1
|
Tian Z, Xue L, Fu J, Song W, Wang B, Sun J, Yue X, Cheng F, Mao J, Chao J, Wang D, Li S. Genome-wide identification and analysis of the NF-Y transcription factor family reveal its potential roles in tobacco ( Nicotiana tabacum L.). PLANT SIGNALING & BEHAVIOR 2025; 20:2451700. [PMID: 39817662 PMCID: PMC11740682 DOI: 10.1080/15592324.2025.2451700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Nuclear Factor Y (NF-Y) represents a group of transcription factors commonly present in higher eukaryotes, typically consisting of three subunits: NF-YA, NF-YB, and NF-YC. They play crucial roles in the embryonic development, photosynthesis, flowering, abiotic stress responses, and other essential processes in plants. To better understand the genome-wide NF-Y domain-containing proteins, the protein physicochemical properties, chromosomal localization, synteny, phylogenetic relationships, genomic structure, promoter cis-elements, and protein interaction network of NtNF-Ys in tobacco (Nicotiana tabacum L.) were systematically analyzed. In this study, we identified 58 NtNF-Ys in tobacco, respectively, and divided into three subfamilies corresponding to their phylogenetic relationships. Their tissue specificity and expression pattern analyses for leaf development, drought and saline-alkali stress, and ABA response were carried out using RNA-seq or qRT-PCR. These findings illuminate the role of NtNF-Ys in regulating plant leaf development, drought and saline-alkali stress tolerance, and ABA response. This study offers new insights to enhance our understanding of the roles of NtNF-Ys and identify potential genes involved in leaf development, as well as drought and saline-alkali stress tolerance of plants.
Collapse
Affiliation(s)
- Zhen Tian
- Technology Center, China Tobacco Jiangsu Industrial Co, Ltd, Nanjing, China
| | - Luyao Xue
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, China
| | - Jincun Fu
- Technology Center, China Tobacco Jiangsu Industrial Co, Ltd, Nanjing, China
| | - Wenting Song
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | | | - Jinhao Sun
- Technology Center, China Tobacco Jiangsu Industrial Co, Ltd, Nanjing, China
| | | | | | - Jingjing Mao
- Technology Center, China Tobacco Jiangsu Industrial Co, Ltd, Nanjing, China
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, China
| | - Dawei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, China
| | - Shaopeng Li
- Technology Center, China Tobacco Jiangsu Industrial Co, Ltd, Nanjing, China
| |
Collapse
|
2
|
Feng K, Liu J, Sun N, Zhou Z, Yang Z, Lv H, Yao C, Zou J, Zhao S, Wu P, Li L. Telomere-to-telomere genome assembly reveals insights into the adaptive evolution of herbivore-defense mediated by volatile terpenoids in Oenanthe javanica. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:2346-2357. [PMID: 40112135 PMCID: PMC12120883 DOI: 10.1111/pbi.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Releasing large quantities of volatiles is a defense strategy used by plants to resist herbivore attack. Oenanthe javanica, a perennial herb of the Apiaceae family, has a distinctive aroma due to volatile terpenoid accumulation. At present, the complete genome and genetic characteristics of volatile terpenoids in O. javanica remain largely unclear. Here, the telomere-to-telomere genome of O. javanica, with a size of 1012.13 Mb and a contig N50 of 49.55 Mb, was established by combining multiple sequencing technologies. Comparative genome analysis revealed that O. javanica experienced a recent species-specific whole-genome duplication event during the evolutionary process. Numerous gene family expansions were significantly enriched in the terpenoid biosynthesis process, monoterpenoid, and diterpenoid biosynthesis pathways, which resulted in abundant volatile substance accumulation in O. javanica. The volatile terpenoids of O. javanica showed repellent effects on herbivores. Terpenoid biosynthesis was activated by wounding signals under exogenous stimuli. The TPS gene family was significantly expanded in O. javanica compared to those in other species, and the members (OjTPS1, OjTPS3, OjTPS4, OjTPS5, OjTPS7, OjTPS16, OjTPS18, OjTPS30 and OjTPS58) responsible for different terpenoid biosynthesis were functionally characterized. These results reveal the genome evolution and molecular characteristics of volatile terpenoids in the process of plant-herbivore interactions. This study also provides genomic resources for genetic and molecular biology research on O. javanica and other plants.
Collapse
Affiliation(s)
- Kai Feng
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Jia‐Lu Liu
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Nan Sun
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Zi‐Qi Zhou
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Zhi‐Yuan Yang
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Hui Lv
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Cheng Yao
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Jin‐Ping Zou
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Shu‐Ping Zhao
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Peng Wu
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Liang‐Jun Li
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
- Key Laboratory of Biobreeding for Specialty Horticultural Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| |
Collapse
|
3
|
Fan X, Chen M, Zhang H, Liu Y, Yang M, Ye C, Gu H, Xu K, Wu B. Systematic identification and analysis of WRKY transcription factors reveals the role of MrWRKY14 in Myrica rubra. FRONTIERS IN PLANT SCIENCE 2025; 16:1602750. [PMID: 40519594 PMCID: PMC12162600 DOI: 10.3389/fpls.2025.1602750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Accepted: 05/07/2025] [Indexed: 06/18/2025]
Abstract
Bayberry (Myrica rubra) is a significant subtropical fruit tree, renowned for its distinctive flavor and high nutritional value. WRKY transcription factors are a class of plant-specific zinc-finger proteins that play critical roles in plant growth and development, secondary metabolism, and responses to abiotic stress. However, there is currently limited information about the WRKY gene family in bayberry. This study conducted a systematic bioinformatics analysis of 55 WRKY genes in bayberry, elucidating their phylogenetic relationships, gene structures, conserved motifs, and syntenic characteristics. The results demonstrated that these WRKY family members could be classified into five subfamilies, with each gene containing at least one WRKY domain. The bayberry WRKY genes exhibited significant variations in gene length and intron-exon numbers, while maintaining relatively conserved gene structures within each subfamily. The promoters of WRKY gene members contained multiple regulatory elements, including hormone-responsive elements, light-responsive elements, and abiotic stress-responsive elements. Collinearity analysis revealed that the WRKY family in bayberry experienced six segmental duplication events. Inter-species synteny analysis demonstrated high collinearity between bayberry and Actinidia spp., indicating evolutionary conservation of WRKY genes across different plant species. It was observed that bayberry WRKY genes exhibited significant differential expression across different cultivars and developmental stages of fruits through expression pattern analysis. Further research indicated that MrWRKY14, a member of the bayberry WRKY family, significantly enhanced the promoter activity of MrSWEET1, thereby influencing the process of sugar accumulation. These findings not only provide an important reference for the genome-wide identification of WRKY gene families in plants but also lay a solid foundation for future in-depth functional analysis of bayberry WRKY genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Boping Wu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Akter MB, Li J, Lv X, Saand MA, Mehvish A, Sayed MA, Yang Y. Identification of key genes and signaling pathways in coconut (Cocos nucifera L.) under drought stress via comparative transcriptome analysis. BMC PLANT BIOLOGY 2025; 25:510. [PMID: 40259217 PMCID: PMC12012947 DOI: 10.1186/s12870-025-06554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Drought stress has become a pervasive environmental challenge, significantly impacting all stages of plant growth and development under changing climatic conditions worldwide. In coconut, drought stress critically impairs reproductive development, notably reducing the quality of pollen and gametes during fertilization. Therefore, the seedlings of the aromatic coconut variety were subjected to drought stress for varying durations: control (no stress), 7 days, 14 days, and 21 days to find the potential molecular mechanisms and genes related to coconut drought tolerance through transcriptomic analysis. Our study may provide a theoretical basis for investigations into drought stress tolerance that will be useful for further coconut improvement. RESULTS We assessed antioxidant enzyme activity and conducted comparative transcriptome analyses of aromatic coconut under different drought conditions (7, 14, and 21 days). Our findings revealed significant rises in superoxide dismutase (SOD), peroxidase (POD) activities and proline (Pro) content across all drought periods compared to control plants, suggesting that these enzymes play a crucial role in the adaptive response of coconuts to drought stress. RNA-seq data identified 280, 729, and 6,698 differentially expressed genes (DEGs) at 7, 14, and 21 days, respectively. Principal Component Analysis (PCA) revealed that coconut samples were scattered and separated across different treatment points, suggesting the presence of differentially expressed genes (DEGs), particularly in the 21 day drought treatment (GH21d). KEGG pathway analysis indicated that DEGs were significantly enriched in pathways related to plant-pathogen interaction, plant hormone signaling, and mitogen-activated protein kinase (MAPK) signaling. Functional annotation of these DEGs revealed key candidate genes involved in several hormone signaling pathways, including abscisic acid (ABA), jasmonates (JA), auxin (AUX), brassinosteroids (BR), ethylene (ET), and gibberellin (GA), along with MAPK pathway which may regulate plant adaptation to drought stress through processes such as plant growth, cell division, stomatal closure, root growth, and stomatal development. This study provides valuable insights into the genetic and molecular basis of drought tolerance in coconuts, paving the way for the improvement of drought-tolerant coconut varieties. CONCLUSIONS Under drought stress, the expression of genes related to plant growth, stomatal closure, cell division, stress response, adaptation, and stomatal development appears to play a critical role in drought tolerance in coconut. Our results revealed that multiple genes may contribute to the drought tolerance mechanism in coconut through various hormone signaling pathways, including ABA, JA, auxin, BR, GA, and ethylene. These findings offer new insights into the key molecular mechanisms governing drought tolerance in aromatic coconut. Furthermore, the candidate genes and pathways identified in this study could be valuable for developing strategies to enhance drought tolerance in coconut plants. CLINICAL TRIAL NUMBER Not Applicable.
Collapse
Affiliation(s)
- Md Babul Akter
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Xiang Lv
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Mumtaz Ali Saand
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
- Department of Botany, Shah Abdul Latif University, Khairpur, Sindh, 66020, Pakistan
| | - Ambreen Mehvish
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Md Abu Sayed
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, China.
- Hainan Coconut International Joint Research Center, Wenchang, 571339, China.
| |
Collapse
|
5
|
Shen X, Li Y, Liu Y, Jiang D. Creating an effective DNA identification system for discriminating cherries (Prunus subgenus Cerasus). BMC PLANT BIOLOGY 2025; 25:475. [PMID: 40234750 PMCID: PMC11998463 DOI: 10.1186/s12870-025-06328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/03/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Cherries, a subgenus of Cerasus within Rosaceae, as fruit trees with high economic value and elegant garden plants, have broad prospects for development and utilization. However, traditional morphology and molecular data have struggled to accurately identify cherry species due to their extensive overlap in the distribution, frequent hybridization, both open and closed flowers, hysteranthy and limited species coverage, hindering the advancement of the cherry industry. In this study, 61 well-documented cherry species were collected and whole chloroplast genome data was used to develop an effective DNA identification system for precise species identification. RESULTS 36 new cherry chloroplast genomes were added to the public database, resulting in the most comprehensive phylogenetic relationship of cherry species to date. While whole chloroplast genome data achieved an 85.26% species identification success rate, it did not fully resolve all species identification. Relying solely on whole chloroplast genome data is resource-intensive. Therefore, we explored using highly variable regions, species-specific SNPs, and structural variations for accurate species identification. This study revealed that 14 newly developed DNA barcodes could identify 71.88% of cherry samples, while 106 SNPs and Indels allowed for precise identification of 59 out of 61 cherry species. CONCLUSIONS This study not only clarified the phylogenetic relationships of major cherry species but also developed a precise identification system, providing a robust tool for accurate species identification and laying a solid foundation for breeding and the broader promotion of cherry species. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xin Shen
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou, 310023, China
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou, 310023, China
| | - Yingang Li
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou, 310023, China
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou, 310023, China
| | - Yanlei Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, No.19 Taiji Road, Handan, 056038, China.
| | - Dongyue Jiang
- Institute of Tree Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou, 310023, China.
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang Academy of Forestry, 399 Liuhe Road, Hangzhou, 310023, China.
| |
Collapse
|
6
|
Wang Q, Tang L, He Y, Xu Y, Zhang J, Kong W, Hu K, Garcia-Mas J, Pujol M, Zhao G. Comprehensive analysis of transcriptome and metabolome identified the key gene networks regulating fruit length in melon. BMC PLANT BIOLOGY 2025; 25:442. [PMID: 40200143 PMCID: PMC11977916 DOI: 10.1186/s12870-025-06332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Melon is an ideal crop model for studying fruit development. Fruit shape is an important quality trait, and fruit length is a key indicator affecting fruit shape. However, studies on the genes regulating melon fruit length are still limited. RESULTS In this study, we investigated the gene network regulating fruit morphology in melons utilizing transcriptome profile and a co-expression pattern-based approach. Four co-expression modules/gene networks highly correlated with changes in endogenous plant hormone levels at different developmental stages were identified. We pinpointed 11 key genes associated with cell development, 4 genes related to microtubule development, and 16 genes involved in the auxin (IAA, indole-3-acetic acid) pathway. These genes were identified as module hubs, and their expression level correlated with phenotypic variation. Through rigorous screening methods, we enhanced the likelihood that these genes are genuine candidates in the regulation of the fruit morphology network. These genes play a significant role in controlling fruit length, providing crucial insights into the molecular mechanisms underlying melon fruit development. CONCLUSIONS Our findings revealed candidate genes that regulate melon fruit length, helping in the understanding of the molecular mechanisms underlying melon fruit development. These genes will be valuable for implementing marker-assisted breeding strategies.
Collapse
Affiliation(s)
- Qingtao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lingli Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, Henan, China.
| | - Yuhua He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yongyang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jian Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Weihu Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Keyun Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Guangwei Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, Henan, China.
| |
Collapse
|
7
|
Cao Y, Feng X, Ding B, Huo H, Abdullah M, Hong J, Jiang L, Wang H, Li R, Cai Y, Li X, Xia Z, Varshney RK, Hu H, Lin M, Shen F. Gap-free genome assemblies of two Pyrus bretschneideri cultivars and GWAS analyses identify a CCCH zinc finger protein as a key regulator of stone cell formation in pear fruit. PLANT COMMUNICATIONS 2025; 6:101238. [PMID: 40071379 PMCID: PMC11956113 DOI: 10.1016/j.xplc.2024.101238] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/01/2024] [Accepted: 12/30/2024] [Indexed: 04/04/2025]
Abstract
The Chinese white pear (Pyrus bretschneideri) is an economically significant fruit crop worldwide. Previous versions of the P. bretschneideri genome assembly contain numerous gaps and unanchored genetic regions. Here, we generated two high-quality, gap-free genome assemblies for 'Dangshansu' (DS; 503.92 Mb) and 'Lianglizaosu' (ZS; 509.01 Mb), each anchored to 17 chromosomes, achieving a benchmarking universal single-copy ortholog completeness score of nearly 99.0%. Our genome-wide association studies explored the associations between genetic variations and stone cell traits, revealing a significant association peak on DS chromosome 3 and identifying a novel non-tandem CCCH-type zinc finger gene, designated PbdsZF. Through genetic transformation, we verified the pivotal role of PbdsZF in regulation of both lignin biosynthesis and stone cell formation, as it transcriptionally activates multiple genes involved in these processes. By binding to the CT-rich motifs CT1 (CTTTTTTCT) and CT2 (CTCTTTTT), PbdsZF significantly influences the transcription of genes essential for lignin production, underscoring its regulatory importance in plant lignin metabolism. Our study illuminates the complex biology of fruit development and delineates the gene regulatory networks that influence stone cell and lignocellulose formation, thereby enriching genetic resources and laying the groundwork for the molecular breeding of perennial trees.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Xiaofeng Feng
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Baopeng Ding
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education and Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Shanxi Datong University, Datong 037009, China
| | - Heqiang Huo
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| | - Muhammad Abdullah
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, 7 Brisbane, Brisbane, QLD, Australia
| | - Jiayi Hong
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Han Wang
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230000, China
| | - Risheng Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoxu Li
- Beijing Life Science Academy, Beijing 102209, China
| | - Zhichao Xia
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia.
| | - Haifei Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangzhou 510640, China.
| | - Mengfei Lin
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China.
| | - Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
8
|
Hong J, Feng X, Cai Y, Manzoor MA, Cao Y. The role of nuclear factor-Y (NF-Y) transcription factor in plant growth and development. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP25010. [PMID: 40146735 DOI: 10.1071/fp25010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
The nuclear factor-Y (NF-Y) transcription factor, also known as heme-activator protein (HAP) or CCAAT-binding factor (CBF), is a critical transcription factor widely present in eukaryotes. The number of NF-Y subunits has significantly increased in higher plants compared to animals and fungi. The NF-Y complex is composed of three subunits: (1) NF-YA; (2) NF-YB; and (3) NF-YC. NF-YB and NF-YC contain histone fold domains (HFDs), which can interact with NF-YA or other transcription factors, or directly bind to the promoter CCAAT box to regulate the transcription of downstream genes. NF-Y plays a significant role in various plant processes, including growth and development. This review elucidates the structural and functional aspects of NF-Y subunits, identified NF-Y complexes, and their molecular regulatory mechanisms. Understanding these facets of NF-Y provides valuable insights into advancing crop genetic improvement and promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Jiayi Hong
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaofeng Feng
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Muhammad Aamir Manzoor
- Department of Plant Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China
| | - Yunpeng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
9
|
Luo M, Cao Y, Hong J. Opportunities and challenges in the application of single-cell transcriptomics in plant tissue research. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:199-209. [PMID: 40070535 PMCID: PMC11890805 DOI: 10.1007/s12298-025-01558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 03/14/2025]
Abstract
Single-cell transcriptomics overcomes the limitations of conventional transcriptome methods by isolating and sequencing RNA from individual cells, thus capturing unique expression values for each cell. This technology allows unprecedented precision in observing the stochasticity and heterogeneity of gene expression within cells. However, single-cell RNA sequencing (scRNA-seq) experiments often fail to capture all cells and genes comprehensively, and single-modality data is insufficient to explain cell states and systemic changes. To address this, the integration of multi-source scRNA-seq and single-cell multi-modality data has emerged, enabling the construction of comprehensive cell atlases. These integration methods also facilitate the exploration of causal relationships and gene regulatory mechanisms across different modalities. This review summarizes the fundamental principles, applications, and value of these integration methods in revealing biological changes, and analyzes the advantages, disadvantages, and future directions of current approaches.
Collapse
Affiliation(s)
- Man Luo
- School of Health and Nursing, Wuchang University of Technology, Wuhan, 430223 Hubei China
| | - Yunpeng Cao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 Hubei China
| | - Jiayi Hong
- School of Life Science, Anhui Agricultural University, Hefei, 230036 Anhui China
| |
Collapse
|
10
|
Li K, Li H, Liang WL, Liu JJ, Tian HY, Wang LH, Wei YH. Identification of the AHP family reveals their critical response to cytokinin regulation during adventitious root formation in apple rootstock. FRONTIERS IN PLANT SCIENCE 2025; 15:1511713. [PMID: 39881729 PMCID: PMC11776435 DOI: 10.3389/fpls.2024.1511713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
Adventitious root (AR) formation is a bottleneck for vegetative proliferation. In this study, 13 AHP genes (MdAHPs) were identified in the apple genome. Phylogenetic analysis grouped them into 3 clusters (I, II, III), with 4, 4, and 5 genes respectively. The 13 MdAHPs family members were named MdAHP1 to MdAHP13 by chromosome positions. The physicochemical properties, phylogenetic relationship, motifs, and elements of their proteins were also analyzed. The amino acid quantity varied from 60~189 aa, isoelectric point lay between 4.10 and 8.93, and there were 3~7 protein-conserving motifs. Excluding MdAHP6, other members' promoter sequences behaved 2-4 CTK response elements. Additionally, the expression characteristics of MdAHPs family members at key stages of AR formation and in different tissues were also examined with exogenous 6-BA and Lov treatments. The results showed that MdAHP3 might be a key member in AR formation. GUS staining indicated that the activity of the MdAHP3 promoter was also significantly enhanced by CTK treatment. The protein interactions of MdAHP3/MdAHP1 and MdAHP3/MdAHP6 were verified. Compared with WT, 35S::MdAHP3 transgenic poplars inhibited AR formation. The above experimental results suggested that MdAHP3, as a key family member, interacts with MdAHP1 and MdAHP6 proteins to jointly mediate AR formation in apple rootstocks.
Collapse
Affiliation(s)
- Ke Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
- Institute of Forestry and Fruit Science, Hebei University of Engineering, Handan, Hebei, China
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, China
| | - Huan Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Wei Ling Liang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Jing Ju Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Hui Yue Tian
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, China
| | - Li Hu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
- Institute of Forestry and Fruit Science, Hebei University of Engineering, Handan, Hebei, China
| | - Yan Hong Wei
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
- College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
11
|
Wang H, Zhang Y, Jiang H, Ding Q, Wang Y, Wang M, Yan C, Jia L. Transcriptomic and metabolomic analysis reveals the molecular mechanism of exogenous melatonin improves salt tolerance in eggplants. FRONTIERS IN PLANT SCIENCE 2025; 15:1523582. [PMID: 39866315 PMCID: PMC11759302 DOI: 10.3389/fpls.2024.1523582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
Introduction Melatonin significantly enhances the tolerance of plants to biotic and abiotic stress, and plays an important role in plant resistance to salt stress. However, its role and molecular mechanisms in eggplant salt stress resistance have been rarely reported. In previous studies, we experimentally demonstrated that melatonin can enhance the salt stress resistance of eggplants. Methods In this study, we treated salt-stressed eggplant plants with melatonin and a control treatment with water, then conducted physiological and biochemical tests, transcriptomic and metabolomic sequencing, and RT-qPCR validation at different stages after treatment. Results The results showed that exogenous melatonin can alleviate the adverse effects of salt stress on plants by increasing the activity of antioxidant enzymes, reducing the content of reactive oxygen species in plants, and increasing the content of organic osmoprotectants. Transcriptomic and metabolomic data, as well as combined analysis, indicate that melatonin can activate the metabolic pathways of plant resistance to adverse stress. Compared to the control treatment with water, melatonin can activate the genes of the α-linolenic acid metabolism pathway and promote the accumulation of metabolites in this pathway, with significant effects observed 48 hours after treatment, and significantly activates the expression of genes such as SmePLA2, SmeLOXs and SmeOPR et al. and the accumulation of metabolites such as α-Linolenic acid, (9R,13R)-12-oxophytodienoic acid, 9(S)-HpOTrE and (+)-7-iso-Jasmonic acid. RT-qPCR validated the activating effect of melatonin on the candidate genes of the a-linolenic acid metabolism pathway. Discussion This study analyzed the molecular mechanism of melatonin in alleviating eggplant salt stress, providing a theoretical foundation for the application of melatonin in enhancing eggplant salt stress resistance in production.
Collapse
Affiliation(s)
- Han Wang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yu Zhang
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Haikun Jiang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Qiangqiang Ding
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yan Wang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Mingxia Wang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Congsheng Yan
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Li Jia
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei, China
- Key Laboratory of Horticultural Crop Germplasm innovation and Utilization (Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
12
|
Xu Z, Li J, Song X, Zhang Y, Wang Y, Zhu Y, Liu T, He Y, Liu Y, Wang Q, Yan F. Overexpression of the R2R3-MYB transcription factor GmMYB3a enhances isoflavone accumulation in soybean. PHYSIOLOGIA PLANTARUM 2025; 177:e70120. [PMID: 39962725 DOI: 10.1111/ppl.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 05/09/2025]
Abstract
Soybean isoflavones, natural phytoestrogens within the flavonoid family, exhibit diverse physiological benefits such as anticancer, antioxidant, and cardioprotective properties. Yet, the underlying biosynthetic pathways remain unclear. Research is required to get better knowledge of soybean isoflavone production and its potential uses. Our work thoroughly examined the R2R3-MYB subclass in soybean and discovered a new MYB transcription factor, GmMYB3a, which shares significant similarities with Arabidopsis MYB genes and regulates isoflavone biosynthesis. Our study reveals that GmMYB3a localizes to the nucleus and membrane, concurs with its potential involvement in the biosynthesis of isoflavones. Our analysis also indicated a synergistic expression pattern between GmMYB3a and seed development, thereby creating the hypothesis that it has a critical role in the regulation of isoflavone synthesis. Transgenic experiments further demonstrated that GmMYB3a positively regulates isoflavone biosynthesis and leads to its overexpression. GmMYB3a has been implicated in abiotic stress responses, affecting soybean stress tolerance. RNA sequencing analysis revealed that GmMYB3a regulates downstream genes involved in isoflavone, flavonoid, and phenylalanine metabolism, especially the key chalcone synthase genes, CHS7 and CHS8. Moreover, GmMYB3a was shown to be tightly associated with GmCHS7 and GmCHS8 expressions, potentially regulating them directly. Yeast two-hybrid screening identified GmMYB3a interacting proteins crucial for the synthesis of physiologically active substances and abiotic stress responses. Our results increase knowledge of the regulatory mechanisms of GmMYB3a and establish a molecular network involving GmMYB3a, GmCHS7, and GmCHS8, thereby offering novel strategies for improving soybean quality and stress-tolerant breeding.
Collapse
Affiliation(s)
- Zibo Xu
- College of Plant Science, Jilin University, Changchun, China
| | - Jingwen Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xue Song
- Changchun Culture Square Greening Management Center, Changchun, China
| | - Yongqiang Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Ying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Youcheng Zhu
- College of Plant Science, Jilin University, Changchun, China
| | - Tianyi Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Yuxuan He
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yajing Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Fan Yan
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|