1
|
Huang Y, Sahu SK, Liu X. Deciphering recent transposition patterns in plants through comparison of 811 genome assemblies. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1121-1132. [PMID: 39791953 PMCID: PMC11933835 DOI: 10.1111/pbi.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Transposable elements (TEs) are significant drivers of genome evolution, yet their recent dynamics and impacts within and among species, as well as the roles of host genes and non-coding RNAs in the transposition process, remain elusive. With advancements in large-scale pan-genome sequencing and the development of open data sharing, large-scale comparative genomics studies have become feasible. Here, we performed complete de novo TE annotations and identified active TEs in 310 plant genome assemblies across 119 species and seven crop populations. Using 811 high-quality genomes, we detected 13 844 553 TE-induced structural variants (TE-SVs), providing unprecedented resolution in delineating recent TE activities. Our integrative analysis revealed a mutual evolutionary relationship between TEs and host genomes. On one hand, host genes and ncRNAs are involved in the transposition process, as evidenced by their colocalization and coactivation with TEs, and may play a role in chromatin regulation. On the other hand, TEs drive genetic innovation by promoting the duplication of host genes and inserting into regulatory regions. Moreover, genes influenced by active TEs are linked to plant growth, nutrient absorption, storage metabolism and environmental adaptation, aiding in crop domestication and adaptation. This TE dynamics atlas not only reveals evolutionary and functional features linked to transposition activity but also highlights the role of TEs in crop domestication and adaptation, paving the way for future exploration of TE-mediated genome evolution and crop improvement strategies.
Collapse
Affiliation(s)
- Yan Huang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Agricultural GenomicsBGI ResearchShenzhenChina
- BGI Research BeijingBGI ResearchBeijingChina
| | - Sunil Kumar Sahu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Agricultural GenomicsBGI ResearchShenzhenChina
| | - Xin Liu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Agricultural GenomicsBGI ResearchShenzhenChina
- BGI Research BeijingBGI ResearchBeijingChina
| |
Collapse
|
2
|
Toker TP, Ulusoy D, Doğan B, Kasapoğlu S, Hakan F, Reddy UK, Kordrostami M, Yol E. Genomic insights into Mediterranean pepper diversity using ddRADSeq. PLoS One 2025; 20:e0318105. [PMID: 40063634 PMCID: PMC11892853 DOI: 10.1371/journal.pone.0318105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/09/2025] [Indexed: 05/13/2025] Open
Abstract
This work investigated the genetic diversity and population structure of 99 pepper lines (Capsicum annuum L.), acclimated to Mediterranean climate conditions, using double-digest restriction site-associated DNA sequencing (ddRADSeq). The aims were to understand the genetic relationships among these lines, correlate genetic clusters with botanical classifications, and provide insights into pepper domestication in the region. Obtained were 318.76 million raw sequence reads overall, averaging 3.21 million reads per sample. A total of 8475 high-quality SNPs were identified and used to assess genetic diversity and population structure. Chromosome NC_061113.1 displayed the highest amount and Chromosome NC_061118.1 the fewest of these SNPs, which were not equally spaced around the genome. Heterozygosity measures and a negative inbreeding coefficient point to the great genetic diversity seen, therefore highlighting the genetic health of the population. Different genetic clusters found by phylogenetic study and STRUCTURE analysis can be used in breeding programs to mix desired features from many genetic backgrounds. This work showed how well ddRADSeq generates high-quality SNPs for genomic research on peppers, therefore offering useful molecular tools for genomic selection and marker-assisted selection. The analysis identified significant genetic diversity and distinct genetic clusters which are valuable for breeding programs focused on crop improvement. These findings enhance our understanding of pepper domestication and provide valuable genetic resources for breeding programs aimed at improving pepper varieties.
Collapse
Affiliation(s)
- Tuğba Pelin Toker
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkiye
| | | | | | | | - Fidan Hakan
- Department of Plant Protection, Faculty of Agriculture, Akdeniz University, Antalya, Turkiye
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Engin Yol
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkiye
| |
Collapse
|
3
|
de Almeida BM, Clarindo WR. A multidisciplinary and integrative review of the structural genome and epigenome of Capsicum L. species. PLANTA 2025; 261:82. [PMID: 40057910 DOI: 10.1007/s00425-025-04653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION We revised and integrated the genomic and epigenomic data into a comparative Capsicum ideogram, evidencing the advances and future perspectives. Capsicum L. (Solanaceae) genome has been characterized concerning karyotype, nuclear and chromosomal genome size, genome sequencing and physical mapping. In addition, the epigenome has been investigated, showing chromosomal distribution of epimarks in histone amino acids. Genetic and epigenetic discoveries have given light to understanding the structure and organization of the Capsicum "omics". In addition, interspecific and intraspecific similarities and diversities have been identified, characterized and compared in taxonomic and evolutive scenarios. The journey through Capsicum studies allows us to know the 2n = 2x = 24 and 2n = 2x = 26 chromosome numbers, as well as the relatively homomorphic karyotype, and the 1C chromosomal DNA content. In addition, Capsicum "omics" diversity has mainly been evidenced from the nuclear 1C value, as well as from repeatome composition and mapping. Like this, Capsicum provides several opportunities for "omics", ecological, agronomic and conservation approaches, as well as subjects that can be used at different levels of education. In this context, we revisit and integrate Capsicum data about the genome size, karyotype, sequencing and cytogenomics, pointing out the progress and impact of this knowledge in taxonomic, evolutive and agronomic contexts. We also noticed gaps, which can be a focus of further studies. From this multidisciplinary and integrative review, we intend to show the beauty and intrigue of the Capsicum genome and epigenome, as well as the outcomes of these similarities and differences.
Collapse
Affiliation(s)
- Breno Machado de Almeida
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Wellington Ronildo Clarindo
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
4
|
Zhang K, Wang X, Chen S, Liu Y, Zhang L, Yang X, Yu H, Cao Y, Zhang L, Cai C, Ruan J, Wang L, Cheng F. The gap-free assembly of pepper genome reveals transposable-element-driven expansion and rapid evolution of pericentromeres. PLANT COMMUNICATIONS 2025; 6:101177. [PMID: 39449200 PMCID: PMC11897449 DOI: 10.1016/j.xplc.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shumin Chen
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanhang Liu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingkui Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaolong Yang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hailong Yu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yacong Cao
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcheng Cai
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lihao Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Vegetable Biology of Hainan Province, Haikou 571100, China.
| |
Collapse
|
5
|
Zhang K, Yu H, Zhang L, Cao Y, Li X, Mei Y, Wang X, Zhang Z, Li T, Jin Y, Fan W, Guan C, Wang Y, Zhou D, Chen S, Wu H, Wang L, Cheng F. Transposon proliferation drives genome architecture and regulatory evolution in wild and domesticated peppers. NATURE PLANTS 2025; 11:359-375. [PMID: 39875669 DOI: 10.1038/s41477-025-01905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
Pepper (Capsicum spp.) is a widely consumed vegetable with exceptionally large genomes in Solanaceae, yet its genomic evolutionary history remains largely unknown. Here we present 11 high-quality Capsicum genome assemblies, including two gap-free genomes, covering four wild and all five domesticated pepper species. We reconstructed the ancestral karyotype and inferred the evolutionary trajectory of peppers. The expanded and variable genome sizes were attributed to differential transposable element accumulations, which shaped 3D chromatin architecture and introduced mutations associated with traits such as fruit orientation and colour. Using a chromatin accessibility atlas of Capsicum, we highlight the influence of transposable elements on regulatory element evolution. Furthermore, by constructing a haploblock map of 124 pepper core germplasms, we uncover frequent introgressions that facilitate the formation of sweet blocky pepper and the acquisition of important traits such as resistance to pepper mild mottle virus. These findings on the genomic and functional evolution of Capsicum will benefit pepper breeding.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailong Yu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingkui Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yacong Cao
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajie Mei
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenghai Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyao Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Jin
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyuan Fan
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Congcong Guan
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yihan Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daiyuan Zhou
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Chen
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huamao Wu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihao Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
6
|
Lee JH, Kim JM, Kwon JK, Kang BC. Fine mapping of the Chilli veinal mottle virus resistance 4 (cvr4) gene in pepper (Capsicum annuum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:19. [PMID: 39777543 PMCID: PMC11706928 DOI: 10.1007/s00122-024-04805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
KEY MESSAGE The single recessive Chilli veinal mottle virus resistance locus, cvr4, was fine-mapped in pepper through bulked segregant RNA sequencing combined with gene silencing analysis. Chilli veinal mottle virus (ChiVMV) is a widespread pathogen affecting the production of peppers (Capsicum annuum L.) in Asia and Africa. Few loci conferring resistance to ChiVMV have been identified, severely limiting the development of resistant cultivars. To identify ChiVMV resistance genes, we constructed an F2:3 segregating population derived from a cross between the ChiVMV-resistant cultivar 'CV9' and the susceptible cultivar 'Jeju'. The inheritance study of F2:3 populations showed a 1:3 ratio of resistant to susceptible individuals, demonstrating the existence of a single recessive ChiVMV resistance gene in CV9; we named this gene cvr4. To map the cvr4 locus, we employed bulked segregant analysis by RNA sequencing (BSR-seq) of pools from resistant and susceptible F2:3 individuals. We mapped cvr4 to the telomeric region of pepper chromosome 11. To narrow down the cvr4 locus, we developed additional molecular markers in the cvr4 target region, leading to a 2-Mb region of chromosome 11 showing complete co-segregation with the ChiVMV resistance phenotype. Using the polymorphisms identified during BSR-seq, we defined a list of 15 candidate genes for cvr4, which we tested through virus-induced gene silencing analysis for ChiVMV resistance. Of these, the silencing of several genes (DEM.v1.00021323, DEM.v1.00021336, and DEM.v1.00021337) restricted virus spread. Although DEM.v1.00021323 transcript levels were similar between the resistant and susceptible bulks, its alternative spliced isoforms differed in abundance, suggesting that the splicing variants of DEM.v1.00021323 might affect viral infection. These findings may facilitate the breeding of ChiVMV-resistant cultivars in pepper.
Collapse
Affiliation(s)
- Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Min Kim
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- FarmyirehSe Co., Ltd., Seoul, 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- FarmyirehSe Co., Ltd., Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Choi H, Shin H, Kim CY, Park J, Kim H. Highly efficient CRISPR/Cas9-RNP mediated CaPAD1 editing in protoplasts of three pepper ( Capsicum annuum L.) cultivars. PLANT SIGNALING & BEHAVIOR 2024; 19:2383822. [PMID: 39052485 PMCID: PMC11275519 DOI: 10.1080/15592324.2024.2383822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Parthenocarpy, characterized by seedless fruit development without pollination or fertilization, offers the advantage of consistent fruit formation, even under challenging conditions such as high temperatures. It can be induced by regulating auxin homeostasis; PAD1 (PARENTAL ADVICE-1) is an inducer of parthenocarpy in Solanaceae plants. However, precise editing of PAD1 is not well studied in peppers. Here, we report a highly efficient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) ribonucleoprotein (RNP) for CaPAD1 editing in three valuable cultivars of pepper (Capsicum annuum L.): Dempsey, a gene-editable bell pepper; C15, a transformable commercial inbred line; and Younggo 4, a Korean landrace. To achieve the seedless pepper trait under high temperatures caused by unstable climate change, we designed five single guide RNAs (sgRNAs) targeting the CaPAD1 gene. We evaluated the in vitro on-target activity of the RNP complexes in three cultivars. Subsequently, we introduced five CRISPR/Cas9-RNP complexes into protoplasts isolated from three pepper leaves and compared indel frequencies and patterns through targeted deep sequencing analyses. We selected two sgRNAs, sgRNA2 and sgRNA5, which had high in vivo target efficiencies for the CaPAD1 gene across the three cultivars and were validated as potential off-targets in their genomes. These findings are expected to be valuable tools for developing new seedless pepper cultivars through precise molecular breeding of recalcitrant crops in response to climate change.
Collapse
Affiliation(s)
- Hanyi Choi
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyunjae Shin
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Chan Yong Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeongbin Park
- Interdisciplinary Program of Genomic Data Science, Pusan National University, Busan, Republic of Korea
- Graduate School of Medical AI, Pusan National University, Busan, Republic of Korea
| | - Hyeran Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
- Interdisciplinary Graduate Program in BIT Medical Convergence, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
8
|
Kaur H, Shannon LM, Samac DA. A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics 2024; 25:1022. [PMID: 39482604 PMCID: PMC11526573 DOI: 10.1186/s12864-024-10931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes. MAIN BODY In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline. CONCLUSION Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Deborah A Samac
- USDA-ARS, Plant Science Research Unit, St. Paul, MN, 55108, USA
| |
Collapse
|
9
|
Chen W, Wang X, Sun J, Wang X, Zhu Z, Ayhan DH, Yi S, Yan M, Zhang L, Meng T, Mu Y, Li J, Meng D, Bian J, Wang K, Wang L, Chen S, Chen R, Jin J, Li B, Zhang X, Deng XW, He H, Guo L. Two telomere-to-telomere gapless genomes reveal insights into Capsicum evolution and capsaicinoid biosynthesis. Nat Commun 2024; 15:4295. [PMID: 38769327 PMCID: PMC11106260 DOI: 10.1038/s41467-024-48643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Chili pepper (Capsicum) is known for its unique fruit pungency due to the presence of capsaicinoids. The evolutionary history of capsaicinoid biosynthesis and the mechanism of their tissue specificity remain obscure due to the lack of high-quality Capsicum genomes. Here, we report two telomere-to-telomere (T2T) gap-free genomes of C. annuum and its wild nonpungent relative C. rhomboideum to investigate the evolution of fruit pungency in chili peppers. We precisely delineate Capsicum centromeres, which lack high-copy tandem repeats but are extensively invaded by CRM retrotransposons. Through phylogenomic analyses, we estimate the evolutionary timing of capsaicinoid biosynthesis. We reveal disrupted coding and regulatory regions of key biosynthesis genes in nonpungent species. We also find conserved placenta-specific accessible chromatin regions, which likely allow for tissue-specific biosynthetic gene coregulation and capsaicinoid accumulation. These T2T genomic resources will accelerate chili pepper genetic improvement and help to understand Capsicum genome evolution.
Collapse
Affiliation(s)
- Weikai Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xiangfeng Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jie Sun
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xinrui Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Zhangsheng Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Dilay Hazal Ayhan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Shu Yi
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Ming Yan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Lili Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- College of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, 262500, China
| | - Tan Meng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Yu Mu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jun Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Dian Meng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Ke Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Shaoying Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Ruidong Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Jingyun Jin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Li Guo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325, China.
| |
Collapse
|
10
|
Han SY, Park SY, Won KH, Park SI, Park JH, Shim D, Hwang I, Jeong DH, Kim H. Elucidating the callus-to-shoot-forming mechanism in Capsicum annuum 'Dempsey' through comparative transcriptome analyses. BMC PLANT BIOLOGY 2024; 24:367. [PMID: 38711041 DOI: 10.1186/s12870-024-05033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The formation of shoots plays a pivotal role in plant organogenesis and productivity. Despite its significance, the underlying molecular mechanism of de novo regeneration has not been extensively elucidated in Capsicum annuum 'Dempsey', a bell pepper cultivar. To address this, we performed a comparative transcriptome analysis focusing on the differential expression in C. annuum 'Dempsey' shoot, callus, and leaf tissue. We further investigated phytohormone-related biological processes and their interacting genes in the C. annuum 'Dempsey' transcriptome based on comparative transcriptomic analysis across five species. RESULTS We provided a comprehensive view of the gene networks regulating shoot formation on the callus, revealing a strong involvement of hypoxia responses and oxidative stress. Our comparative transcriptome analysis revealed a significant conservation in the increase of gene expression patterns related to auxin and defense mechanisms in both callus and shoot tissues. Consequently, hypoxia response and defense mechanism emerged as critical regulators in callus and shoot formation in C. annuum 'Dempsey'. Current transcriptome data also indicated a substantial decline in gene expression linked to photosynthesis within regenerative tissues, implying a deactivation of the regulatory system governing photosynthesis in C. annuum 'Dempsey'. CONCLUSION Coupled with defense mechanisms, we thus considered spatial redistribution of auxin to play a critical role in the shoot morphogenesis via primordia outgrowth. Our findings shed light on shoot formation mechanisms in C. annuum 'Dempsey' explants, important information for regeneration programs, and have broader implications for precise molecular breeding in recalcitrant crops.
Collapse
Affiliation(s)
- Sang-Yun Han
- Department of Biological Sciences, Institute for Life Sciences, Kangwon National University, Chuncheon, 24341, Korea
| | - So Young Park
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Korea
| | - Kang-Hee Won
- Department of Biological Sciences, Institute for Life Sciences, Kangwon National University, Chuncheon, 24341, Korea
| | - Sung-Il Park
- Department of BIT Medical Convergence, Kangwon National University, Chuncheon, 24341, Korea
| | - Jae-Hyeong Park
- Department of BIT Medical Convergence, Kangwon National University, Chuncheon, 24341, Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dong-Hoon Jeong
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Korea.
| | - Hyeran Kim
- Department of Biological Sciences, Institute for Life Sciences, Kangwon National University, Chuncheon, 24341, Korea.
- Department of BIT Medical Convergence, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
11
|
Jiao D, Zhao H, Sun H, Zhang J, Zhang H, Gong G, Anees M, Zhu H, Liu W, Xu Y. Identification of allelic relationship and translocation region among chromosomal translocation lines that leads to less-seed watermelon. HORTICULTURE RESEARCH 2024; 11:uhae087. [PMID: 38799123 PMCID: PMC11116901 DOI: 10.1093/hr/uhae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
Less-seed and seedless traits are desirable characteristics in watermelon (Citrullus lanatus). Hybridization between watermelon chromosomal translocated lines and wild lines significantly reduced seed counts in the hybrid fruits, approaching even seedless. However, the allelic relationships and the chromosomal translocation breakpoints from different sources are unclear, which limits their utility in breeding practices. This study focused on three groups of chromosomal translocation materials from different sources and conducted inheritance and allelic relationship analysis of translocation points. The results from third-generation genome sequencing and fluorescence in situ hybridization (FISH) revealed that the specific translocations in the naturally mutated material MT-a involved reciprocal translocations between Chr6 and Chr10. The Co60γ radiation-induced mutant material MT-b involved reciprocal translocations between Chr1 and Chr5, Chr4 and Chr8. The Co60γ radiation-induced mutant material MT-c involved complex translocations among Chr1, Chr5, and Chr11. Cytological observation showed that heterozygous translocation hybrids showed chromosomal synapsis abnormalities during meiotic diakinesis. Further, dominant and codominant molecular markers were developed on both sides of the translocation breakpoints, which could facilitate rapid and efficient identification of chromosome translocation lines. This study provides technical guidance for utilizing chromosomal translocation materials in the development of less-seed watermelon varieties.
Collapse
Affiliation(s)
- Di Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Guancheng District, Zhengzhou, Henan 450009, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agriculture Sciences, Jinjing Road, Xiqing District, Tianjin 300192, China
| | - Hong Zhao
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| | - Honghe Sun
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 236 Tower Road, Ithaca, New York 14853, USA
- Boyce Thompson Institute, 533 Tower Road, Ithaca, New York 14853, USA
| | - Jie Zhang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| | - Haiying Zhang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| | - Guoyi Gong
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| | - Muhammad Anees
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Guancheng District, Zhengzhou, Henan 450009, China
| | - Hongju Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Guancheng District, Zhengzhou, Henan 450009, China
| | - Wenge Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Guancheng District, Zhengzhou, Henan 450009, China
| | - Yong Xu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| |
Collapse
|
12
|
Back S, Kim JM, Choi H, Lee JH, Han K, Hwang D, Kwon JK, Kang BC. Genetic characterization of a locus responsible for low pungency using EMS-induced mutants in Capsicum annuum L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:101. [PMID: 38607449 PMCID: PMC11014816 DOI: 10.1007/s00122-024-04602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
KEY MESSAGE The pepper mutants ('221-2-1a' and '1559-1-2h') with very low pungency were genetically characterized. The Pun4 locus, responsible for the reduced pungency of the mutant fruits, was localized to a 208 Mb region on chromosome 6. DEMF06G16460, encoding 3-ketoacyl-CoA synthase, was proposed as a strong candidate gene based on the genetic analyses of bulked segregants, DEG, and expression analyses. Capsaicinoids are unique alkaloids present in pepper (Capsicum spp.), synthesized through the condensation of by-products from the phenylpropanoid and branched-chain fatty acid pathways, and accumulating in the placenta. In this study, we characterized two allelic ethyl methanesulfonate-induced mutant lines with extremely low pungency ('221-2-1a' and '1559-1-2h'). These mutants, derived from the pungent Korean landrace 'Yuwolcho,' exhibited lower capsaicinoid content than Yuwolcho but still contained a small amount of capsaicinoid with functional capsaicinoid biosynthetic genes. Genetic crosses between the mutants and Yuwolcho or pungent lines indicated that a single recessive mutation was responsible for the low-pungency phenotype of mutant 221-2-1a; we named the causal locus Pungency 4 (Pun4). To identify Pun4, we combined genome-wide polymorphism analysis and transcriptome analysis with bulked-segregant analysis. We narrowed down the location of Pun4 to a 208-Mb region on chromosome 6 containing five candidate genes, of which DEMF06G16460, encoding a 3-ketoacyl-CoA synthase associated with branched-chain fatty acid biosynthesis, is the most likely candidate for Pun4. The expression of capsaicinoid biosynthetic genes in placental tissues in Yuwolcho and the mutant was consistent with the branched-chain fatty acid pathway playing a pivotal role in the lower pungency observed in the mutant. We also obtained a list of differentially expressed genes in placental tissues between the mutant and Yuwolcho, from which we selected candidate genes using gene co-expression analysis. In summary, we characterized the capsaicinoid biosynthesis-related locus Pun4 through integrated of genetic, genomic, and transcriptome analyses. These findings will contribute to our understanding of capsaicinoid biosynthesis in pepper.
Collapse
Affiliation(s)
- Seungki Back
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Min Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hayoung Choi
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Koeun Han
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Doyeon Hwang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Kim JM, Lee JH, Park SR, Kwon JK, Ro NY, Kang BC. Molecular mapping of the broad bean wilt virus 2 resistance locus bwvr in Capsicum annuum using BSR-seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:97. [PMID: 38589740 PMCID: PMC11001752 DOI: 10.1007/s00122-024-04603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/16/2024] [Indexed: 04/10/2024]
Abstract
KEY MESSAGE Bulked segregant RNA seq of pools of pepper accessions that are susceptible or resistant to Broad bean wilt virus 2 identifies a gene that might confer resistance to this devastating pathogen. The single-stranded positive-sense RNA virus Broad bean wilt virus 2 (BBWV2) causes substantial damage to pepper (Capsicum annuum) cultivation. Here, we describe mapping the BBWV2 resistance locus bwvr using a F7:8 recombinant inbred line (RIL) population constructed by crossing the BBWV2-resistant pepper accession 'SNU-C' with the susceptible pepper accession 'ECW30R.' All F1 plants infected with the BBWV2 strain PAP1 were susceptible to the virus, and the RIL population showed a 1:1 ratio of resistance to susceptibility, indicating that this trait is controlled by a single recessive gene. To map bwvr, we performed bulked segregant RNA-seq (BSR-seq). We sequenced pools of resistant and susceptible lines from the RILs and aligned the reads to the high-quality 'Dempsey' reference genome to identify variants between the pools. This analysis identified 519,887 variants and selected the region from 245.9-250.8 Mb of the Dempsey reference genome as the quantitative trait locus region for bwvr. To finely map bwvr, we used newly designed high-resolution melting (HRM) and Kompetitive allele specific PCR (KASP) markers based on variants obtained from the BSR-seq reads and the PepperSNP16K array. Comparative analysis identified 11 SNU-C-specific SNPs within the bwvr locus. Using markers derived from these variants, we mapped the candidate bwvr locus to the region from 246.833-246.949 kb. SNU-C-specific variants clustered near DEM.v1.00035533 within the bwvr locus. DEM.v1.00035533 encodes the nitrate transporter NPF1.2 and contains a SNP within its 5' untranslated region. The bwvr locus, which contains four genes including DEM.v1.00035533, could represent a valuable resource for global pepper breeding programs.
Collapse
Affiliation(s)
- Jung-Min Kim
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joung-Ho Lee
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Se-Ran Park
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Kyoung Kwon
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Na-Young Ro
- Rural Development Administration, National Academy of Agricultural Science, Jeonju, Republic of Korea.
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Martina M, De Rosa V, Magon G, Acquadro A, Barchi L, Barcaccia G, De Paoli E, Vannozzi A, Portis E. Revitalizing agriculture: next-generation genotyping and -omics technologies enabling molecular prediction of resilient traits in the Solanaceae family. FRONTIERS IN PLANT SCIENCE 2024; 15:1278760. [PMID: 38375087 PMCID: PMC10875072 DOI: 10.3389/fpls.2024.1278760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
This review highlights -omics research in Solanaceae family, with a particular focus on resilient traits. Extensive research has enriched our understanding of Solanaceae genomics and genetics, with historical varietal development mainly focusing on disease resistance and cultivar improvement but shifting the emphasis towards unveiling resilience mechanisms in genebank-preserved germplasm is nowadays crucial. Collecting such information, might help researchers and breeders developing new experimental design, providing an overview of the state of the art of the most advanced approaches for the identification of the genetic elements laying behind resilience. Building this starting point, we aim at providing a useful tool for tackling the global agricultural resilience goals in these crops.
Collapse
Affiliation(s)
- Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| |
Collapse
|
15
|
Park JH, Kim H. Harnessing CRISPR/Cas9 for Enhanced Disease Resistance in Hot Peppers: A Comparative Study on CaMLO2-Gene-Editing Efficiency across Six Cultivars. Int J Mol Sci 2023; 24:16775. [PMID: 38069102 PMCID: PMC10706117 DOI: 10.3390/ijms242316775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The Capsicum annuum Mildew Locus O (CaMLO2) gene is vital for plant defense responses against fungal pathogens like powdery mildew, a significant threat to greenhouse pepper crops. Recent advancements in genome editing, particularly using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, have unlocked unprecedented opportunities for modifying disease-resistant genes and improving crop characteristics. However, the application of CRISPR technology in pepper cultivars has been limited, and the regeneration process remains challenging. This study addresses these limitations by investigating the feasibility of using the validated CaMLO2 genetic scissors system in six commercial hot pepper cultivars. We assessed the gene-editing efficiency of the previously reported high-efficiency Cas9/CaMLO2single-guide RNA (sgRNA)1-ribonucleoprotein (RNP) and the low-efficiency Cas9/CaMLO2sgRNA2-RNP systems by extending their application from the bell pepper 'Dempsey' and the hot pepper 'CM334' to six commercial hot pepper cultivars. Across the six cultivars, CaMLO2sgRNA1 demonstrated an editing efficiency ranging from 6.3 to 17.7%, whereas CaMLO2sgRNA2 exhibited no editing efficiency, highlighting the superior efficacy of sgRNA1. These findings indicate the potential of utilizing the verified Cas9/CaMLO2sgRNA1-RNP system to achieve efficient gene editing at the CaMLO2 locus in different Capsicum annuum cultivars regardless of their cultivar genotypes. This study provides an efficacious genome-editing tool for developing improved pepper cultivars with CaMLO2-mediated enhanced disease resistance.
Collapse
Affiliation(s)
- Jae-Hyeong Park
- Interdisciplinary Graduate Program in BIT Medical Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Hyeran Kim
- Interdisciplinary Graduate Program in BIT Medical Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
16
|
Delorean EE, Youngblood RC, Simpson SA, Schoonmaker AN, Scheffler BE, Rutter WB, Hulse-Kemp AM. Representing true plant genomes: haplotype-resolved hybrid pepper genome with trio-binning. FRONTIERS IN PLANT SCIENCE 2023; 14:1184112. [PMID: 38034563 PMCID: PMC10687446 DOI: 10.3389/fpls.2023.1184112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
As sequencing costs decrease and availability of high fidelity long-read sequencing increases, generating experiment specific de novo genome assemblies becomes feasible. In many crop species, obtaining the genome of a hybrid or heterozygous individual is necessary for systems that do not tolerate inbreeding or for investigating important biological questions, such as hybrid vigor. However, most genome assembly methods that have been used in plants result in a merged single sequence representation that is not a true biologically accurate representation of either haplotype within a diploid individual. The resulting genome assembly is often fragmented and exhibits a mosaic of the two haplotypes, referred to as haplotype-switching. Important haplotype level information, such as causal mutations and structural variation is therefore lost causing difficulties in interpreting downstream analyses. To overcome this challenge, we have applied a method developed for animal genome assembly called trio-binning to an intra-specific hybrid of chili pepper (Capsicum annuum L. cv. HDA149 x Capsicum annuum L. cv. HDA330). We tested all currently available softwares for performing trio-binning, combined with multiple scaffolding technologies including Bionano to determine the optimal method of producing the best haplotype-resolved assembly. Ultimately, we produced highly contiguous biologically true haplotype-resolved genome assemblies for each parent, with scaffold N50s of 266.0 Mb and 281.3 Mb, with 99.6% and 99.8% positioned into chromosomes respectively. The assemblies captured 3.10 Gb and 3.12 Gb of the estimated 3.5 Gb chili pepper genome size. These assemblies represent the complete genome structure of the intraspecific hybrid, as well as the two parental genomes, and show measurable improvements over the currently available reference genomes. Our manuscript provides a valuable guide on how to apply trio-binning to other plant genomes.
Collapse
Affiliation(s)
- Emily E. Delorean
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC, United States
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, United States
| | - Ramey C. Youngblood
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, United States
| | - Sheron A. Simpson
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture - Agriculture Research Service (USDA-ARS), Stoneville, MS, United States
| | - Ashley N. Schoonmaker
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, United States
| | - Brian E. Scheffler
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture - Agriculture Research Service (USDA-ARS), Stoneville, MS, United States
| | - William B. Rutter
- US Vegetable Laboratory, United States Department of Agriculture - Agriculture Research Service (USDA-ARS), Charleston, SC, United States
| | - Amanda M. Hulse-Kemp
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC, United States
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
17
|
Nalla MK, Schafleitner R, Pappu HR, Barchenger DW. Current status, breeding strategies and future prospects for managing chilli leaf curl virus disease and associated begomoviruses in Chilli ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1223982. [PMID: 37936944 PMCID: PMC10626458 DOI: 10.3389/fpls.2023.1223982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Chilli leaf curl virus disease caused by begomoviruses, has emerged as a major threat to global chilli production, causing severe yield losses and economic harm. Begomoviruses are a highly successful and emerging group of plant viruses that are primarily transmitted by whiteflies belonging to the Bemisia tabaci complex. The most effective method for mitigating chilli leaf curl virus disease losses is breeding for host resistance to Begomovirus. This review highlights the current situation of chilli leaf curl virus disease and associated begomoviruses in chilli production, stressing the significant issues that breeders and growers confront. In addition, the various breeding methods used to generate begomovirus resistant chilli cultivars, and also the complicated connections between the host plant, vector and the virus are discussed. This review highlights the importance of resistance breeding, emphasising the importance of multidisciplinary approaches that combine the best of traditional breeding with cutting-edge genomic technologies. subsequently, the article highlights the challenges that must be overcome in order to effectively deploy begomovirus resistant chilli varieties across diverse agroecological zones and farming systems, as well as understanding the pathogen thus providing the opportunities for improving the sustainability and profitability of chilli production.
Collapse
Affiliation(s)
- Manoj Kumar Nalla
- World Vegetable Center, South and Central Asia Regional Office, Hyderabad, India
| | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
18
|
de Assis R, Gonçalves LSA, Guyot R, Vanzela ALL. Abundance of distal repetitive DNA sequences in Capsicum L. (Solanaceae) chromosomes. Genome 2023; 66:269-280. [PMID: 37364373 DOI: 10.1139/gen-2022-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Chili peppers (Solanaceae family) have great commercial value. They are commercialized in natura and used as spices and for ornamental and medicinal purposes. Although three whole genomes have been published, limited information about satellite DNA sequences, their composition, and genomic distribution has been provided. Here, we exploited the noncoding repetitive fraction, represented by satellite sequences, that tends to accumulate in blocks along chromosomes, especially near the chromosome ends of peppers. Two satellite DNA sequences were identified (CDR-1 and CDR-2), characterized and mapped in silico in three Capsicum genomes (C. annuum, C. chinense, and C. baccatum) using data from the published high-coverage sequencing and repeats finding bioinformatic tools. Localization using FISH in the chromosomes of these species and in two others (C. frutescens and C. chacoense), totaling five species, showed signals adjacent to the rDNA sites. A sequence comparison with existing Solanaceae repeats showed that CDR-1 and CDR-2 have different origins but without homology to rDNA sequences. Satellites occupied subterminal chromosomal regions, sometimes collocated with or adjacent to 35S rDNA sequences. Our results expand knowledge about the diversity of subterminal regions of Capsicum chromosomes, showing different amounts and distributions within and between karyotypes. In addition, these sequences may be useful for future phylogenetic studies.
Collapse
Affiliation(s)
- Rafael de Assis
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86097-570, Paraná, Brazil
| | | | - Romain Guyot
- Institute de Recherche pour le Développement, CIRAD, Université de Montpellier, UMR DIADE, Montpellier, France
| | | |
Collapse
|
19
|
Choi H, Back S, Kim GW, Lee K, Venkatesh J, Lee HB, Kwon JK, Kang BC. Development of a speed breeding protocol with flowering gene investigation in pepper ( Capsicum annuum). FRONTIERS IN PLANT SCIENCE 2023; 14:1151765. [PMID: 37841628 PMCID: PMC10569693 DOI: 10.3389/fpls.2023.1151765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/14/2023] [Indexed: 10/17/2023]
Abstract
Pepper (Capsicum spp.) is a vegetable and spice crop in the Solanaceae family with many nutritional benefits for human health. During several decades, horticultural traits, including disease resistance, yield, and fruit quality, have been improved through conventional breeding methods. Nevertheless, cultivar development is a time-consuming process because of the long generation time of pepper. Recently, speed breeding has been introduced as a solution for shorting the breeding cycle in long-day or day-neutral field crops, but there have been only a few studies on speed breeding in vegetable crops. In this study, a speed breeding protocol for pepper was developed by controlling the photoperiod and light quality. Under the condition of a low red (R) to far-red (FR) ratio of 0.3 with an extended photoperiod (Epp) of 20 h (95 ± 0 DAT), the time to first harvest was shortened by 75 days after transplant (DAT) compared to that of the control treatment (170 ± 2 DAT), suggesting that Epp with FR light is an essential factor for flowering in pepper. In addition, we established the speed breeding system in a greenhouse with a 20 h photoperiod and a 3.8 R:FR ratio and promoted the breeding cycle of C. annuum for 110 days from seed to seed. To explain the accelerated flowering response to the Epp and supplemented FR light, genome-wide association study (GWAS) and gene expression analysis were performed. As a result of the GWAS, we identified a new flowering gene locus for pepper and suggested four candidate genes for flowering (APETALA2 (AP2), WUSCHEL-RELATED HOMEOBOX4 (WOX4), FLOWERING LOCUS T (FT), and GIGANTEA (GI)). Through expression analysis with the candidate genes, it appeared that Epp and FR induced flowering by up-regulating the flowering-promoting gene GI and down-regulating FT. The results demonstrate the effect of a combination of Epp and FR light by genetic analysis of flowering gene expression. This is the first study that verifies gene expression patterns associated with the flowering responses of pepper in a speed breeding system. Overall, this study demonstrates that speed breeding can shorten the breeding cycle and accelerate genetic research in pepper through reduced generation time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Liu F, Zhao J, Sun H, Xiong C, Sun X, Wang X, Wang Z, Jarret R, Wang J, Tang B, Xu H, Hu B, Suo H, Yang B, Ou L, Li X, Zhou S, Yang S, Liu Z, Yuan F, Pei Z, Ma Y, Dai X, Wu S, Fei Z, Zou X. Genomes of cultivated and wild Capsicum species provide insights into pepper domestication and population differentiation. Nat Commun 2023; 14:5487. [PMID: 37679363 PMCID: PMC10484947 DOI: 10.1038/s41467-023-41251-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Pepper (Capsicum spp.) is one of the earliest cultivated crops and includes five domesticated species, C. annuum var. annuum, C. chinense, C. frutescens, C. baccatum var. pendulum and C. pubescens. Here, we report a pepper graph pan-genome and a genome variation map of 500 accessions from the five domesticated Capsicum species and close wild relatives. We identify highly differentiated genomic regions among the domesticated peppers that underlie their natural variations in flowering time, characteristic flavors, and unique resistances to biotic and abiotic stresses. Domestication sweeps detected in C. annuum var. annuum and C. baccatum var. pendulum are mostly different, and the common domestication traits, including fruit size, shape and pungency, are achieved mainly through the selection of distinct genomic regions between these two cultivated species. Introgressions from C. baccatum into C. chinense and C. frutescens are detected, including those providing genetic sources for various biotic and abiotic stress tolerances.
Collapse
Affiliation(s)
- Feng Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jiantao Zhao
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Honghe Sun
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Cheng Xiong
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xuepeng Sun
- Boyce Thompson Institute, Ithaca, NY, USA
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Xin Wang
- Boyce Thompson Institute, Ithaca, NY, USA
- Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Zhongyi Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Robert Jarret
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Resources Conservation Unit, Griffin, GA, USA
| | - Jin Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Bingqian Tang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Hao Xu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Bowen Hu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Huan Suo
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Bozhi Yang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Lijun Ou
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xuefeng Li
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha, China
| | - Shudong Zhou
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha, China
| | - Sha Yang
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha, China
| | - Zhoubing Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Fang Yuan
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Zhenming Pei
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yanqing Ma
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xiongze Dai
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA.
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Xuexiao Zou
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
21
|
Das P, Chandra T, Negi A, Jaiswal S, Iquebal MA, Rai A, Kumar D. A comprehensive review on genomic resources in medicinally and industrially important major spices for future breeding programs: Status, utility and challenges. Curr Res Food Sci 2023; 7:100579. [PMID: 37701635 PMCID: PMC10494321 DOI: 10.1016/j.crfs.2023.100579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
In the global market, spices possess a high-value but low-volume commodities of commerce. The food industry depends largely on spices for taste, flavor, and therapeutic properties in replacement of cheap synthetic ones. The estimated growth rate for spices demand in the world is ∼3.19%. Since spices grow in limited geographical regions, India is one of the leading producer of spices, contributing 25-30 percent of total world trade. Hitherto, there has been no comprehensive review of the genomic resources of industrially important major medicinal spices to overcome major impediments in varietal improvement and management. This review focuses on currently available genomic resources of 24 commercially significant spices, namely, Ajwain, Allspice, Asafoetida, Black pepper, Cardamom large, Cardamom small, Celery, Chillies, Cinnamon, Clove, Coriander, Cumin, Curry leaf, Dill seed, Fennel, Fenugreek, Garlic, Ginger, Mint, Nutmeg, Saffron, Tamarind, Turmeric and Vanilla. The advent of low-cost sequencing machines has contributed immensely to the voluminous data generation of these spices, cracking the complex genomic architecture, marker discovery, and understanding comparative and functional genomics. This review of spice genomics resources concludes the perspective and way forward to provide footprints by uncovering genome assemblies, sequencing and re-sequencing projects, transcriptome-based studies, non-coding RNA-mediated regulation, organelles-based resources, developed molecular markers, web resources, databases and AI-directed resources in candidate spices for enhanced breeding potential in them. Further, their integration with molecular breeding could be of immense use in formulating a strategy to protect and expand the production of the spices due to increased global demand.
Collapse
Affiliation(s)
- Parinita Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ankita Negi
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
22
|
Shirasawa K, Hosokawa M, Yasui Y, Toyoda A, Isobe S. Chromosome-scale genome assembly of a Japanese chili pepper landrace, Capsicum annuum 'Takanotsume'. DNA Res 2022; 30:6960699. [PMID: 36566389 PMCID: PMC9886071 DOI: 10.1093/dnares/dsac052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022] Open
Abstract
Here, we report the genome sequence of a popular Japanese chili pepper landrace, Capsicum annuum 'Takanotsume'. We used long-read sequencing and optical mapping, together with the genetic mapping technique, to obtain the chromosome-scale genome assembly of 'Takanotsume'. The assembly consists of 12 pseudomolecules, which corresponds to the basic chromosome number of C. annuum, and is 3,058.5 Mb in size, spanning 97.0% of the estimated genome size. A total of 34,324 high-confidence genes were predicted in the genome, and 83.4% of the genome assembly was occupied by repetitive sequences. Comparative genomics of linked-read sequencing-derived de novo genome assemblies of two Capsicum chinense lines and whole-genome resequencing analysis of Capsicum species revealed not only nucleotide sequence variations but also genome structure variations (i.e. chromosomal rearrangements and transposon-insertion polymorphisms) between 'Takanotsume' and its relatives. Overall, the genome sequence data generated in this study will accelerate the pan-genomics and breeding of Capsicum, and facilitate the dissection of genetic mechanisms underlying the agronomically important traits of 'Takanotsume'.
Collapse
Affiliation(s)
- Kenta Shirasawa
- To whom correspondence should be addressed. Tel.: +81-438-52-3935. Fax: +81-438-52-3934.
| | - Munetaka Hosokawa
- Department of Agriculture, Kindai University, Nara, Japan,Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Sachiko Isobe
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| |
Collapse
|
23
|
Yi S, Lee DG, Back S, Hong JP, Jang S, Han K, Kang BC. Genetic mapping revealed that the Pun2 gene in Capsicum chacoense encodes a putative aminotransferase. FRONTIERS IN PLANT SCIENCE 2022; 13:1039393. [PMID: 36388488 PMCID: PMC9664168 DOI: 10.3389/fpls.2022.1039393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Several genes regulating capsaicinoid biosynthesis including Pun1 (also known as CS), Pun3, pAMT, and CaKR1 have been studied. However, the gene encoded by Pun2 in the non-pungent Capsicum chacoense is unknown. This study aimed to identify the Pun2 gene by genetic mapping using interspecific (C. chacoense × Capsicum annuum) and intraspecific (C. chacoense × C. chacoense) populations. QTL mapping using the interspecific F2 population revealed two major QTLs on chromosomes 3 and 9. Two bin markers within the QTL regions on two chromosomes were highly correlated with the capsaicinoid content in the interspecific population. The major QTL, Pun2_PJ_Gibbs_3.11 on chromosome 3, contained the pAMT gene, indicating that the non-pungency of C. chacoense may be attributed to a mutation in the pAMT gene. Sequence analysis revealed a 7 bp nucleotide insertion in the 8th exon of pAMT of the non-pungent C. chacoense. This mutation resulted in the generation of an early stop codon, resulting in a truncated mutant lacking the PLP binding site, which is critical for pAMT enzymatic activity. This insertion co-segregated with the pungency phenotype in the intraspecific F2 population. We named this novel pAMT allele pamt11 . Taken together, these data indicate that the non-pungency of C. chacoense is due to the non-functional pAMT allele, and Pun2 encodes the pAMT gene.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|