1
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
2
|
Qian Z, Zhao H, Zhang Y, Wang Z, Zeng F, Zhu Y, Yang Y, Li J, Ma T, Huang C. Coiled-coil domain containing 25 (CCDC25) regulates cell proliferation, migration, and invasion in clear cell renal cell carcinoma by targeting the ILK-NF-κB signaling pathway. FASEB J 2024; 38:e23414. [PMID: 38236371 DOI: 10.1096/fj.202301064rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024]
Abstract
Increasing evidence has demonstrated that the expression of coil domains containing 25 (CCDC25) in various malignancies is abnormally high. However, the potential regulatory role and mechanism of CCDC25 in the development of clear cell renal cell carcinoma (ccRCC) are still unclear. In this experiment, we combined in vitro experiments such as wound healing, CCK8, and transwell assay with in vivo experiments on tumor formation in nude mice to evaluate the effect of CCDC25 on the proliferation, migration, and invasion of renal cancer cells. In addition, we also used Western blotting and qPCR to evaluate the role of CCDC25 in activating the integrin-linked kinase (ILK)-NF-κB signaling pathway. Here, we demonstrate that compared to normal tissues and cell lines, CCDC25 is overexpressed in both human ccRCC tissues and cell lines. After CCDC25 knockdown, it has obvious inhibitory effect on the proliferation, migration, and invasion of cancer cells in vitro and in vivo. In contrast, CCDC25 overexpression promotes these effects. Additionally, we also discovered that CCDC25 interacts with ILK and coordinates the activation of the NF-κB signaling pathway downstream. Generally, our study suggests that CCDC25 plays a vital role in the development of ccRCC, which also means that it may be a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Zhenzhen Qian
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Huizi Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhonghao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fanle Zeng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Zhu
- The First Affiliated Hospital of Anhui Medical University, hefei, China
| | - Yaru Yang
- The Second Affiliated Hospital of Anhui Medical University, hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
3
|
Barakat A, Alshahrani S, Mohammed Al-Majid A, Saleh Alamary A, Haukka M, Abu-Serie MM, Dömling A, Mazyed EA, Badria FA, El-Senduny FF. Novel spirooxindole based benzimidazole scaffold: In vitro, nanoformulation and in vivo studies on anticancer and antimetastatic activity of breast adenocarcinoma. Bioorg Chem 2022; 129:106124. [PMID: 36174446 DOI: 10.1016/j.bioorg.2022.106124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 12/29/2022]
Abstract
The present work provided in vitro anticancer investigation of novel spirooxindole based benzimidazole scaffold SP1 and its nanoformulation with in vivo evaluation of anticancer and antimetastatic activity as potential drug for breast adenocarcinoma. The synthesized compound SP1 exhibited potent growth inhibitory efficacy against four types of human cancer (breast, prostate, colon and lung) cell lines with IC50 = 2.4, 3.4, 7.24 and 7.81 µM and selectivity index 5.79, 4.08, 1.93 and 1.78 respectively. Flow cytometric analysis illustrated that SP1 exhibited high apoptotic effect on all tested cancer cell lines (38.22-52.3 %). The mode of action of this promising compound was declared by its ability to upregulate the gene expression of p21 (2.29-3.91 folds) with suppressing cyclin D (1.9-8.93 folds) and NF-κB (1.26-1.44 fold) in the treated cancer cells. Also, it enhanced the protein expression of apoptotic marker p53 and moderate binding affinity for MDM2 (KD;7.94 μM). Notwithstanding these promising impressive findings, its selectivity against cancer cell lines and safety on normal cells were improved by nanoformulation. Therefore, SP1 was formulated as ultra-flexible niosomal nanovesicles (transethoniosomes). The ultra-deformability is attributable to the synergism between ethanol and edge activators in improving the flexibility of the nanovesicular membrane. F8 exhibited high deformability index (DI) of (23.48 ± 1.4). It was found that % SP1 released from the optimized transethoniosomal formula (F8) after 12 h (Q12h) was 84.17 ± 1.29 % and its entrapment efficiency (%EE) was 76.48 ± 1.44 %. Based upon the very encouraging and promising in vitro results, an in vivo study was carried out in female Balb/c mice weighing (15-25 g). SP1 did halt the proliferation of breast cancer cells as well as suppressed the metastasis in other organs like liver, lung and heart.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Saleh Alamary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Eman A Mazyed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kaferelsheikh University, Kaferelsheikh P.O. Box 33516, Egypt
| | - Farid A Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Fardous F El-Senduny
- Department of Chemistry, Faculty of Science, Mansura University, Mansura 35516, Egypt
| |
Collapse
|
4
|
Joseph C, Alsaleem M, Orah N, Narasimha PL, Miligy IM, Kurozumi S, Ellis IO, Mongan NP, Green AR, Rakha EA. Elevated MMP9 expression in breast cancer is a predictor of shorter patient survival. Breast Cancer Res Treat 2020; 182:267-282. [PMID: 32445177 PMCID: PMC7297818 DOI: 10.1007/s10549-020-05670-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE MMP9 is a matricellular protein associated with extracellular matrix (ECM) remodelling, that promotes tumour progression, and modulates the activity of cell adhesion molecules and cytokines. This study aims to assess the prognostic value of MMP9 and its association with cytoskeletal modulators in early-stage invasive breast cancer (BC). METHODS MMP9 expression was evaluated by immunohistochemistry using a well-characterised series of primary BC patients with long-term clinical follow-up. Association with clinicopathological factors, patient outcome and ECM remodelling BC-biomarkers were investigated. METABRIC dataset, BC-GenExMiner v4.0 and TCGA were used for the external validation of MMP9 expression. GSEA gene enrichment analyses were used to evaluate MMP9 associated pathways. RESULTS MMP9 immunopositivity was observed in the stroma and cytoplasm of BC cells. Elevated MMP9 protein levels were associated with high tumour grade, high Nottingham Prognostic Index, and hormonal receptor negativity. Elevated MMP9 protein expression correlated significantly with cytokeratin 17 (Ck17), Epidermal Growth Factor Receptor (EGFR), proliferation (Ki67) biomarkers, cell surface adhesion receptor (CD44) and cell division control protein 42 (CDC42). Cytoplasmic MMP9 expression was an independent prognostic factor associated with shorter BC-specific survival. In the external validation cohorts, MMP9 expression was also associated with poor patients' outcome. Transcriptomic analysis confirmed a positive association between MMP9 and ECM remodelling biomarkers. GSEA analysis supports MMP9 association with ECM and cytoskeletal pathways. CONCLUSION This study provides evidence for the prognostic value of MMP9 in BC. Further functional studies to decipher the role of MMP9 and its association with cytoskeletal modulators in BC progression are warranted.
Collapse
Affiliation(s)
- Chitra Joseph
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mansour Alsaleem
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Faculty of Applied Medical Sciences, Onizah Community College, Qassim University, Qassim, Saudi Arabia
| | - Nnamdi Orah
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Pavan L Narasimha
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Islam M Miligy
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- Department of Pharmacology, Weill Cornell Medicine, New York, 10065, USA.,Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK. .,Histopathology Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt. .,Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, NG5 1PB, UK.
| |
Collapse
|
5
|
Wu KJ, Ho SH, Dong JY, Fu L, Wang SP, Liu H, Wu C, Leung CH, Wang HMD, Ma DL. Aliphatic Group-Tethered Iridium Complex as a Theranostic Agent against Malignant Melanoma Metastasis. ACS APPLIED BIO MATERIALS 2020; 3:2017-2027. [DOI: 10.1021/acsabm.9b01156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia-Yi Dong
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao SAR, China
| | - Ling Fu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuang-Peng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| |
Collapse
|
6
|
Tombulturk FK, Soydas T, Sarac EY, Tuncdemir M, Coskunpinar E, Polat E, Sirekbasan S, Kanigur-Sultuybek G. Regulation of MMP 2 and MMP 9 expressions modulated by AP-1 (c-jun) in wound healing: improving role of Lucilia sericata in diabetic rats. Acta Diabetol 2019; 56:177-186. [PMID: 30302545 DOI: 10.1007/s00592-018-1237-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/26/2018] [Indexed: 01/28/2023]
Abstract
AIMS Lucilia sericata larvae have been successfully used on healing of wounds in the diabetics. However, the involvement of the extraction/secretion (ES) products of larvae in the treatment of diabetic wounds is still unknown. Activator protein-1 (AP-1) transcription, composed of c-jun and c-Fos proteins, has been shown to be the principal regulator of multiple MMP transcriptions under a variety of conditions, also in diabetic wounds. Specifically, MMP-2 and MMP-9's transcriptions are known to be modulated by AP-1. c-jun has been demonstrated to be a repressor of p53 in immortalized fibroblasts. The aim of the present study is to investigate the effects of L. sericata ES on the expression of AP-1 (c-jun), p53, MMP-2, and MMP-9 in wound biopsies dissected from streptozotocin induced diabetic rats. METHODS The expression levels of MMP-2, MMP-9, c-jun and p53 in dermal tissues were determined at days 0, 3, 7 and 14 after wounding, using immunohistochemical analysis and quantitative real-time PCR. RESULTS The treatment with ES significantly decreased through inflammation-based induction of MMP-2 and MMP-9 expression levels in the wounds of diabetic groups, compared to control groups at the third day of wound healing. At the 14th day, there were dramatic decreases in expression of c-jun, MMP-9, and p53 in ES-treated groups, compared to the diabetic group (P < 0.001, P < 0.05 and P < 0.01, respectively). CONCLUSION ES products of L. sericata may enhance the process of wound healing in phases of inflammation, proliferation, and re-epithelization, essentially via regulating c-jun expression and modulating MMP-2 and MMP-9 expressions.
Collapse
Affiliation(s)
- Fatma Kübra Tombulturk
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Medical Laboratory Techniques, Vocational School of Health Services, Istinye University, Istanbul, Turkey
| | - Tugba Soydas
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
- Department of Medical Biology and Genetics, Istanbul Aydin University, Medical Faculty, Sefakoy-Kucukcekmece, 34295, Istanbul, Turkey
| | - Elif Yaprak Sarac
- Department of Histology and Embryology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Matem Tuncdemir
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ender Coskunpinar
- Department of Medical Biology, Medical Faculty, Saglik Bilimleri University, Istanbul, Turkey
| | - Erdal Polat
- Department of Medical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serhat Sirekbasan
- Department of Biotherapy Research and Development Laboratory, Istanbul University, Istanbul, Turkey
| | - Gonul Kanigur-Sultuybek
- Department of Medical Biology and Genetics, Istanbul Aydin University, Medical Faculty, Sefakoy-Kucukcekmece, 34295, Istanbul, Turkey.
| |
Collapse
|
7
|
Wang Q, Ding H, He Y, Li X, Cheng Y, Xu Q, Yang Y, Liao G, Meng X, Huang C, Li J. NLRC5 mediates cell proliferation, migration, and invasion by regulating the Wnt/β-catenin signalling pathway in clear cell renal cell carcinoma. Cancer Lett 2018; 444:9-19. [PMID: 30543814 DOI: 10.1016/j.canlet.2018.11.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/03/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
NLRC5, a newly discovered member of the NLR family, has been reported to regulate immune responses and promote cell proliferation, migration, and invasion in hepatocellular carcinoma. However, to date, the potential regulatory roles and molecular mechanisms by which NLRC5 affects the development and progression of clear cell renal cell carcinoma (ccRCC) remain largely unknown. In this study, human clinical data from The Cancer Genome Atlas database revealed that increased NLRC5 expression was associated with advanced stage and poor prognosis in ccRCC patients. Moreover, experimental results showed that NLRC5 is aberrantly overexpressed in human ccRCC tissues and cell lines. Depletion of NLRC5 attenuated ccRCC cell proliferation, migration, and invasion and suppressed ccRCC growth in a nude mouse model. By contrast, overexpression of NLRC5 promoted the proliferation, migration, and invasion of ccRCC cells in vitro. Additionally, NLRC5 expression is not only positively correlated with β-catenin but also coordinates the activation of the downstream Wnt/β-catenin signalling pathway. Together, our data suggest that NLRC5 may be a potential therapeutic target for ccRCC therapy.
Collapse
Affiliation(s)
- Qin Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Handong Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China; Institute of Urology, Anhui Medical University, Hefei, 230032, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, China
| | - Yinghua He
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Yahui Cheng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Qingqing Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Yue Yang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Guiyi Liao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China; Institute of Urology, Anhui Medical University, Hefei, 230032, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China.
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Analysis of KRT1, KRT10, KRT19, TP53 and MMP9 expression in pediatric and adult cholesteatoma. PLoS One 2018; 13:e0200840. [PMID: 30021014 PMCID: PMC6051636 DOI: 10.1371/journal.pone.0200840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/02/2018] [Indexed: 01/11/2023] Open
Abstract
Cholesteatoma is an epidermal cyst with still unknown pathomechanism. The aim of the current study was to investigate molecular differences in the background of the hyperproliferative property and aggressive behavior typical of the cholesteatoma epithelium. The expression of three cytokeratin genes (KRT1, KRT10 and KRT19), the matrix metalloproteinase 9 gene (MMP9) and the tumor suppressor TP53 gene was measured by qRT-PCR in surgical samples of pediatric and adult cholesteatoma cases and their expression level was compared to that of normal skin samples from the retroauricular region of control individuals. Cholesteatoma samples were stratified according to the age of onset and recurrence for more detailed analysis. Our results showed identical expression pattern for KRT1 and KRT10, their expression was higher in pediatric cases than in adults, especially in pediatric recurrent samples. The expression level of KRT19 was inversely proportional to that of KRT1/KRT10, it was lower in the more invasive recurrent cases both in our pediatric and adult groups. As it was expected from the bone destructive behavior of cholesteatoma, a significantly elevated expression of MMP9 was measured in cholesteatoma samples, the highest level was found in adult recurrent cases. Low expression levels characterize the TP53 gene without significant differences in our samples. These findings demonstrate that cytokeratin expression distinguishes between pediatric/adult, nonrecurrent/recurrent cases, suggesting that distinct differentiation state and cell division potential characterize these cholesteatoma cases. KRT19 with a tumor suppressor potential might restrict the recurrence of cholesteatoma. The differences observed in gene expression profiles between cholesteatoma and control samples support the notion that cholesteatoma is a cystic lesion with tumor-like behavior because it is characterized by invasive, destructive growth and high tendency for recurrence.
Collapse
|
9
|
PIM1 mediates epithelial-mesenchymal transition by targeting Smads and c-Myc in the nucleus and potentiates clear-cell renal-cell carcinoma oncogenesis. Cell Death Dis 2018; 9:307. [PMID: 29472550 PMCID: PMC5833424 DOI: 10.1038/s41419-018-0348-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/16/2017] [Accepted: 01/23/2018] [Indexed: 01/03/2023]
Abstract
Emerging evidence has shown that the PIM serine/threonine kinase family, including PIM1, PIM2 and PIM3, is associated with tumour progression towards metastasis. PIM1, an attractive molecular target, has been identified as a potential prognostic biomarker for haematological and epithelial malignancies. However, to date, the potential regulatory roles and molecular mechanisms by which PIM1 affects the development and progression of cancers, including clear-cell renal-cell carcinoma (ccRCC), remain largely unknown. Herein, we present the first evidence that PIM1 is aberrantly overexpressed in human ccRCC tissues and cell lines and positively correlated with human ccRCC progression. In our study, depletion of PIM1 attenuated ccRCC cell proliferation, colony formation, migration, invasion and angiogenesis, suggesting that PIM1 expression may be a cancer-promoting event in ccRCC. Mechanistically, we observed that PIM1 could interact with Smad2 or Smad3 in the nucleus and subsequently phosphorylate Smad2 and Smad3 to induce the expression of transcription factors, including ZEB1, ZEB2, Snail1, Snail2 and Twist, to promote epithelial-mesenchymal transition (EMT). In addition, PIM1-mediated phosphorylation of c-Myc activates the expression of the above transcription factors to synergistically promote EMT but does not activate Smads. Collectively, our results demonstrate that aberrant expression of PIM1 contributes to ccRCC development and progression. Moreover, our data reveal a potential molecular mechanism in which PIM1 mediates crosstalk between signalling pathways, including different Smad proteins and c-Myc, which target downstream transcription factors (ZEB1, ZEB2, Snail1, Snail2 and Twist) to trigger EMT. Together, our data suggest that PIM1 may be a potential therapeutic target for ccRCC patients.
Collapse
|
10
|
Qian C, Jin J, Chen J, Li J, Yu X, Mo H, Chen G. SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model. Mol Med Rep 2017; 16:9627-9635. [PMID: 29039533 DOI: 10.3892/mmr.2017.7773] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 06/22/2017] [Indexed: 11/06/2022] Open
Abstract
Early brain injury is considered to be a major risk that is related to the prognosis of subarachnoid hemorrhage (SAH). In SAH model rats, brain edema and apoptosis have been closely related with death rate and neurological function. Sirtuin 1 (SIRT1) was reported to be involved in apoptosis in cerebral ischemia and brain tumor formation through p53 deacetylation. The present study aimed to evaluate the role of SIRT1 in a rat endovascular perforation model of SAH. The SIRT1 activator resveratrol (RES) was administered 48 h prior to SAH induction and the SIRT1 inhibitor Sirtinol (SIR) was used to reverse the effects of RES on SIRT1 expression. Mortality rate, neurological function and brain water content were measured 24 h post‑SAH induction. Proteins associated with the blood brain barrier (BBB), apoptosis and SIRT1 in the cortex, such as zona occludens 1 (ZO‑1), occludin, claudin‑5, SIRT1, p53 and cleaved caspase3 were investigated. mRNA expression of the p53 downstream molecules including Bcl‑associated X protein, P53 upregulated modulator of apoptosis, Noxa and BH3 interacting‑domain death agonist were also investigated. Neuronal apoptosis was also investigated by immunofluorescence. RES pretreatment reduced the mortality rate and improved neurological function, which was consistent with reduced brain water content and neuronal apoptosis; these effects were partially reversed by co‑treatment with SIR. SIRT1 may reduce the brain water content by improvement of dysfunctional BBB permeability, and protein analysis revealed that both ZO‑1, occludin and claudin‑5 may be involved, and these effects were reversed by SIRT1 inhibition. SIRT1 may also affect apoptosis post‑SAH through p53 deacetylation, and the analysis of p53 related downstream pro‑apoptotic molecules supported this hypothesis. Localization of neuron specific apoptosis revealed that SIRT1 may regulate neuronal apoptosis following SAH. SIRT1 may also ease brain edema and neuronal protection through BBB improvement and p53 deacetylation. SIRT1 activators such as RES may have the potential to improve the prognosis of patients with SAH and clinical research should be investigated further.
Collapse
Affiliation(s)
- Cong Qian
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jianxiang Jin
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jingyin Chen
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jianru Li
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaobo Yu
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Hangbo Mo
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Gao Chen
- Department of Neurological Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
11
|
Zhang P, Zuo Z, Wu A, Shang W, Bi R, Jin Q, Wu J, Jiang L. miR-600 inhibits cell proliferation, migration and invasion by targeting p53 in mutant p53-expressing human colorectal cancer cell lines. Oncol Lett 2017; 13:1789-1796. [PMID: 28454325 PMCID: PMC5403669 DOI: 10.3892/ol.2017.5654] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
Mutations of the tumor protein p53 gene, a tumor suppressor, are one of the most frequent genetic alterations observed in cancer. It has been reported that mutations in p53 result in the loss of wild-type p53 activity, and the gain of novel oncogenic properties that promote tumor growth and progression. Recent studies have demonstrated that a number of microRNAs (miRs) are involved in the post-transcriptional regulation of p53. The present study demonstrates that miR-600 is a direct negative regulator of p53 through binding a site in the 3' untranslated region of p53 mRNA in human colorectal cancer (CRC) cells. Overexpression of miR-600 by lentiviral-mediated transduction decreased endogenous levels of p53 protein and inhibited cell proliferation, migration and invasion in mutant p53-expressing human CRC cell lines (SW480, SW620 and DLD-1) in vitro. In addition, silencing of p53 with small interfering RNA led to a similar phenotype. Furthermore, overexpression of miR-600 or p53 knockdown suppressed the expression of matrix metalloproteinase 9, and promoted the expression of E-cadherin and β-catenin. The results of the current study demonstrate that miR-600 is an important negative regulator of p53, and suggest that targeting mutant p53 using lentiviral-mediated miR-600 overexpression is a promising therapeutic strategy for the treatment of CRCs with p53 mutations.
Collapse
Affiliation(s)
- Peili Zhang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhigui Zuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Aihua Wu
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjing Shang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ruichun Bi
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qike Jin
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianbo Wu
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
12
|
Mashkina EV, Kovalenko KA, Marakhovskaya TA, Saraev KN, Belanova AA, Shkurat TP. Association of gene polymorphisms of matrix metalloproteinases with reproductive losses in the first trimester of pregnancy. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416080081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Geng J, Fan J, Ouyang Q, Zhang X, Zhang X, Yu J, Xu Z, Li Q, Yao X, Liu X, Zheng J. Loss of PPM1A expression enhances invasion and the epithelial-to-mesenchymal transition in bladder cancer by activating the TGF-β/Smad signaling pathway. Oncotarget 2015; 5:5700-11. [PMID: 25026293 PMCID: PMC4170610 DOI: 10.18632/oncotarget.2144] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signaling pathway is believed to contribute to carcinoma development by increasing cell invasiveness and metastasis and inducing the epithelial-to-mesenchymal transition (EMT). Protein phosphatase PPM1A has been reported to dephosphorylate TGF-β-activated Smad2/3, thus inhibiting the TGF-β signaling pathway. In this study, we investigated the role of PPM1A in bladder cancer. PPM1A protein expression was analyzed in 145 bladder cancer specimens. The loss of PPM1A expression was predictive of poor survival and high muscle-invasiveness. PPM1A was more commonly deficient among muscle-invasive relapse samples compared to primary tumors in twenty paired bladder cancer tissues. Functional studies indicated that blockade of PPM1A through lentivirus-mediated RNA interference significantly promoted urinary bladder cancer (BCa) cell motility, the EMT in vitro and metastasis in vivo, and these effects were dependent on the TGF-β/Smad signaling pathway. The increase in p-Smad2/3 induced by TGF-β1 correlated with the degree of PPM1A depletion in BCa cells, which resulted in an altered expression profile of TGF-β-inducible genes. The correlations between PPM1A and biomarkers related to the TGF-β signaling pathway and tumor invasion were also detected in BCa samples. These results demonstrate that loss of PPM1A is associated with the development of tumor invasion in bladder cancer.
Collapse
Affiliation(s)
- Jiang Geng
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Jie Fan
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Huashan Hospital; Fudan University, Shanghai, China
| | - Qi Ouyang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Huashan Hospital; Fudan University, Shanghai, China
| | - Xiaopeng Zhang
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Xiaolong Zhang
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Juan Yu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zude Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Huashan Hospital; Fudan University, Shanghai, China
| | - Qianyu Li
- Department of Pathology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| | - Xiuping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Pathology, Fifth People's Hospital, Fudan University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Tenth People's Hospital; Tongji University, Shanghai, China
| |
Collapse
|
14
|
Fraga LR, Dutra CG, Boquett JA, Vianna FSL, Gonçalves RO, Paskulin DD, Costa OL, Ashton-Prolla P, Sanseverino MTV, Schuler-Faccini L. p53 signaling pathway polymorphisms associated to recurrent pregnancy loss. Mol Biol Rep 2014; 41:1871-7. [PMID: 24435975 DOI: 10.1007/s11033-014-3036-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/04/2014] [Indexed: 01/24/2023]
Abstract
The p53 protein is known for performing essential functions in the maintenance of genomic stability in somatic cells and prevention of tumor formation. Studies of the p53 signaling pathway have suggested associations between some polymorphisms and infertility, post-in vitro fertilization implantation failure and recurrent abortions. The TP53 Pro72Arg polymorphism has been implicated as a risk factor for recurrent pregnancy loss (RPL); however, the association is controversial. In this study, our objective was to evaluate selected polymorphisms in genes of the p53 signalling pathway [TP53 c.215G>C (Pro72Arg), MDM2 c.14+309T>G (SNP309) and LIF c.1414T>G in the region 3' UTR] and determine their effect as risk factors for RPL. In a case-control study, we investigated 120 women with two or more pregnancy losses and 143 fertile control women reporting at least two live births and no history of pregnancy loss. When analyzed separately, the allele and genotype distributions of the polymorphisms in the two groups were not different. However, in a multivariate analysis adjusted for alcohol consumption, smoking, ethnicity, and number of pregnancies, the interaction between the genotypes TP53 Arg/Arg (rs1042522) and MDM2 TT (rs2279744) showed to be associated to RPL, increasing the risk for this condition (OR = 2.58, 95% CI: 1.31-5.07, p = 0.006). In conclusion, our study indicates that the combination of TP53 Arg/Arg (rs1042522) and MDM2 TT (rs2279744) genotypes may be a risk factor for RPL.
Collapse
Affiliation(s)
- L R Fraga
- Post-Graduation Program in Genetics and Molecular Biology, Departament of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul (UFRGS), Caixa Postal 15031 - Agencia Campus UFRGS, Porto Alegre, RS, 91501-970, Brazil,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Overexpression of GRP78 in complete hydatidiform moles. Gynecol Oncol 2012; 125:580-4. [DOI: 10.1016/j.ygyno.2012.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/01/2012] [Accepted: 03/08/2012] [Indexed: 01/31/2023]
|
16
|
Liu T, Zheng X, Chen J, Wang N, Xiao J, Zhang D, Yin Z, Li W, Chen S. Effect of human cytomegalovirus on invasive capability of early pregnant extravillous cytotrophoblasts. ACTA ACUST UNITED AC 2011; 31:819-823. [PMID: 22173505 DOI: 10.1007/s11596-011-0683-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Indexed: 10/14/2022]
Abstract
The effect of human cytomegalovirus (HCMV) on invasive capability of early pregnant extravillous cytotrophoblasts (EVTs) was investigated in vitro. Primary EVTs were obtained by complex phosphoesterasum digestion and gradient centrifugation from villous tissue aseptically taken from healthy pregnant women. Cytokeratin7 (CK7), vimentin (Vim) and c-erbB-2 were immunocytochemically detected to identify source of cells, and HCMVpp65 antigen was assayed to determine the infection state of primary EVTs by immunocytochemical staining. The EVTs were divided into two groups: control group and HCMV group, and the expression of c-erbB-2, matrix metalloproteinase-2 (MMP-2) and MMP-9 proteins was detected in two groups by immunocytochemistry and Western blotting. Enzymic activity changes of MMP-2 and MMP-9 were tested by gelatin zymography in primary EVTs infected with HCMV. The invasion of primary EVTs was detected by cell invasion assay in vitro after they were infected by HCMV. The cell source identification showed that the cells obtained were highly-pure primary EVTs, and primary EVTs could be infected by HCMV. Primary EVTs could express c-erbB-2, MMP-2 and MMP-9 proteins, and as compared with control group, the protein expression was decreased significantly in HCMV groups (P<0.05). Primary EVTs could secrete active MMP-2 and MMP-9 in vitro, and the activity of two MMPs was decreased significantly in HCMV groups (P<0.05). The in vitro cell invasion assay showed that the number of primary EVTs permeating Matrigel in HCMV group was decreased (P<0.05). We are led to conclude that HCMV can infect primary EVTs and inhibit their invasion capability, suggesting that the impaired EVT's invasion capability might be related to the abnormal expression of c-erbB-2, MMP-2 and MMP-9 proteins.
Collapse
Affiliation(s)
- Tao Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tai'an Central Hospital, Tai'an, 271000, China
| | - Xiaofei Zheng
- Department of Information Center, Tai'an Central Hospital, Tai'an, 271000, China
| | - Juanjuan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zongzhi Yin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Suhua Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Lalou C, Scamuffa N, Mourah S, Plassa F, Podgorniak MP, Soufir N, Dumaz N, Calvo F, Basset-Seguin N, Khatib AM. Inhibition of the proprotein convertases represses the invasiveness of human primary melanoma cells with altered p53, CDKN2A and N-Ras genes. PLoS One 2010; 5:e9992. [PMID: 20404912 PMCID: PMC2852400 DOI: 10.1371/journal.pone.0009992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 03/05/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Altered tumor suppressor p53 and/or CDKN2A as well as Ras genes are frequently found in primary and metastatic melanomas. These alterations were found to be responsible for acquisition of invasive and metastatic potential through their defective regulatory control of metalloproteinases and urokinase genes. METHODOLOGY/PRINCIPAL FINDINGS Using primary human melanoma M10 cells with altered p53, CDKN2A and N-Ras genes, we found that inhibition of the proprotein convertases (PCs), enzymes involved in the proteolytic activation of various cancer-related protein precursors resulted in significantly reduced invasiveness. Analysis of M10 cells and their gastric and lymph node derived metastatic cells revealed the presence of all the PCs found in the secretory pathway. Expression of the general PCs inhibitor alpha1-PDX in these cells in a stable manner (M10/PDX) had no effect on the mRNA expression levels of these PCs. Whereas, in vitro digestion assays and cell transfection experiments, revealed that M10/PDX cells display reduced PCs activity and are unable to process the PCs substrates proIGF-1R and proPDGF-A. These cells showed reduced migration and invasion that paralleled decreased gelatinase MMP-2 activity and increased expression and secretion of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Furthermore, these cells showed decreased levels of urokinase-type plasminogen activator receptor (uPAR) and increased levels of plasminogen activator inhibitor-1 (PAI-1). CONCLUSIONS Taken together, these data suggest that inhibition of PCs activity results in decreased invasiveness of primary human melanoma cells despite their altered p53, CDKN2A and N-Ras genes, suggesting that PCs may serve as novel therapeutic targets in melanoma.
Collapse
Affiliation(s)
- Claude Lalou
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Nathalie Scamuffa
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Samia Mourah
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Francois Plassa
- Laboratoire de Biochimie, Hôpital Saint-Louis, Paris, France
| | - Marie-Pierre Podgorniak
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Nadem Soufir
- Laboratoire de Biochimie Hormonale et Génétique, Hôpital Bichat, Paris, France
| | | | - Fabien Calvo
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Nicole Basset-Seguin
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
| | - Abdel-Majid Khatib
- INSERM, UMRS940, Equipe Avenir, Institut de Génétique Moléculaire, Hôpital Saint-Louis, Université Paris 7, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Arnaudeau S, Arboit P, Bischof P, Shin-ya K, Tomida A, Tsuruo T, Irion O, Cohen M. Glucose-regulated protein 78: A new partner of p53 in trophoblast. Proteomics 2009; 9:5316-27. [DOI: 10.1002/pmic.200800865] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Staun-Ram E, Goldman S, Shalev E. Ets-2 and p53 mediate cAMP-induced MMP-2 expression, activity and trophoblast invasion. Reprod Biol Endocrinol 2009; 7:135. [PMID: 19939245 PMCID: PMC2787504 DOI: 10.1186/1477-7827-7-135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/25/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We have previously shown that Matrix metalloproteinase (MMP) -2 is a key-enzyme in early trophoblast invasion and that Protein Kinase A (PKA) increases MMP-2 expression and trophoblast invasion. The aim of this study was to examine MMP -2 regulation by PKA in invasive trophoblasts: JAR choriocarcinoma cell-line and 6-8 w first trimester trophoblasts. METHODS The effect of Forskolin (PKA) on MMP-2 expression was assessed by Northern Blot and RT-PCR. Possible transcription factors binding to consensus MMP-2 promoter sequences in response to Forskolin, were detected by EMSA binding assay and their expression assessed by western blot analysis. Antisense transfection of relevant transcription factors was performed and the inhibitory effect assessed on MMP-2 expression (RT-PCR), secretion (zymography) and trophoblast invasiveness (transwell migration assay). RESULTS We found that Forskolin increased MMP-2 mRNA in JAR cells within 24 hours, and induced binding to p53, Ets, C/EBP and AP-2. Transcription factors Ets-2, phospho- p53, C/EBP epsilon, C/EBP lambda and AP-2 alpha bound to their respective binding sequences in response to Forskolin and the expressions of these transcription factors were all elevated in Forskolin- treated cells. Inhibition of Ets-2 and p53 reduced MMP-2 expression, secretion and invasiveness of Forskolin treated cells. CONCLUSION MMP-2 is regulated by PKA through several binding sites and transcription factors including Ets-2, p53, C/EBP, C/EBP lambda and AP-2 alpha. Ets-2 and p53 mediate cAMP- induced trophoblast invasiveness, through regulation of MMP-2.
Collapse
Affiliation(s)
- Elsebeth Staun-Ram
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shlomit Goldman
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, Afula, Israel
| | - Eliezer Shalev
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
20
|
Szekeres-Bartho J, Halasz M, Palkovics T. Progesterone in pregnancy; receptor-ligand interaction and signaling pathways. J Reprod Immunol 2009; 83:60-4. [PMID: 19880194 DOI: 10.1016/j.jri.2009.06.262] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 06/07/2009] [Accepted: 06/21/2009] [Indexed: 10/20/2022]
Abstract
Progesterone is indispensable in creating a suitable endometrial environment for implantation, and also for the maintenance of pregnancy. Successful pregnancy depends on an appropriate maternal immune response to the fetus. Along with its endocrine effects, progesterone also acts as an "immunosteroid", by contributing to the establishment of a pregnancy protective immune milieu. Progesterone plays a role in uterine homing of NK cells and upregulates HLA-G gene expression, the ligand for NK inhibitory and activating receptors. At high concentrations, progesterone is a potent inducer of Th2-type cytokines as well as of LIF and M-CSF production by T cells. A protein called progesterone-induced blocking factor (PIBF), by inducing a Th2-dominant cytokine production mediates the immunological effects of progesterone. PIBF binds to a novel type of the IL-4 receptor and signals via the Jak/STAT pathway, to induce a number of genes, that not only affect the immune response, but might also play a role in trophoblast invasiveness.
Collapse
Affiliation(s)
- Julia Szekeres-Bartho
- Department of Medical Microbiology and Immunology, Medical School, Pecs University, H-7624 Pecs, Szigeti ut 12, Hungary.
| | | | | |
Collapse
|
21
|
Zhang B, Zhou Z, Lin H, Lv X, Fu J, Lin P, Zhu C, Wang H. Protein phosphatase 1A (PPM1A) is involved in human cytotrophoblast cell invasion and migration. Histochem Cell Biol 2009; 132:169-79. [PMID: 19404668 DOI: 10.1007/s00418-009-0601-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2009] [Indexed: 11/25/2022]
Abstract
Trophoblast invasion is crucial for embryo implantation and placentation. Excessive trophoblast invasion leads to hydatidiform moles and choriocarcinoma. PPM1A is a phosphatase which dephosphorylates and inactivates a broad range of substrates, including TGF-beta, MAP kinases, p38 and JNK kinase cascades, and is involved in tumor suppression. The objective of this study was to investigate the expression of PPM1A in normal and malignant human placenta and its role in trophoblast invasion, which shares many similarities with invasion of tumor cells. By Western blotting and immunocytochemistry, significantly higher expression of PPM1A in human placental villi at term was found as compared with that during the first trimester. Furthermore, the expression level of PPM1A protein in hydatidiform moles was lower compared with that during normal pregnancy. We further investigated the function of PPM1A in extravillous trophoblast cell line HTR8/SVneo. Transwell migration and Matrigel invasion assays demonstrated that PPM1A siRNA significantly promoted the motility and invasiveness of the cells. Gelatin zymography showed that knockdown of PPM1A with siRNA elevated the expression of pro-matrix metalloproteinase pro-(MMP)-9, but down-regulated tissue inhibitors of metalloproteinases (TIMP)-2. The present data indicate that PPM1A plays a critical role in the regulation of normal placentation by inhibiting trophoblast migration and invasion.
Collapse
Affiliation(s)
- Baohua Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, 100101, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|