the identical reference genome with improved annotations. These collective endeavors will offer new perspectives on the availability of sequence data and the construction of an interspecific pangenome of edible cherries, ultimately guiding cherry breeding strategies and genetic improvement programs, and facilitating the exploration of similar traits and breeding innovations across Prunus species.
Collapse
Affiliation(s)
- Zhenshan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Anthony Bernard
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon 33882, France
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | | | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| |
Collapse
|
3
|
Hsiang TF, Yamane H, Lin YJ, Sugimori M, Nishiyama S, Nagasaka K, Nakano R, Tao R. The haplotype-phased genome assembly facilitated the deciphering of the bud dormancy-related QTLs in Prunus mume. DNA Res 2024; 32:dsae034. [PMID: 39656749 PMCID: PMC11747360 DOI: 10.1093/dnares/dsae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Bud dormancy is a vital physiological process in woody perennials, facilitating their adaptation to seasonal environmental changes. Satisfying genotype-specific chilling requirements (CR) and heat requirements (HR) through exposure to specific chilling and warm temperatures is essential for dormancy release and the subsequent resumption of growth. The genetic mechanisms regulating bud dormancy traits in Prunus mume remain unclear. In this study, we first assembled the genome of 'Nanko', the leading P. mume cultivar in Japan, in a haplotype-resolved manner. Using an F1 segregating population from a cross between 'Nanko' (high-chill) and 'SC' (low-chill), a cultivar adapted to subtropical conditions, we identified quantitative trait loci (QTLs) for vegetative bud dormancy traits on chromosome 4 (LG4 QTLs) in the 'Nanko' genome and for CR and HR on chromosome 7 (LG7 QTL) in the 'SC' genome. A notable 5.6 Mb chromosome inversion was overlapped with LG4 QTL interval in one of the 'Nanko' haplotypes. We also identified candidate genes based on haplotyping, differential expression between the parents or the presence of trait-correlated variants in coding regions. Notably, genes such as PmuMAIN, PmuNAC2, PmuDOG1, PmuSUI1, PmuATG8CL, PmubZIP44, and PmuSAUR50 were identified. This study provides valuable insights into the genetic regulation of vegetative bud dormancy in Prunus species.
Collapse
Affiliation(s)
- Tzu-Fan Hsiang
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuan-Jui Lin
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Miku Sugimori
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | - Kyoka Nagasaka
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kyoto 619-0218, Japan
| | - Ryohei Nakano
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kyoto 619-0218, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Goeckeritz CZ, Grabb C, Grumet R, Iezzoni AF, Hollender CA. Genetic factors acting prior to dormancy in sour cherry influence bloom time the following spring. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4428-4452. [PMID: 38602443 PMCID: PMC11263489 DOI: 10.1093/jxb/erae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Understanding the process of Prunus species floral development is crucial for developing strategies to manipulate bloom time and prevent crop loss due to climate change. Here, we present a detailed examination of flower development from initiation until bloom for early- and late-blooming sour cherries (Prunus cerasus) from a population segregating for a major bloom time QTL on chromosome 4. Using a new staging system, we show floral buds from early-blooming trees were persistently more advanced than those from late-blooming siblings. A genomic DNA coverage analysis revealed the late-blooming haplotype of this QTL, k, is located on a subgenome originating from the late-blooming P. fruticosa progenitor. Transcriptome analyses identified many genes within this QTL as differentially expressed between early- and late-blooming trees during the vegetative-to-floral transition. From these, we identified candidate genes for the late bloom phenotype, including multiple transcription factors homologous to Reproductive Meristem B3 domain-containing proteins. Additionally, we determined that the basis of k in sour cherry is likely separate from candidate genes found in sweet cherry-suggesting several major regulators of bloom time are located on Prunus chromosome 4.
Collapse
Affiliation(s)
- Charity Z Goeckeritz
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Chloe Grabb
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Amy F Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| | - Courtney A Hollender
- Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
6
|
Hu Y, Feng C, Wu B, Kang M. A chromosome-scale assembly of the early-flowering Prunus campanulata and comparative genomics of cherries. Sci Data 2023; 10:920. [PMID: 38129445 PMCID: PMC10739980 DOI: 10.1038/s41597-023-02843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Prunus campanulata is an important flowering cherry germplasm of high ornamental value. Given its early-flowering phenotypes, P. campanulata could be used for molecular breeding of ornamental species and fruit crops belonging to the subgenus Cerasus. Here, we report a chromosome-scale assembly of P. campanulata with a genome size of 282.6 Mb and a contig N50 length of 12.04 Mb. The genome contained 24,861 protein-coding genes, of which 24,749 genes (99.5%) were functionally annotated, and 148.20 Mb (52.4%) of the assembled sequences are repetitive sequences. A combination of genomic and population genomic analyses revealed a number of genes under positive selection or accelerated molecular evolution in P. campanulata. Our study provides a reliable genome resource, and lays a solid foundation for genetic improvement of flowering cherry germplasm.
Collapse
Affiliation(s)
- Yuxi Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Feng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Baohuan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Ming Kang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
7
|
Branchereau C, Hardner C, Dirlewanger E, Wenden B, Le Dantec L, Alletru D, Parmentier J, Ivančič A, Giovannini D, Brandi F, Lopez-Ortega G, Garcia-Montiel F, Quilot-Turion B, Quero-García J. Genotype-by-environment and QTL-by-environment interactions in sweet cherry ( Prunus avium L.) for flowering date. FRONTIERS IN PLANT SCIENCE 2023; 14:1142974. [PMID: 36938044 PMCID: PMC10017975 DOI: 10.3389/fpls.2023.1142974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
In sweet cherry (Prunus avium L.), flowering date is strongly dependent on the environment conditions and, therefore, is a trait of major interest for adaptation to climate change. Such trait can be influenced by genotype-by-environment interaction (G×E), that refers to differences in the response of genotypes to different environments. If not taken into account, G×E can reduce selection accuracy and overall genetic gain. However, little is known about G×E in fruit tree species. Flowering date is a highly heritable and polygenic trait for which many quantitative trait loci (QTLs) have been identified. As for the overall genetic performance, differential expression of QTLs in response to environment (QTL-by-environment interaction, QTL×E) can occur. The present study is based on the analysis of a multi-environment trial (MET) suitable for the study of G×E and QTL×E in sweet cherry. It consists of a sweet cherry F1 full-sib family (n = 121) derived from the cross between cultivars 'Regina' and 'Lapins' and planted in two copies in five locations across four European countries (France, Italy, Slovenia and Spain) covering a large range of climatic conditions. The aim of this work was to study the effect of the environment on flowering date and estimate G×E, to carry QTL detection in different environments in order to study the QTL stability across environments and to estimate QTL×E. A strong effect of the environment on flowering date and its genetic control was highlighted. Two large-effect and environment-specific QTLs with significant QTL×E were identified on linkage groups (LGs) 1 and 4. This work gives new insights into the effect of the environment on a trait of main importance in one of the most economically important fruit crops in temperate regions. Moreover, molecular markers were developed for flowering date and a strategy consisting in using specific markers for warm or cold regions was proposed to optimize marker-assisted selection (MAS) in sweet cherry breeding programs.
Collapse
Affiliation(s)
- Camille Branchereau
- INRAE, Univ. Bordeaux, Unité Mixte de Recherche Biologie du Fruit et Pathologie (UMR BFP), Villenave d’Ornon, France
| | - Craig Hardner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Elisabeth Dirlewanger
- INRAE, Univ. Bordeaux, Unité Mixte de Recherche Biologie du Fruit et Pathologie (UMR BFP), Villenave d’Ornon, France
| | - Bénédicte Wenden
- INRAE, Univ. Bordeaux, Unité Mixte de Recherche Biologie du Fruit et Pathologie (UMR BFP), Villenave d’Ornon, France
| | - Loïck Le Dantec
- INRAE, Univ. Bordeaux, Unité Mixte de Recherche Biologie du Fruit et Pathologie (UMR BFP), Villenave d’Ornon, France
| | - David Alletru
- INRAE, Unité Expérimentale (UE) 0393, Unité Expérimentale Arboricole, Toulenne, France
| | - Julien Parmentier
- INRAE, Unité Expérimentale (UE) 0393, Unité Expérimentale Arboricole, Toulenne, France
| | - Anton Ivančič
- Faculty of Agriculture and Life Sciences, University of Maribor, Hoce, Slovenia
| | - Daniela Giovannini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Research Centre for Olive, Fruit and Citrus Crops, Forli, Italy
| | - Federica Brandi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Research Centre for Olive, Fruit and Citrus Crops, Forli, Italy
| | | | - Federico Garcia-Montiel
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Instituto Murciano de Investigación, y Desarrollo Agrario y Alimentario, Murcia, Spain
| | | | - José Quero-García
- INRAE, Univ. Bordeaux, Unité Mixte de Recherche Biologie du Fruit et Pathologie (UMR BFP), Villenave d’Ornon, France
| |
Collapse
|
8
|
Metabolites in Cherry Buds to Detect Winter Dormancy. Metabolites 2022; 12:metabo12030247. [PMID: 35323690 PMCID: PMC8951522 DOI: 10.3390/metabo12030247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
Winter dormancy is still a “black box” in phenological models, because it evades simple observation. This study presents the first step in the identification of suitable metabolites which could indicate the timing and length of dormancy phases for the sweet cherry cultivar ‘Summit’. Global metabolite profiling detected 445 named metabolites in flower buds, which can be assigned to different substance groups such as amino acids, carbohydrates, phytohormones, lipids, nucleotides, peptides and some secondary metabolites. During the phases of endo- and ecodormancy, the energy metabolism in the form of glycolysis and the tricarboxylic acid (TCA) cycle was shut down to a minimum. However, the beginning of ontogenetic development was closely related to the up-regulation of the carbohydrate metabolism and thus to the generation of energy for the growth and development of the sweet cherry buds. From the 445 metabolites found in cherry buds, seven were selected which could be suitable markers for the ecodormancy phase, whose duration is limited by the date of endodormancy release (t1) and the beginning of ontogenetic development (t1*). With the exception of abscisic acid (ABA), which has been proven to control bud dormancy, all of these metabolites show nearly constant intensity during this phase.
Collapse
|