1
|
Chung J, Rogers PA. Improving Replication in Endometrial Omics: Understanding the Influence of the Menstrual Cycle. Int J Mol Sci 2025; 26:857. [PMID: 39859570 PMCID: PMC11766126 DOI: 10.3390/ijms26020857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
The dynamic nature of human endometrial tissue presents unique challenges in analysis. Despite extensive research into endometrial disorders such as endometriosis and infertility, recent systematic reviews have highlighted concerning issues with the reproducibility of omics studies attempting to identify biomarkers. This review examines factors contributing to poor reproducibility in endometrial omics research. Hormonal fluctuations in the menstrual cycle lead to widespread molecular changes in the endometrium, most notably in gene expression profiles. In this review, we examine the variability in omics data due to the menstrual cycle and highlight the importance of accurate menstrual cycle dating for effective statistical modelling. The current standards of endometrial dating lack precision and we make the case for using molecular-based modelling methods to estimate menstrual cycle time for endometrium tissue samples. Additionally, we discuss statistical considerations such as confounding and interaction effects, as well as the importance of recording the detailed and accurate clinical information of patients. By addressing these methodological challenges, we aim to establish more robust and reproducible research practises, increasing the reliability of endometrial omics research and biomarker discovery.
Collapse
Affiliation(s)
- Jessica Chung
- Department of Obstetrics and Gynaecology, University of Melbourne, and Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC 3052, Australia;
- Melbourne Bioinformatics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter Adrian Rogers
- Department of Obstetrics and Gynaecology, University of Melbourne, and Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| |
Collapse
|
2
|
Khashei Varnamkhasti K, Khashei Varnamkhasti S, Bahraini N, Davoodi M, Sadeghian M, Khavanin M, Naeimi R, Naeimi S. Multi-locus high-risk alleles association from interleukin's genes with female infertility and certain comorbidities. BMC Res Notes 2024; 17:344. [PMID: 39580416 PMCID: PMC11585211 DOI: 10.1186/s13104-024-06988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024] Open
Abstract
Objective There is evidence that cytokine genes' single nucleotide polymorphisms could be the reasons behind female infertility. This study aimed to identify the role for Interleukin33 rs1048274 (G > A) and rs16924243 (T > C), Interleukin22 rs1397852121 (C > T), rs1295978671 (C > T) and rs2227483 (A > T), Interleukin17A rs2275913 (G > A,C) and Interleukin17F rs763780 (T > C), Interleukin13 1512 (A > C) and IL13 2044 (G > A), and Interleukin4 rs2243250 (C > T) and rs2070874 (C > T) gene polymorphisms in female infertility to gain a richly more detailed understanding of its genetic predisposition. Five distinct groups, each comprising 200 infertile women and 200 age-matched fertile controls, were recruited to each Interleukins (33, 22, 17, 13 and 4) in this case-control study and were genotyped by using an amplification refractory mutation system. Statistical analysis is conducted by SPSS software V. 22 and using Chi-square (χ2) and logistic regression tests. Strength of association was estimated by multiple-comparison correction, population structure test and Haplotype analysis. The study was approved by the Academic Ethics Committee and each enrolled patient signed an informed consent.Results Our statistical results revealed risk alleles in all of the substitution lines for women infertility. Current findings provided evidence that in the presence of Interleukin33 Ap-value rs1048274 = 0.002 and Cp-value rs16924243 < 0.0001, Interleukin 22Tp-value rs1397852121 < 0.0001 and Tp-value rs2227483 = 0.000, Interleukin17A Ap-value rs2275913 = 0.003 and Interleukin17F Cp-value rs763780 = 0.000 and Interleukin13 Cp-value 1512 = 0.000 and Ap-value 2044 = 0.003, Interleukin4 Tp-value rs2243250 = 0.001 and Tp-value rs2070874 = 0.009 risk alleles, risk genotype also were significantly associated with increased chances of developing infertility. The relationship between risk genotypes and several well-established infertility risk factors including, polycystic ovary syndrome, premature ovarian failure, oophorectomy, diminished ovarian reserve, endometriosis, uterine fibroids, ovarian cysts, uterine polyps, fallopian tube blockage and thyroid dysfunction, also exhibited. This study suggests the significant role of interleukin gene polymorphisms in human reproductive success.
Collapse
Affiliation(s)
- Khalil Khashei Varnamkhasti
- Department of Medical Laboratory Sciences, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Samire Khashei Varnamkhasti
- Department of Medical Laboratory Sciences, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Najmeh Bahraini
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mohaddeseh Davoodi
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mahsa Sadeghian
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Massomeh Khavanin
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Raana Naeimi
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Sirous Naeimi
- Department of Biology, Zand Institute of Higher Education, Shiraz, Iran.
| |
Collapse
|
3
|
Hamamah S, Barry F, Vannier S, Anahory T, Haahtela T, Antó JM, Chapron C, Ayoubi JM, Czarlewski W, Bousquet J. Infertility, IL-17, IL-33 and Microbiome Cross-Talk: The Extended ARIA-MeDALL Hypothesis. Int J Mol Sci 2024; 25:11981. [PMID: 39596052 PMCID: PMC11594021 DOI: 10.3390/ijms252211981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Infertility, defined as the inability to obtain pregnancy after 12 months of regular unprotected sexual intercourse, has increased in prevalence over the past decades, similarly to chronic, allergic, autoimmune, or neurodegenerative diseases. A recent ARIA-MeDALL hypothesis has proposed that all these diseases are linked to dysbiosis and to some cytokines such as interleukin 17 (IL-17) and interleukin 33 (IL-33). Our paper suggests that endometriosis, a leading cause of infertility, is linked to endometrial dysbiosis and two key cytokines, IL-17 and IL-33, which interact with intestinal dysbiosis. Intestinal dysbiosis contributes to elevated estrogen levels, a primary factor in endometriosis. Estrogens strongly activate IL-17 and IL-33, supporting the existence of a gut-endometrial axis as a significant contributor to infertility.
Collapse
Affiliation(s)
- Samir Hamamah
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
- INSERM DEFE, Université de Montpellier, 34090 Montpellier, France
| | - Fatima Barry
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
- INSERM DEFE, Université de Montpellier, 34090 Montpellier, France
| | - Sarah Vannier
- Gynécologie Médicale, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France;
| | - Tal Anahory
- Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France; (F.B.); (T.A.)
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, 00250 Helsinki, Finland;
| | - Josep M. Antó
- ISGlobal, Barcelona Institute for Global Health, 08036 Barcelona, Spain;
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Departamento de Ciencias Experimentales y de la Salud, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Charles Chapron
- Service de Gynécologie-Obs., Hôpital Cochin, 75014 Paris, France;
| | - Jean-Marc Ayoubi
- Gynécologie et médecine de la Reproduction, Hôpital Foch, 92150 Suresnes, France;
| | | | - Jean Bousquet
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| |
Collapse
|
4
|
Giangrazi F, Buffa D, Lloyd AT, Redmond AK, Glover LE, O'Farrelly C. Evolutionary Analysis of the Mammalian IL-17 Cytokine Family Suggests Conserved Roles in Female Fertility. Am J Reprod Immunol 2024; 92:e13907. [PMID: 39177066 DOI: 10.1111/aji.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
PROBLEM The interleukin-17 (IL-17) family includes pro-inflammatory cytokines IL-17A-F with important roles in mucosal defence, barrier integrity and tissue regeneration. IL-17A can be dysregulated in fertility complications, including pre-eclampsia, endometriosis and miscarriage. Because mammalian subclasses (eutherian, metatherian, and prototherian) have different related reproductive strategies, IL-17 genes and proteins were investigated in the three mammalian classes to explore their involvement in female fertility. METHOD OF STUDY Gene and protein sequences for IL-17s are found in eutherian, metatherian and prototherian mammals. Through synteny and multiple sequence protein alignment, the relationships among mammalian IL-17s were inferred. Publicly available datasets of early pregnancy stages and female fertility in therian mammals were collected and analysed to retrieve information on IL-17 expression. RESULTS Synteny mapping and phylogenetic analyses allowed the classification of mammalian IL-17 family orthologs of human IL-17. Despite differences in their primary amino acid sequence, metatherian and prototherian IL-17s share the same tertiary structure as human IL-17s, suggesting similar functions. The analysis of available datasets for female fertility in therian mammals shows up-regulation of IL-17A and IL-17D during placentation. IL-17B and IL-17D are also found to be over-expressed in human fertility complication datasets, such as endometriosis or recurrent implantation failure. CONCLUSIONS The conservation of the IL-17 gene and protein across mammals suggests similar functions in all the analysed species. Despite significant differences, the upregulation of IL-17 expression is associated with the establishment of pregnancy in eutherian and metatherian mammals. The dysregulation of IL-17s in human reproductive disorders suggests them as a potential therapeutic target.
Collapse
Affiliation(s)
- Federica Giangrazi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Dafne Buffa
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Andrew T Lloyd
- Department of Science and Health, Institute of Technology, Carlow, Ireland
| | | | - Louise E Glover
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Reproductive Medicine, Merrion Fertility Clinic, Dublin 2, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Bui BN, Kukushkina V, Meltsov A, Olsen C, van Hoogenhuijze N, Altmäe S, Mol F, Teklenburg G, de Bruin J, Besselink D, Stevens Brentjens L, Obukhova D, Zamani Esteki M, van Golde R, Romano A, Laisk T, Steba G, Mackens S, Salumets A, Broekmans F. The endometrial transcriptome of infertile women with and without implantation failure. Acta Obstet Gynecol Scand 2024; 103:1348-1365. [PMID: 38520066 PMCID: PMC11168281 DOI: 10.1111/aogs.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/26/2024] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
INTRODUCTION Implantation failure after transferring morphologically "good-quality" embryos in in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) may be explained by impaired endometrial receptivity. Analyzing the endometrial transcriptome analysis may reveal the underlying processes and could help in guiding prognosis and using targeted interventions for infertility. This exploratory study investigated whether the endometrial transcriptome profile was associated with short-term or long-term implantation outcomes (ie success or failure). MATERIAL AND METHODS Mid-luteal phase endometrial biopsies of 107 infertile women with one full failed IVF/ICSI cycle, obtained within an endometrial scratching trial, were subjected to RNA-sequencing and differentially expressed genes analysis with covariate adjustment (age, body mass index, luteinizing hormone [LH]-day). Endometrial transcriptomes were compared between implantation failure and success groups in the short term (after the second fresh IVF/ICSI cycle) and long term (including all fresh and frozen cycles within 12 months). The short-term analysis included 85/107 women (33 ongoing pregnancy vs 52 no pregnancy), excluding 22/107 women. The long-term analysis included 46/107 women (23 'fertile' group, ie infertile women with a live birth after ≤3 embryos transferred vs 23 recurrent implantation failure group, ie no live birth after ≥3 good quality embryos transferred), excluding 61/107 women not fitting these categories. As both analyses drew from the same pool of 107 samples, there was some sample overlap. Additionally, cell type enrichment scores and endometrial receptivity were analyzed, and an endometrial development pseudo-timeline was constructed to estimate transcriptomic deviations from the optimum receptivity day (LH + 7), denoted as ΔWOI (window of implantation). RESULTS There were no significantly differentially expressed genes between implantation failure and success groups in either the short-term or long-term analyses. Principal component analysis initially showed two clusters in the long-term analysis, unrelated to clinical phenotype and no longer distinct following covariate adjustment. Cell type enrichment scores did not differ significantly between groups in both analyses. However, endometrial receptivity analysis demonstrated a potentially significant displacement of the WOI in the non-pregnant group compared with the ongoing pregnant group in the short-term analysis. CONCLUSIONS No distinct endometrial transcriptome profile was associated with either implantation failure or success in infertile women. However, there may be differences in the extent to which the WOI is displaced.
Collapse
Affiliation(s)
- Bich Ngoc Bui
- Department of Gynecology and Reproductive MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Alvin Meltsov
- Competence Center on Health TechnologiesTartuEstonia
- Department of Obstetrics and Gynecology, GROW, School for Oncology and ReproductionMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Catharina Olsen
- Center for Medical Genetics, Research Group Reproduction and GeneticsVrije Universiteit BrusselBrusselsBelgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore)VUB‐ULBBrusselsBelgium
- Interuniversity Institute of Bioinformatics in Brussels (IB)BrusselsBelgium
| | - Nienke van Hoogenhuijze
- Department of Gynecology and Reproductive MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of SciencesUniversity of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria, ibs.GRANADAGranadaSpain
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska Institute and Karolinska University HospitalStockholmSweden
| | - Femke Mol
- Center for Reproductive Medicine, Reproduction and Development, Amsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Jan‐Peter de Bruin
- Department of Obstetrics and GynecologyJeroen Bosch Hospital‘s‐HertogenboschThe Netherlands
| | - Dagmar Besselink
- Department of Obstetrics and GynecologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Linda Stevens Brentjens
- Department of Obstetrics and Gynecology, GROW, School for Oncology and ReproductionMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Darina Obukhova
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Genetics and Cell Biology, GROW School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - Masoud Zamani Esteki
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Genetics and Cell Biology, GROW School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - Ron van Golde
- Department of Obstetrics and Gynecology, GROW, School for Oncology and ReproductionMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW, School for Oncology and ReproductionMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Triin Laisk
- Estonian Genome Center, Institute of GenomicsUniversity of TartuTartuEstonia
| | - Gaby Steba
- Department of Gynecology and Reproductive MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Shari Mackens
- Brussels IVFUniversitair Ziekenhuis Brussel, Vrije Universiteit BrusselBrusselsBelgium
| | - Andres Salumets
- Competence Center on Health TechnologiesTartuEstonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska Institute and Karolinska University HospitalStockholmSweden
- Department of Obstetrics and Gynecology, Institute of Clinical MedicineUniversity of TartuTartuEstonia
| | - Frank Broekmans
- Department of Gynecology and Reproductive MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
- Center for Infertility Care, Dijklander HospitalPurmerendThe Netherlands
| |
Collapse
|
6
|
Omidvar-Mehrabadi A, Ebrahimi F, Shahbazi M, Mohammadnia-Afrouzi M. Cytokine and chemokine profiles in women with endometriosis, polycystic ovary syndrome, and unexplained infertility. Cytokine 2024; 178:156588. [PMID: 38555853 DOI: 10.1016/j.cyto.2024.156588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Numerous factors (including immunological, congenital, hormonal, and morphological disorders) can lead to infertility. In this regard, 3 specific diseases associated with infertility are discussed in this review study (i.e., polycystic ovary syndrome [PCOS], endometriosis [EMS], and unexplained infertility [UI]). PCOS is a common endocrine disorder characterized by chronic low-grade inflammation, and EMS is a benign disease characterized by the presence of ectopic endometrial tissue. UI refers to couples who are unable to conceive for no known reason. Conception and pregnancy are significantly affected by the immune system; in this regard, chemokines and cytokines play important roles in the regulation of immune responses. Patients with PCOS, EMS, and UI have altered cytokine and chemokine profiles, suggesting that dysregulation of these molecules may contribute to infertility in these conditions. Accordingly, the issue of infertility is addressed in this review study, a condition that affects approximately 16% of couples worldwide.
Collapse
Affiliation(s)
| | - Fateme Ebrahimi
- Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Shahbazi
- Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | |
Collapse
|
7
|
Ahmadi K, Reiisi S, Habibi Z. Comparison of the gene expression profiles of endometrial and trophoblastic cells in women with recurrent miscarriage: A bioinformatics approach. Int J Reprod Biomed 2024; 22:495-506. [PMID: 39205919 PMCID: PMC11347766 DOI: 10.18502/ijrm.v22i6.16800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/04/2023] [Accepted: 05/11/2024] [Indexed: 09/04/2024] Open
Abstract
Background Recurrent miscarriage (RM) remains unsolved in > 50% of patients and causes physical and psychological problems in women without specific risk factors for miscarriage. For a successful pregnancy, acceptance of the endometrium and invasion of trophoblast cells into the endometrium is necessary. Objective This study aimed to use computational analysis to identify key genes and related pathways in endometrial and trophoblast cells derived from RM samples. Materials and Methods In this bioinformatics study, we explored the differential expression of genes in endometrial and trophoblast cells by analyzing the GSE165004 and GSE76862 datasets, respectively with the limma package in R software. Subsequently, overlapped genes between 2 datasets were selected, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed. The overlapped genes were integrated to construct a protein-protein interaction network and hub genes selection. Results We observed 41 overlapped genes between endometrial and trophoblast cells, and future analysis was accomplished in overlapped and nonoverlapped genes. Kyoto Encyclopedia of Genes and Genomes analysis indicated that overlapped genes were significantly enriched in the complement and coagulation cascades, pluripotency of stem cells, and synthesis and degradation of ketone bodies. Gene ontology analysis suggested that the genes were enriched in the cell cycle, apoptosis, and cell division. The top 10 genes included: IRS1, FGF2, MAPK6, MAPK1, MAPK3, MAPK8, MAPK9, PLK1, PRKACA, and PRKCA were identified from the PPI network. Conclusion This study identified the key genes and potential molecular pathways underlying the development of RM. This could provide novel insights to determine the possible mechanisms and interventional strategies associated with miscarriage.
Collapse
Affiliation(s)
- Kambiz Ahmadi
- Department of Computer Sciences, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Zahra Habibi
- Department of Women and Family Affairs, Chaharmahal and Bakhtiari Governorate, Shahrekord, Iran
| |
Collapse
|
8
|
Zhang Z, Xiong Y, Jiang H, Wang Q, Hu X, Wei X, Chen Q, Chen T. Vaginal extracellular vesicles impair fertility in endometriosis by favoring Th17/Treg imbalance and inhibiting sperm activity. J Cell Physiol 2024; 239:e31188. [PMID: 38192157 DOI: 10.1002/jcp.31188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Extracellular vesicles (EVs) play a key role in various diseases. However, their effect on endometriosis (EMs)-associated infertility is poorly understood. We co-cultured EVs from the female vaginal secretions with human sperm and also generated a mouse model of EMs by allogenic transplant to explore the effect of EVs on fertility. EVs from individuals with EMs-associated infertility (E-EVs) significantly inhibited the total motility (26.46% vs. 47.1%), progressive motility (18.78% vs. 41.06%), linear velocity (21.98 vs. 41.91 µm/s) and the acrosome reaction (AR) rate (5% vs. 22.3%) of human sperm in contrast to the control group (PBS). Furthermore, E-EVs dose-dependently decreased the intracellular Ca2+ ([Ca2+]i), a pivotal regulator of sperm function. Conversely, healthy women (H-EVs) increased human sperm motion parameters, the AR rate, and sperm [Ca2+]i. Importantly, the mouse model of EMs confirmed that E-EVs further decreased the conception rate and the mean number of embryo implantations (7.6 ± 3.06 vs. 4.5 ± 3.21) compared with the control mice by inducing the production of inflammatory cytokines leading to a Th17/Treg imbalance. H-EVs could restore impaired fertility by restoring the Th17/Treg balance. We determined the impact of EVs derived from the female genital tract on human sperm function and studied the possible mechanisms by which it affects fertility. Our findings provide a novel rationale to ameliorate EMs-associated infertility.
Collapse
Affiliation(s)
- Zuo Zhang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yangbai Xiong
- International Tourism and Convention Management, Hong Kong Polytechnic University, Hong Kong, China
| | - Huifu Jiang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinyue Hu
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Wei
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Huang J, Zhang Y, Fang L, Xi F, Tang C, Ou K, Wang C. Chronic exposure to low levels of phenanthrene induces histological damage and carcinogenic risk in the uterus of female mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22858-22869. [PMID: 38413531 DOI: 10.1007/s11356-024-32636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Phenanthrene (Phe), a polycyclic aromatic hydrocarbon with low molecular weight, is detected in the environment at high frequency. To study the toxic effects of Phe on the uterine structure and function, female Kunming mice were exposed to Phe (0.05, 0.5, 5 ng/mL) for 270 days by drinking water. Pathological alterations and their action pathways were analyzed using immunohistochemical and biomolecular technology. Phe significantly increased the percentage of blood vessel area, the number of endometrial neutrophils (indicating the occurrence of inflammation), collagen deposition (indicating fibrosis), and the percentage of Ki-67-positive cells (indicating carcinogenesis) in the uterus. Transcriptome sequencing identified differentially expressed genes that were mainly enriched in some signaling pathways, including inflammation and carcinogenesis, suggesting a carcinogenic risk in the Phe-exposed uterus. Elevated serum estrogen levels and decreased progesterone levels exhibited a disturbance of steroid hormone balance, which might be related to uterine damage. Upregulated protein levels of uterine androgen receptor and estrogen receptor α were linked to the pathological effects. Most of the effects exhibited a nonmonotonic dose response, which might be attributed to the corresponding change in the serum levels of Phe. The results suggest that exposure to low levels of Phe could exert adverse effects on the uterus.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Feifei Xi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
10
|
Bui BN, Ardisasmita AI, Kuijk E, Altmäe S, Steba G, Mackens S, Fuchs S, Broekmans F, Nieuwenhuis E. An unbiased approach of molecular characterization of the endometrium: toward defining endometrial-based infertility. Hum Reprod 2024; 39:275-281. [PMID: 38099857 PMCID: PMC10833067 DOI: 10.1093/humrep/dead257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/01/2023] [Indexed: 02/02/2024] Open
Abstract
Infertility is a complex condition affecting millions of couples worldwide. The current definition of infertility, based on clinical criteria, fails to account for the molecular and cellular changes that may occur during the development of infertility. Recent advancements in sequencing technology and single-cell analysis offer new opportunities to gain a deeper understanding of these changes. The endometrium has a potential role in infertility and has been extensively studied to identify gene expression profiles associated with (impaired) endometrial receptivity. However, limited overlap among studies hampers the identification of relevant downstream pathways that could play a role in the development of endometrial-related infertility. To address these challenges, we propose sequencing the endometrial transcriptome of healthy and infertile women at the single-cell level to consistently identify molecular signatures. Establishing consensus on physiological patterns in endometrial samples can aid in identifying deviations in infertile patients. A similar strategy has been used with great success in cancer research. However, large collaborative initiatives, international uniform protocols of sample collection and processing are crucial to ensure reliability and reproducibility. Overall, the proposed approach holds promise for an objective and accurate classification of endometrial-based infertility and has the potential to improve diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Bich Ngoc Bui
- Department of Gynaecology and Reproductive Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ewart Kuijk
- Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Gaby Steba
- Department of Gynaecology and Reproductive Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Shari Mackens
- Brussels IVF, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sabine Fuchs
- Department of Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Broekmans
- Department of Gynaecology and Reproductive Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Infertility Care, Dijklander Ziekenhuis, Purmerend, The Netherlands
| | - Edward Nieuwenhuis
- Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Science, University College Roosevelt, Middelburg, The Netherlands
| |
Collapse
|
11
|
Keleş ID, Günel T, Özgör BY, Ülgen E, Gümüşoğlu E, Hosseini MK, Sezerman U, Buyru F, Yeh J, Baştu E. Gene pathway analysis of the endometrium at the start of the window of implantation in women with unexplained infertility and unexplained recurrent pregnancy loss: is unexplained recurrent pregnancy loss a subset of unexplained infertility? HUM FERTIL 2023; 26:1129-1141. [PMID: 36369952 DOI: 10.1080/14647273.2022.2143299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 06/05/2022] [Indexed: 11/14/2022]
Abstract
This study aims to understand differences/similarities in the genetic profile of the endometrium at the start of window of implantation (WOI) in women with unexplained infertility (UI) and unexplained recurrent pregnancy loss (uRPL). Differentially expressed genes (DEGs) from the endometrium were evaluated using gene expression array and pathway enrichment analysis was performed to analyse gene expression pathways involved in both conditions. We found 2,171 genes arranged in 117 pathways and 730 genes arranged in 33 pathways differentially expressed in endometrium of patients in UI and uRPL, respectively. Complement-coagulation cascades, morphine addiction pathway, and PI3K-Akt signalling pathway were predominantly differentially expressed in UI. Cancer pathways, NF-κB signalling pathway, and actin cytoskeleton regulation pathway showed significant changes in uRPL. Forty-eight percent of DEGs and 84% of differentially expressed pathways in uRPL were found in the endometrium of UI patients. Unexpected close association in gene expression pathways between UI and uRPL is observed supporting the hypothesis 'uRPL is a clinical subset of UI'. Yet 100% DEGs overlap wasn't found suggesting the endometrium has still some different gene expression patterns at start of WOI in UI and uRPL. Lastly, diagnostic tools may be developed for uRPL because more specific genes-pathways are involved compared with UI, which shows broader genetic expression profile.
Collapse
Affiliation(s)
- Irem Demiral Keleş
- Department of Obstetrics and Gynecology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Tuba Günel
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Bahar Yüksel Özgör
- Department of Obstetrics and Gynecology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ege Ülgen
- Department of Biostatistics and Medical Informatics, Acibadem University School of Medicine, Istanbul, Turkey
| | - Ece Gümüşoğlu
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | | | - Uğur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem University School of Medicine, Istanbul, Turkey
| | - Faruk Buyru
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Istanbul, Turkey
| | - John Yeh
- Department of Obstetrics and Gynecology, UMass Memorial Medical Center, Worcester, MA, USA
| | - Ercan Baştu
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Istanbul, Turkey
| |
Collapse
|
12
|
Cheng Y, Wang H, Shang J, Wang J, Yin J, Zhang J, Guo X, Wang S, Duan YG, Lee CL, Chiu PCN, Zhang J, Yeung WSB, Cao D, Yao Y. Transcriptomic analysis of mid-secretory endometrium reveals essential immune factors associated with pregnancy after single euploid blastocyst transfer. Am J Reprod Immunol 2023; 89:e13672. [PMID: 36542433 DOI: 10.1111/aji.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Implantation is a limiting factor for treatment success in assisted reproduction. Both embryonic and endometrial factors contribute to implantation. Embryonic factors have often been ignored in previous studies about the role of endometrium in implantation. In this study, we sought to identify the endometrial genes associated with negative pregnancy outcomes following the transfer of a single euploid blastocyst. METHODS Computational analyses of the transcriptomes of mid-secretory endometria from nine pregnant and seven non-pregnant patients in a cycle preceding the transfer of a single euploid blastocyst in a vitrified-warmed cycle were performed. RESULTS Principal component analysis of two reported endometrial receptivity gene sets showed close clustering of the pregnant and non-pregnant samples. Differential gene expression analysis and co-expression module analysis identified 131 genes associated with the pregnancy status. The endometrial signatures identified highlight the importance of immune and metabolic regulation in pregnancy outcome. Network analysis identified 20 hub genes that could predict pregnancy outcomes with 88.9% sensitivity and 85.7% specificity. Single-cell gene expression analysis highlighted the regulation of endometrial natural killer (NK) cells, T cells, and macrophages during embryo implantation. Immune cell abundance analysis supported the dysregulation of cytotoxic immune cells in the endometria of non-pregnant women. CONCLUSIONS We reported the first endometrial gene signature associated with pregnancy after elimination of embryo aneuploidy and highlighted the importance of the endometrial immune microenvironment and metabolic status in pregnancy outcomes.
Collapse
Affiliation(s)
- Yanfei Cheng
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hui Wang
- Department of Obstetrics and Gynecology, the First Medical Center of PLA General Hospital, Beijing, China
| | - Jin Shang
- Medical School of Chinese PLA, Beijing, China
| | - Jue Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jingwen Yin
- Department of Obstetrics and Gynecology, Third Hospital, Peking University, Beijing, China
| | | | - Xinmeng Guo
- College of Medicine, Nankai University, Tianjin, China
| | - Sidong Wang
- Medical School of Chinese PLA, Beijing, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Philip C N Chiu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Jian Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Key Laboratory of Metabolic Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong S.A.R., China
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, the First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Favaro RR, Phillips K, Delaunay-Danguy R, Ujčič K, Markert UR. Emerging Concepts in Innate Lymphoid Cells, Memory, and Reproduction. Front Immunol 2022; 13:824263. [PMID: 35774779 PMCID: PMC9237338 DOI: 10.3389/fimmu.2022.824263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
Members of the innate immune system, innate lymphoid cells (ILCs), encompass five major populations (Natural Killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer cells) whose functions include defense against pathogens, surveillance of tumorigenesis, and regulation of tissue homeostasis and remodeling. ILCs are present in the uterine environment of humans and mice and are dynamically regulated during the reproductive cycle and pregnancy. These cells have been repurposed to support pregnancy promoting maternal immune tolerance and placental development. To accomplish their tasks, immune cells employ several cellular and molecular mechanisms. They have the capacity to remember a previously encountered antigen and mount a more effective response to succeeding events. Memory responses are not an exclusive feature of the adaptive immune system, but also occur in innate immune cells. Innate immune memory has already been demonstrated in monocytes/macrophages, neutrophils, dendritic cells, and ILCs. A population of decidual NK cells characterized by elevated expression of NKG2C and LILRB1 as well as a distinctive transcriptional and epigenetic profile was found to expand during subsequent pregnancies in humans. These cells secrete high amounts of interferon-γ and vascular endothelial growth factor likely favoring placentation. Similarly, uterine ILC1s in mice upregulate CXCR6 and expand in second pregnancies. These data provide evidence on the development of immunological memory of pregnancy. In this article, the characteristics, functions, and localization of ILCs are reviewed, emphasizing available data on the uterine environment. Following, the concept of innate immune memory and its mechanisms, which include epigenetic changes and metabolic rewiring, are presented. Finally, the emerging role of innate immune memory on reproduction is discussed. Advances in the comprehension of ILC functions and innate immune memory may contribute to uncovering the immunological mechanisms underlying female fertility/infertility, placental development, and distinct outcomes in second pregnancies related to higher birth weight and lower incidence of complications.
Collapse
|
14
|
High-intensity intermittent exercise induces a potential anti-inflammatory response in healthy women across the menstrual cycle. Cytokine 2022; 154:155872. [DOI: 10.1016/j.cyto.2022.155872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
|
15
|
Ran Y, He J, Chen R, Qin Y, Liu Z, Zhou Y, Yin N, Qi H, Zhou W. Investigation and Validation of Molecular Characteristics of Endometrium in Recurrent Miscarriage and Unexplained Infertility from a Transcriptomic Perspective. Int J Med Sci 2022; 19:546-562. [PMID: 35370464 PMCID: PMC8964333 DOI: 10.7150/ijms.69648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022] Open
Abstract
Recurrent miscarriage (RM) and unexplained infertility (UI) are gordian knots in reproductive medicine, which are troubling many patients, doctors, and researchers. Although these two diseases of early pregnancy have a significant impact on human reproductive health, little is known about the specific mechanisms, which caused treatment difficulties. This study focused on the molecular signatures underlying the pathological phenotypes of two diseases, with the hope of using statistical methods to identify the significant core genes. An unbiased Weighted Correlation Network Analysis (WGCNA) algorithm was used for endometrial transcriptome data analysis and the disease-related gene modules were screened out. Through enrichment analysis of the candidate genes, we found similarities between both diseases and shared enrichment of immune-related pathways. Therefore, we used immune algorithms to assess the infiltration of immune cells and found abnormal increases of CD8+T cells and neutrophils. In order to explore the molecular profile behind the immunophenotypic changes, we used the SVM algorithm and LASSO regression to identify the core genes with diagnostic capacity in both diseases and discussed their significance of immune disorders in the endometrium. In the end, the satisfactory diagnostic ability of these core genes was verified in the broader group. Our results demonstrated the presence of immune disorders in non-pregnancy tissues of RM and UI, and identified the core molecules of this phenotype, and discuss mechanisms. This provides exploratory evidence for the in-depth understanding of the mechanism of RM and UI and may provide potential targets for their future treatment.
Collapse
Affiliation(s)
- Yuxin Ran
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Qin
- Department of Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zheng Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yunqian Zhou
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Nanlin Yin
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China.,Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Wei Zhou
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing 401147, China
| |
Collapse
|
16
|
Fainboim L, Belén S, González V, Fernández P. Evaluation of paternal lymphocyte immunotherapy and potential biomarker mixed lymphocyte reaction-blocking factor in an Argentinian cohort of women with unexplained recurrent spontaneous abortion and unexplained infertility. Am J Reprod Immunol 2021; 86:e13422. [PMID: 33730440 DOI: 10.1111/aji.13422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
PROBLEM Analyze the effect of paternal immunotherapy treatment (PIT) in primary and secondary unexplained recurrent spontaneous abortion (URSA) and unexplained infertility (UI). METHODS OF STUDY A retrospective study analyzed a two-year follow-up between the generation of MLR-Bfs after PIT treatment (or controls first consultation) and a live birth. Recruited patients included primary URSA with two or more miscarriages at <12 weeks gestation, secondary URSA with previous live birth before two or more miscarriages, and UI with inability to conceive after 2 years of regular unprotected intercourse or in vitro fertilizations (IVF). PIT treated were compared with untreated controls. RESULTS Primary URSA: live birth was 241/416 (58%) versus 64/282 (23%) controls (p < .0001). Up to age 35, success was 158/217 (73%) and 37/144 (26%) controls (p < .0001). With 3 or more previous URSA, success was 90/135 (67%) versus 17/79 (22%) controls (p < .0001). Between ages 36 and 40, success was 69/147(47%) versus 22/98 (22%) controls (p < .0003), with 3 or more previous URSA live birth was 45/95 (47%) versus 6/46 (13%) controls (p < .0001). In UI, live birth was 99/298 (33%) versus 54/263 (21%) in controls (p < .0009) that increased under age 35 to 53/116 (46%) in treated versus 26/101 (26%) controls (p < .0056). In PIT treated, IVF success required a median of 1 (1.37 ± 0.67) versus a median of 3 IVF procedures (2.75 ± 0.84) in controls. CONCLUSION PIT is a successful treatment for primary and secondary URSA, and UI. PIT reduced the number of IVF required for achieving pregnancy.
Collapse
Affiliation(s)
- Leonardo Fainboim
- Immunogenetics Laboratory, INIGEM, CONICET-UBA, Hospital de Clínicas, University of Buenos Aires, Argentina.,Department of Microbiology, Parasitology and Immunology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Santiago Belén
- Immunogenetics Laboratory, INIGEM, CONICET-UBA, Hospital de Clínicas, University of Buenos Aires, Argentina
| | - Verónica González
- Immunogenetics Laboratory, INIGEM, CONICET-UBA, Hospital de Clínicas, University of Buenos Aires, Argentina
| | - Pablo Fernández
- Immunogenetics Laboratory, INIGEM, CONICET-UBA, Hospital de Clínicas, University of Buenos Aires, Argentina.,Department of Microbiology, Parasitology and Immunology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|