1
|
Abdelalim EM, Bonnefond A, Bennaceur-Griscelli A, Froguel P. Pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes. Stem Cell Rev Rep 2014; 10:327-37. [PMID: 24577791 DOI: 10.1007/s12015-014-9503-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is the most prevailing disease with progressive incidence worldwide. To date, the pathogenesis of diabetes is far to be understood, and there is no permanent treatment available for diabetes. One of the promising approaches to understand and cure diabetes is to use pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced PCSs (iPSCs). ESCs and iPSCs have a great potential to differentiate into all cell types, and they have a high ability to differentiate into insulin-secreting β cells. Obtaining PSCs genetically identical to the patient presenting with diabetes has been a longstanding dream for the in vitro modeling of disease and ultimately cell therapy. For several years, somatic cell nuclear transfer (SCNT) was the method of choice to generate patient-specific ESC lines. However, this technology faces ethical and practical concerns. Interestingly, the recently established iPSC technology overcomes the major problems of other stem cell types including the lack of ethical concern and no risk of immune rejection. Several iPSC lines have been recently generated from patients with different types of diabetes, and most of these cell lines are able to differentiate into insulin-secreting β cells. In this review, we summarize recent advances in the differentiation of pancreatic β cells from PSCs, and describe the challenges for their clinical use in diabetes cell therapy. Furthermore, we discuss the potential use of patient-specific PSCs as an in vitro model, providing new insights into the pathophysiology of diabetes.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Qatar Biomedical Research Institute, Qatar Foundation, Education City, 5825, Doha, Qatar,
| | | | | | | |
Collapse
|
2
|
Botman O, Wyns C. Induced pluripotent stem cell potential in medicine, specifically focused on reproductive medicine. Front Surg 2014; 1:5. [PMID: 25671222 PMCID: PMC4313692 DOI: 10.3389/fsurg.2014.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/05/2014] [Indexed: 01/15/2023] Open
Abstract
Since 2006, several laboratories have proved that somatic cells can be reprogramed into induced pluripotent stem cells (iPSCs). iPSCs have enormous potential in stem cell biology as they can give rise to numerous cell lineages, including the three germ layers. In this review, we discuss past and recent advances in human iPSCs used for modeling diseases in vitro, screening drugs to test new treatments, and autologous cell and tissue regenerative therapies, with a special focus on reproductive medicine applications. While this latter field of research is still in its infancy, it holds great promise for investigating germ cell development and studying the genetic and physiopathological mechanisms of infertility. A major cause of infertility is the absence of germ cells in the testes, mainly due to genetic background or as a consequence of gonadotoxic treatments. For these patients, no effective fertility restoration strategy has so far been identified. The derivation of germ cells from iPSCs represents an alternative source of stem cells able to differentiate into spermatozoa. Lessons learned from animal models as well as studies on human iPSCs for reproductive purposes are reviewed.
Collapse
Affiliation(s)
- Olivier Botman
- Gynecology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels , Belgium
| | - Christine Wyns
- Gynecology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels , Belgium ; Cliniques Universitaires Saint-Luc, Université Catholique de Louvain , Brussels , Belgium
| |
Collapse
|
3
|
Vitrified blastocysts from Preimplantation Genetic Diagnosis (PGD) as a source for human Embryonic Stem Cell (hESC) derivation. J Assist Reprod Genet 2012; 29:1013-20. [PMID: 22735930 DOI: 10.1007/s10815-012-9820-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022] Open
Abstract
Embryos diagnosed as abnormal in Preimplantation Genetic Diagnosis (PGD) cycles are useful for the establishment of human Embryonic Stem Cells (hESC) lines with genetic disorders. These lines can be helpful for drug screening and for the development of new treatments. Vitrification has proved to be an efficient method to preserve human blastocysts. One hundred and three abnormal or undiagnosed vitrified blastocysts from the PGD programme at Institut Universitari Dexeus were donated for human embryonic stem cell derivation. The overall survival rate after warming was 70.6 %. Our results showed better survival rates when blastocysts have not started the hatching process (initial/expanded 87.8 %, hatching 68.3 % and hatched 27.3 %). Thirty-five blastocysts and 12 partially surviving embryos were seeded. One hESC line with the multiple exostoses type 2 paternal mutation was obtained.
Collapse
|
4
|
Amniotic fluid stem cells: future perspectives. Stem Cells Int 2012; 2012:741810. [PMID: 22719774 PMCID: PMC3375114 DOI: 10.1155/2012/741810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/12/2012] [Indexed: 01/10/2023] Open
Abstract
The existence of stem cells in human amniotic fluid was reported for the first time almost ten years ago. Since this discovery, the knowledge about these cells has increased dramatically. Today, amniotic fluid stem (AFS) cells are widely accepted as a new powerful tool for basic research as well as for the establishment of new stem-cell-based therapy concepts. It is possible to generate monoclonal genomically stable AFS cell lines harboring high proliferative potential without raising ethical issues. Many different groups have demonstrated that AFS cells can be differentiated into all three germ layer lineages, what is of relevance for both, the scientific and therapeutical usage of these cells. Of special importance for the latter is the fact that AFS cells are less tumorigenic than other pluripotent stem cell types. In this paper, we have summarized the current knowledge about this relatively young scientific field. Furthermore, we discuss the relevant future perspectives of this promising area of stem cell research focusing on the next important questions, which need to be answered.
Collapse
|
5
|
Rosner M, Dolznig H, Schipany K, Mikula M, Brandau O, Hengstschläger M. Human amniotic fluid stem cells as a model for functional studies of genes involved in human genetic diseases or oncogenesis. Oncotarget 2012; 2:705-12. [PMID: 21926447 PMCID: PMC3248217 DOI: 10.18632/oncotarget.328] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Besides their putative usage for therapies, stem cells are a promising tool for functional studies of genes involved in human genetic diseases or oncogenesis. For this purpose induced pluripotent stem (iPS) cells can be derived from patients harbouring specific mutations. In contrast to adult stem cells, iPS cells are pluripotent and can efficiently be grown in culture. However, iPS cells are modulated due to the ectopic induction of pluripotency, harbour other somatic mutations accumulated during the life span of the source cells, exhibit only imperfectly cleared epigenetic memory of the source cell, and are often genomically instable. In addition, iPS cells from patients only allow the investigation of mutations, which are not prenatally lethal. Embryonic stem (ES) cells have a high proliferation and differentiation potential, but raise ethical issues. Human embryos, which are not transferred in the course of in vitro fertilization, because of preimplantation genetic diagnosis of a genetic defect, are still rarely donated for the establishment of ES cell lines. In addition, their usage for studies on gene functions for oncogenesis is hampered by the fact the ES cells are already tumorigenic per se. In 2003 amniotic fluid stem (AFS) cells have been discovered, which meanwhile have been demonstrated to harbour the potential to differentiate into cells of all three germ layers. Monoclonal human AFS cell lines derived from amniocenteses have a high proliferative potential, are genomically stable and are not associated with ethical controversies. Worldwide amniocenteses are performed for routine human genetic diagnosis. We here discuss how generation and banking of monoclonal human AFS cell lines with specific chromosomal aberrations or monogenic disease mutations would allow to study the functional consequences of disease causing mutations. In addition, recently a protocol for efficient and highly reproducible siRNA-mediated long-term knockdown of endogenous gene functions in AFS cells was established. Since AFS cells are not tumorigenic, gene modulations not only allow to investigate the role of endogenous genes involved in human genetic diseases but also may help to reveal putative oncogenic gene functions in different biological models, both in vitro and in vivo. This concept is discussed and a "proof of principle", already obtained via modulating genes involved in the mammalian target of rapamycin (mTOR) pathway in AFS cells, is presented.
Collapse
Affiliation(s)
- Margit Rosner
- Medical Genetics, Medical University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
6
|
Tiscornia G, Vivas EL, Izpisúa Belmonte JC. Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nat Med 2012; 17:1570-6. [PMID: 22146428 DOI: 10.1038/nm.2504] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The derivation of induced pluripotent cells (iPSCs) from individuals suffering from genetic syndromes offers new opportunities for basic research into these diseases and the development of therapeutic compounds. iPSCs can self renew and can be differentiated to many cell types, offering a potentially unlimited source of material for study. In this review we discuss the conceptual and practical issues to consider when attempting to model genetic diseases using iPSCs.
Collapse
|
7
|
Mateizel I, Geens M, Van de Velde H, Sermon K. Establishment of hESC lines from the inner cell mass of blastocyst-stage embryos and single blastomeres of 4-cell stage embryos. Methods Mol Biol 2012; 873:81-112. [PMID: 22528350 DOI: 10.1007/978-1-61779-794-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
More than 600 human embryonic stem cell (hESC) lines have been reported today at the human European Embryonic Stem Cell Registry ( http://www.hescreg.eu/ ). Despite these high numbers, there are currently no general protocols for derivation, culture, and characterization of hESC. Moreover, data on the culture of the embryo used for the derivation (medium, day of ICM isolation) are usually not available but can have an impact on the derivation rate. We present here the protocols for derivation, culture and characterization as we applied them for the 22 hESC lines (named VUB-hESC) in our laboratory.
Collapse
Affiliation(s)
- Ileana Mateizel
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
8
|
Isasi R, Knoppers BM. From banking to international governance: fostering innovation in stem cell research. Stem Cells Int 2011; 2011:498132. [PMID: 21904557 PMCID: PMC3167189 DOI: 10.4061/2011/498132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/07/2011] [Indexed: 11/30/2022] Open
Abstract
Stem cell banks are increasingly recognized as an essential resource of biological materials for both basic and translational stem cell research. By providing transnational access to quality controlled and ethically sourced stem cell lines, stem cell banks seek to foster international collaboration and innovation. However, given that national stem cell banks operate under different policy, regulatory and commercial frameworks, the transnational sharing of stem cell materials and data can be complicating. This paper will provide an overview of the most pressing challenges regarding the governance of stem cell banks, and the difficulties in designing regulatory and commercial frameworks that foster stem cell research. Moreover, the paper will shed light on the numerous international initiatives that have arisen to help harmonize and standardize stem cell banking and research processes to overcome such challenges.
Collapse
Affiliation(s)
- Rosario Isasi
- Centre of Genomics and Policy, McGill University, Montreal, QC, Canada H3A 1A1
| | | |
Collapse
|
9
|
Abstract
Stem cell banks are increasingly seen as an essential resource of biological materials for both basic and translational research. Stem cell banks support transnational access to quality-controlled and ethically sourced stem cell lines from different origins and of varying grades. According to the Organisation for Economic Co-operation and Development, advances in regenerative medicine are leading to the development of a bioeconomy, 'a world where biotechnology contributes to a significant share of economic output'. Consequently, stem cell banks are destined to constitute a pillar of the bioeconomy in many countries. While certain ethical and legal concerns are specific to the nature of stem cells, stem cell banking could do well to examine the approaches fostered by tissue banking generally. Indeed, the past decade has seen a move to simplify and harmonize biological tissue and data banking so as to foster international interoperability. In particular, the issues of consent and of traceability illustrate not only commonalities but the opportunity for stem cell banking to appreciate the lessons learned in biobanking generally. This paper analyzes convergence and divergence in issues surrounding policy harmonization, transnational sharing, informed consent, traceability and return of results in the context of stem cell banks.
Collapse
Affiliation(s)
- Bartha M Knoppers
- Centre of Genomics and Policy, McGill University, 740 Dr Penfield Avenue, Suite 5206, Montreal, QC, H3A 1A4, Canada
| | - Rosario Isasi
- Centre of Genomics and Policy, McGill University, 740 Dr Penfield Avenue, Suite 5206, Montreal, QC, H3A 1A4, Canada
| |
Collapse
|
10
|
Abstract
Neurodegenerative diseases represent a growing public health challenge. Current medications treat symptoms, but none halt or retard neurodegeneration. The recent advent of pluripotent cell biology has opened new avenues for neurodegenerative disease research. The greatest potential for induced pluripotent cells derived from affected individuals is likely to be their utility for modeling and understanding the mechanisms underlying neurodegenerative processes, and for searching for new treatments, including cell replacement therapies. However, much work remains to be done before pluripotent cells can be used for preclinical and clinical applications. Here we discuss the challenges of generating specific neural cell subtypes from pluripotent stem cells, the use of pluripotent stem cells to model both cell-autonomous and non-cell-autonomous mechanisms of neurodegeneration, whether adult-onset neurodegeneration can be emulated in short-term cultures and the hurdles of cell replacement therapy. Progress in these four areas will substantially accelerate effective application of pluripotent stem cells.
Collapse
Affiliation(s)
- Hynek Wichterle
- Department of Neurology, Columbia University, New York, New York, USA
| | | |
Collapse
|
11
|
Löser P, Schirm J, Guhr A, Wobus AM, Kurtz A. Human embryonic stem cell lines and their use in international research. Stem Cells 2010; 28:240-6. [PMID: 20027651 PMCID: PMC2952289 DOI: 10.1002/stem.286] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Research in human pluripotent stem cells, including human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC), is one of the most dynamic research fields. Despite the high public attention, especially for hESC research, there is only scattered information on the number of hESC lines and the degree, dynamics, and diversification of their use on a global level. In this study we present data on the current number of publicly disclosed hESC lines, on the extent and impact of experimental work involving hESCs, and on the use of specific hESC lines in international research. The results are based on the evaluation of nearly 1,000 research papers published by the end of 2008, which describe experimental work on hESCs, and of a comprehensive database of published hESC lines. The average impact of hESC research papers is high at 7.422, with a predominance of research output by the United States. Of at least 1,071 original hESC lines derived up to November 2009 at 87 institutions in 24 countries, only a fraction is thoroughly characterized. Our data show the global predominance of a few hESC lines in research, but also reveal remarkable country-specific differences. Comparison of hESC and hiPSC application did not show a diminished role for hESC research, but rather revealed that, up to this time, both fields continue to expand, exist independently, and partially overlap.
Collapse
|
12
|
Current world literature. Curr Opin Obstet Gynecol 2010; 22:255-8. [PMID: 20436325 DOI: 10.1097/gco.0b013e32833ae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|