1
|
Chaichian S, Khodabandehloo F, Haghighi L, Govahi A, Mehdizadeh M, Ajdary M, Varma RS. Toxicological Impact of Bisphenol A on Females' Reproductive System: Review Based on Experimental and Epidemiological Studies. Reprod Sci 2024; 31:1781-1799. [PMID: 38532232 DOI: 10.1007/s43032-024-01521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The study encompassing research papers documented in the last two decades pertaining to the possible influence of bisphenol A (BPA) on the fertility of females are appraised with emphasis on the influence of BPA in reproductive organs (uterus and ovaries) and pregnancy outcomes including discussion on the reproductive process (implantation, estrous cycle, hormone secretion); outcomes reveal a connection amongst BPA and female infertility. Ovary, uterus, and its shape as well as function can alter a person's ability to become pregnant by influencing the hypothalamus-pituitary axis in the ovarian model. Additionally, implantation and the estrous cycle may be affected by BPA. However, more research is warranted to comprehend the underlying action mechanisms and to promptly identify any imminent reproductive harm.
Collapse
Affiliation(s)
- Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khodabandehloo
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ladan Haghighi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
2
|
Lee NY, Hum M, Tan GP, Seah AC, Ong PY, Kin PT, Lim CW, Samol J, Tan NC, Law HY, Tan MH, Lee SC, Ang P, Lee ASG. Machine learning unveils an immune-related DNA methylation profile in germline DNA from breast cancer patients. Clin Epigenetics 2024; 16:66. [PMID: 38750495 PMCID: PMC11094860 DOI: 10.1186/s13148-024-01674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND There is an unmet need for precise biomarkers for early non-invasive breast cancer detection. Here, we aimed to identify blood-based DNA methylation biomarkers that are associated with breast cancer. METHODS DNA methylation profiling was performed for 524 Asian Chinese individuals, comprising 256 breast cancer patients and 268 age-matched healthy controls, using the Infinium MethylationEPIC array. Feature selection was applied to 649,688 CpG sites in the training set. Predictive models were built by training three machine learning models, with performance evaluated on an independent test set. Enrichment analysis to identify transcription factors binding to regions associated with the selected CpG sites and pathway analysis for genes located nearby were conducted. RESULTS A methylation profile comprising 51 CpGs was identified that effectively distinguishes breast cancer patients from healthy controls achieving an AUC of 0.823 on an independent test set. Notably, it outperformed all four previously reported breast cancer-associated methylation profiles. Enrichment analysis revealed enrichment of genomic loci associated with the binding of immune modulating AP-1 transcription factors, while pathway analysis of nearby genes showed an overrepresentation of immune-related pathways. CONCLUSION This study has identified a breast cancer-associated methylation profile that is immune-related to potential for early cancer detection.
Collapse
Affiliation(s)
- Ning Yuan Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore
| | - Melissa Hum
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore
| | - Guek Peng Tan
- DNA Diagnostic and Research Laboratory, KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore, 229899, Singapore
| | - Ai Choo Seah
- SingHealth Polyclinics, 167 Jalan Bukit Merah Connection One (Tower 5), Singapore, 150167, Singapore
| | - Pei-Yi Ong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - Patricia T Kin
- SingHealth Polyclinics, 167 Jalan Bukit Merah Connection One (Tower 5), Singapore, 150167, Singapore
| | - Chia Wei Lim
- Department of Personalised Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Jens Samol
- Medical Oncology Department, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ngiap Chuan Tan
- SingHealth Polyclinics, 167 Jalan Bukit Merah Connection One (Tower 5), Singapore, 150167, Singapore
- SingHealth Duke-NUS Family Medicine Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hai-Yang Law
- DNA Diagnostic and Research Laboratory, KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore, 229899, Singapore
| | - Min-Han Tan
- Lucence Diagnostics Pte Ltd, 211 Henderson Road, Singapore, 159552, Singapore
| | - Soo-Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
- Cancer Science Institute, Singapore (CSI), National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Peter Ang
- Oncocare Cancer Centre, Gleneagles Medical Centre, 6 Napier Road, Singapore, 258499, Singapore
| | - Ann S G Lee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Republic of Singapore.
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore.
| |
Collapse
|
3
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
4
|
Mokarat M, Lomthaisong K, Robson MG, Keithmaleesatti S. Effects of blood mercury accumulation on DNA methylation levels in the Khorat snail-eating turtle (Malayemys khoratensis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115770. [PMID: 38043412 DOI: 10.1016/j.ecoenv.2023.115770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Mercury (Hg) has adverse effects on humans and wildlife. Hg exposure can cause significant alterations in DNA methylation, an epigenetic modification that causes various illnesses. Hg accumulation in the blood of the Khorat snail-eating turtle (Malayemys khoratensis) from northeastern Thailand was previously reported. Thus, this study aimed to assess total mercury (THg) levels in M. khoratensis blood and to examine the impact of these concentrations on DNA methylation (5-methylcytosine, 5-mC) levels. We divided turtles based on morphological characteristics into two groups, normal and deformed, and then the levels of each variable in both groups were assessed. The deformed group presented higher mean THg concentration and DNA methylation levels compared to the normal group; however, the differences were not significant. Additionally, we found no correlation between DNA methylation levels and THg concentrations in both groups. This study is the first attempt to investigate the relationship between mercury accumulation and DNA methylation in the blood of deformed freshwater turtles.
Collapse
Affiliation(s)
- Monthakarn Mokarat
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khemika Lomthaisong
- Forensic Science Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mark Gregory Robson
- School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sarun Keithmaleesatti
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
5
|
Shayota BJ. Downstream Assays for Variant Resolution: Epigenetics, RNA Sequnncing, and Metabolomics. Pediatr Clin North Am 2023; 70:929-936. [PMID: 37704351 DOI: 10.1016/j.pcl.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
As the availability of advanced molecular testing like whole exome and genome sequencing expands, it comes with the added complication of interpreting inconclusive results, including determining the relevance of variants of uncertain significance or failing to find a variant in an otherwise suspected specific genetic disorder. This complication necessitates the use of alternative testing methods to gather more information in support of, or against, a particular genetic diagnosis. Therefore, new genome-wide approaches, including DNA epigenetic testing, RNA sequencing, and metabolomics, are increasingly being used to increase the diagnostic yield when used in conjunction with more conventional genetic tests.
Collapse
Affiliation(s)
- Brian J Shayota
- University of Utah, 295 Chipeta Way, Salt Lake City, UT 84108, USA; Primary Children's Hospital, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Besaratinia A. The State of Research and Weight of Evidence on the Epigenetic Effects of Bisphenol A. Int J Mol Sci 2023; 24:7951. [PMID: 37175656 PMCID: PMC10178030 DOI: 10.3390/ijms24097951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a high-production-volume chemical with numerous industrial and consumer applications. BPA is extensively used in the manufacture of polycarbonate plastics and epoxy resins. The widespread utilities of BPA include its use as internal coating for food and beverage cans, bottles, and food-packaging materials, and as a building block for countless goods of common use. BPA can be released into the environment and enter the human body at any stage during its production, or in the process of manufacture, use, or disposal of materials made from this chemical. While the general population is predominantly exposed to BPA through contaminated food and drinking water, non-dietary exposures through the respiratory system, integumentary system, and vertical transmission, as well as other routes of exposure, also exist. BPA is often classified as an endocrine-disrupting chemical as it can act as a xenoestrogen. Exposure to BPA has been associated with developmental, reproductive, cardiovascular, neurological, metabolic, or immune effects, as well as oncogenic effects. BPA can disrupt the synthesis or clearance of hormones by binding and interfering with biological receptors. BPA can also interact with key transcription factors to modulate regulation of gene expression. Over the past 17 years, an epigenetic mechanism of action for BPA has emerged. This article summarizes the current state of research on the epigenetic effects of BPA by analyzing the findings from various studies in model systems and human populations. It evaluates the weight of evidence on the ability of BPA to alter the epigenome, while also discussing the direction of future research.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Mortillo M, Marsit CJ. Select Early-Life Environmental Exposures and DNA Methylation in the Placenta. Curr Environ Health Rep 2023; 10:22-34. [PMID: 36469294 PMCID: PMC10152976 DOI: 10.1007/s40572-022-00385-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 12/07/2022]
Abstract
PURPOSE OF REVIEW To summarize recent literature relating early-life environmental exposures on DNA methylation in the placenta, to identify how variation in placental methylation is regulated in an exposure-specific manner, and to encourage additional work in this area. RECENT FINDINGS Multiple studies have evaluated associations between prenatal environmental exposures and placental methylation in both gene-specific and epigenome-wide frameworks. Specific exposures lead to unique variability in methylation, and cross-exposure assessments have uncovered certain genes that demonstrate consistency in differential placental methylation. Exposure studies that assess methylation effects in a trimester-specific approach tend to find larger effects during the 1st trimester exposure. Earlier studies have more targeted gene-specific approaches to methylation, while later studies have shifted towards epigenome-wide, array-based approaches. Studies focusing on exposures such as air pollution, maternal smoking, environmental contaminants, and trace metals appear to be more abundant, while studies of socioeconomic adversity and circadian disruption are scarce but demonstrate remarkable effects. Understanding the impacts of early-life environmental exposures on placental methylation is critical to establishing the link between the maternal environment, epigenetic variation, and long-term health. Future studies into this field should incorporate repeated measures of exposure throughout pregnancy, in order to determine the critical windows in which placental methylation is most heavily affected. Additionally, the use of methylation-based scores and sequencing technology could provide important insights into epigenetic gestational age and uncovering more genomic regions where methylation is affected. Studies examining the impact of other exposures on methylation, including pesticides, alcohol, and other chemicals are also warranted.
Collapse
Affiliation(s)
- Michael Mortillo
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| |
Collapse
|
8
|
Yan Y, Guo F, Liu K, Ding R, Wang Y. The effect of endocrine-disrupting chemicals on placental development. Front Endocrinol (Lausanne) 2023; 14:1059854. [PMID: 36896182 PMCID: PMC9989293 DOI: 10.3389/fendo.2023.1059854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) or endocrine disruptors are substances that are either naturally occurring or artificial and are released into the natural environment. Humans are exposed to EDCs through ingestion, inhalation, and skin contact. Many everyday household items, such as plastic bottles and containers, the liners of metal food cans, detergents, flame retardants, food, gadgets, cosmetics, and pesticides, contain endocrine disruptors. Each hormone has a unique chemical makeup and structural attributes. The way that endocrine hormones connect to receptors is described as a "lock and key" mechanism, with each hormone serving as the key (lock). This mechanism is enabled by the complementary shape of receptors to their hormone, which allows the hormone to activate the receptors. EDCs are described as exogenous chemicals or compounds that have a negative impact on organisms' health by interacting with the functioning of the endocrine system. EDCs are associated with cancer, cardiovascular risk, behavioural disorders, autoimmune abnormalities, and reproductive disorders. EDCs exposure in humans is highly harmful during critical life stages. Nonetheless, the effect of EDCs on the placenta is often underestimated. The placenta is especially sensitive to EDCs due to its abundance of hormone receptors. In this review, we evaluated the most recent data on the effects of EDCs on placental development and function, including heavy metals, plasticizers, pesticides, flame retardants, UV filters and preservatives. The EDCs under evaluation have evidence from human biomonitoring and are found in nature. Additionally, this study indicates important knowledge gaps that will direct future research on the topic.
Collapse
Affiliation(s)
- Yan Yan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Fengjun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rixin Ding
- Department of Cardiovascular Medicine, Changchun Central Hospital, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Yichao Wang,
| |
Collapse
|
9
|
Michael T, Kohn E, Daniel S, Hazan A, Berkovitch M, Brik A, Hochwald O, Borenstein-Levin L, Betser M, Moskovich M, Livne A, Keidar R, Rorman E, Groisman L, Weiner Z, Rabin AM, Solt I, Levy A. Prenatal exposure to heavy metal mixtures and anthropometric birth outcomes: a cross-sectional study. Environ Health 2022; 21:139. [PMID: 36581953 PMCID: PMC9798586 DOI: 10.1186/s12940-022-00950-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Numerous studies have suggested significant associations between prenatal exposure to heavy metals and newborn anthropometric measures. However, little is known about the effect of various heavy metal mixtures at relatively low concentrations. Hence, this study aimed to investigate associations between prenatal exposures to a wide range of individual heavy metals and heavy metal mixtures with anthropometric measures of newborns. METHODS We recruited 975 mother-term infant pairs from two major hospitals in Israel. Associations between eight heavy metals (arsenic, cadmium, chromium, mercury, nickel, lead, selenium, and thallium) detected in maternal urine samples on the day of delivery with weight, length, and head circumference at birth were estimated using linear and Bayesian kernel machine regression (BKMR) models. RESULTS Most heavy metals examined in our study were observed in lower concentrations than in other studies, except for selenium. In the linear as well as the BKMR models, birth weight and length were negatively associated with levels of chromium. Birth weight was found to be negatively associated with thallium and positively associated with nickel. CONCLUSION By using a large sample size and advanced statistical models, we could examine the association between prenatal exposure to metals in relatively low concentrations and anthropometric measures of newborns. Chromium was suggested to be the most influential metal in the mixture, and its associations with birth weight and length were found negative. Head circumference was neither associated with any of the metals, yet the levels of metals detected in our sample were relatively low. The suggested associations should be further investigated and could shed light on complex biochemical processes involved in intrauterine fetal development.
Collapse
Affiliation(s)
- Tal Michael
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Beersheba, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sharon Daniel
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Beersheba, Israel
- Clalit Health Services, Southern District, Beer-Sheva, Israel
| | - Ariela Hazan
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anna Brik
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ori Hochwald
- Neonatal Intensive Care Unit, Rambam Health Care Campus, and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Liron Borenstein-Levin
- Neonatal Intensive Care Unit, Rambam Health Care Campus, and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Moshe Betser
- Delivery Rooms and Maternity Ward, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Miki Moskovich
- Delivery Rooms and Maternity Ward, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ayelet Livne
- Neonatal Intensive Care Unit, Shamir (Assaf Harofeh) Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rimona Keidar
- Neonatal Intensive Care Unit, Shamir (Assaf Harofeh) Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Efrat Rorman
- National Public Health Laboratory, Ministry of Health, Tel-Aviv, Israel
| | - Luda Groisman
- National Public Health Laboratory, Ministry of Health, Tel-Aviv, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, POB 9602, 31096, Haifa, Israel
| | - Adi Malkoff Rabin
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, POB 9602, 31096, Haifa, Israel
| | - Ido Solt
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, POB 9602, 31096, Haifa, Israel.
| | - Amalia Levy
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Beersheba, Israel
- Environment and Health Epidemiology Research Center, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
10
|
Obasi CN, Frazzoli C, Orisakwe OE. Heavy metals and metalloids exposure and in vitro fertilization: Critical concerns in human reproductive medicine. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1037379. [PMID: 36478891 PMCID: PMC9720145 DOI: 10.3389/frph.2022.1037379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Exposures to heavy metals and metalloids have been associated with decreased fecundity and fertility in couples conceiving via assisted reproduction. Heavy metals and metalloids can alter the homeostasis of critical hormones controlling sexual maturation by binding to critical hormones and receptors. This may disrupt the time course of sexual maturation directly or indirectly affecting reproductive competence in males and females. The present review aims to provide a summarized overview of associations between heavy metal exposure, reproductive concerns, and IVF outcomes. A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) in Google Scholar, Scopus, EMBASE and PubMed databases. Initial search produced 1,351 articles from which 30 articles were eligible to be included in the systematic review. From our results, 16 articles reported associations between selected heavy metals and IVF outcomes, while 14 articles summarized the role of heavy metals in reproductive concerns. For the studies on IVF outcomes, different human samples were examined for heavy metals. Heavy metals and metalloids (Pb, Hg, Cd, Cr, Mn, As) correlated negatively with oocyte fertilization/pregnancy rates in hair, follicular fluid, serum, urine and seminal plasma samples, while Cd and Hg in whole blood samples showed no associations. For the studies on reproductive concerns, high levels of heavy metals/metalloids were implicated in the following conditions: infertility (Cd, Pb, Ba, U), spontaneous abortion/miscarriage (Pb, Cd, Sb), congenital heart disease (Al, Mg, Cd), PCOS (As, Cd, Hg, Pb), endometriosis (Pb) and uterine leiomyomata (Hg). Taken together, the results of our study suggest that the impact of heavy metals and metalloids exposure on reproductive health may contribute to the failure rates of in vitro fertilization.
Collapse
Affiliation(s)
- Cecilia Nwadiuto Obasi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Nigeria
| | - Chiara Frazzoli
- Department for Cardiovascular, Dysmetabolic and Aging-Associated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Orish Ebere Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Nigeria
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
11
|
Bock SL, Smaga CR, McCoy JA, Parrott BB. Genome-wide DNA methylation patterns harbour signatures of hatchling sex and past incubation temperature in a species with environmental sex determination. Mol Ecol 2022; 31:5487-5505. [PMID: 35997618 PMCID: PMC9826120 DOI: 10.1111/mec.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Conservation of thermally sensitive species depends on monitoring organismal and population-level responses to environmental change in real time. Epigenetic processes are increasingly recognized as key integrators of environmental conditions into developmentally plastic responses, and attendant epigenomic data sets hold potential for revealing cryptic phenotypes relevant to conservation efforts. Here, we demonstrate the utility of genome-wide DNA methylation (DNAm) patterns in the face of climate change for a group of especially vulnerable species, those with temperature-dependent sex determination (TSD). Due to their reliance on thermal cues during development to determine sexual fate, contemporary shifts in temperature are predicted to skew offspring sex ratios and ultimately destabilize sensitive populations. Using reduced-representation bisulphite sequencing, we profiled the DNA methylome in blood cells of hatchling American alligators (Alligator mississippiensis), a TSD species lacking reliable markers of sexual dimorphism in early life stages. We identified 120 sex-associated differentially methylated cytosines (DMCs; FDR < 0.1) in hatchlings incubated under a range of temperatures, as well as 707 unique temperature-associated DMCs. We further developed DNAm-based models capable of predicting hatchling sex with 100% accuracy (in 20 training samples and four test samples) and past incubation temperature with a mean absolute error of 1.2°C (in four test samples) based on the methylation status of 20 and 24 loci, respectively. Though largely independent of epigenomic patterning occurring in the embryonic gonad during TSD, DNAm patterns in blood cells may serve as nonlethal markers of hatchling sex and past incubation conditions in conservation applications. These findings also raise intriguing questions regarding tissue-specific epigenomic patterning in the context of developmental plasticity.
Collapse
Affiliation(s)
- Samantha L. Bock
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Christopher R. Smaga
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Jessica A. McCoy
- Department of BiologyCollege of CharlestonCharlestonSouth CarolinaUSA
| | - Benjamin B. Parrott
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| |
Collapse
|
12
|
Issah I, Arko-Mensah J, Rozek LS, Rentschler K, Agyekum TP, Dwumoh D, Batterman S, Robins TG, Fobil JN. Association between global DNA methylation (LINE-1) and occupational particulate matter exposure among informal electronic-waste recyclers in Ghana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2406-2424. [PMID: 34404291 DOI: 10.1080/09603123.2021.1969007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
This study examined the associations between PM (2.5 and 10) and global DNA methylation among 100 e-waste workers and 51 non-e-waste workers serving as controls. Long interspersed nucleotide repetitive elements-1 (LINE-1) was measured by pyrosequencing. Personal PM2.5 and PM10 were measured over a 4-hour work-shift using real-time particulate monitors incorporated into a backpack . Linear regression models were used to assess the association between PM and LINE-1 DNA methylation. The concentrations of PM2.5 and PM10 were significantly higher among the e-waste workers than the controls (77.32 vs 34.88, p < 0.001 and 210.21 vs 121.92, p < 0.001, respectively). PM2.5 exposure was associated with increased LINE-1 CpG2 DNA methylation (β = 0.003; 95% CI; 0.001, 0.006; p = 0.022) but not with the average of all 4 CpG sites of LINE-1. In summary, high levels of PM2.5 exposure was associated with increased levels of global DNA methylation in a site-specific manner.
Collapse
Affiliation(s)
- Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katie Rentschler
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Duah Dwumoh
- Department of Biostatistics, University of Ghana School of Public Health, Legon, Ghana
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| |
Collapse
|
13
|
Kumar S, Sharma A, Sedha S. Occupational and environmental mercury exposure and human reproductive health - a review. J Turk Ger Gynecol Assoc 2022; 23:199-210. [PMID: 36065987 PMCID: PMC9450922 DOI: 10.4274/jtgga.galenos.2022.2022-2-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Mercury is a toxic heavy metal. Humans are exposed to mercury through several sources including environmental, occupational, contaminated food and water and from mercury-containing dental amalgam. Mercury exposure is known to harm the nervous system profoundly, and have a negative impact on digestive and immune systems, and other organs. To review and discuss the effect of mercury exposure through environmental or occupational routes on human reproduction, pregnancy, and its outcome. Published information about the potential toxic effects of mercury on human reproduction were collected and summarized. Literature was identified by systematic search using relevant keywords. Literature review revealed a number of negative impacts of mercury on human reproduction. These included effects on semen quality, including reduced sperm count, motility, and changes in morphology that may reduce fertility potential. There may also be an effect in changing reproductive hormone levels. Mercury exposure might also affect pregnancy but the data concerning mercury effects on female reproduction are limited except for some data about mercury exposure and poor pregnancy outcomes. Available data indicate that mercury exposure may have a toxicity effect on reproductive potential, especially in males. Prenatal mercury exposure may affect pregnancy or its outcome and this appears to be dependent upon dose, duration, and timing of exposure. Nutritional status of exposed individual might also influence the impact of mercury.
Collapse
Affiliation(s)
- Sunil Kumar
- National Institute of Occupational Health, Gujarat, India
| | - Anupama Sharma
- National Institute of Occupational Health, Gujarat, India
| | - Sapna Sedha
- Department of Biotechnology, Dr. Hari Singh Gour University, Madhya Pradesh, India
| |
Collapse
|
14
|
Cuomo D, Foster MJ, Threadgill D. Systemic review of genetic and epigenetic factors underlying differential toxicity to environmental lead (Pb) exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35583-35598. [PMID: 35244845 PMCID: PMC9893814 DOI: 10.1007/s11356-022-19333-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 05/03/2023]
Abstract
Lead (Pb) poisoning is a major public health concern in environmental justice communities of the USA and in many developing countries. There is no identified safety threshold for lead in blood, as low-level Pb exposures can lead to severe toxicity in highly susceptible individuals and late onset of diseases from early-life exposure. However, identifying "susceptibility genes" or "early exposure biomarkers" remains challenging in human populations. There is a considerable variation in susceptibility to harmful effects from Pb exposure in the general population, likely due to the complex interplay of genetic and/or epigenetic factors. This systematic review summarizes current state of knowledge on the role of genetic and epigenetic factors in determining individual susceptibility in response to environmental Pb exposure in humans and rodents. Although a number of common genetic and epigenetic factors have been identified, the reviewed studies, which link these factors to various adverse health outcomes following Pb exposure, have provided somewhat inconsistent evidence of main health effects. Acknowledging the compelling need for new approaches could guide us to better characterize individual responses, predict potential adverse outcomes, and identify accurate and usable biomarkers for Pb exposure to improve mitigation therapies to reduce future adverse health outcomes of Pb exposure.
Collapse
Affiliation(s)
- Danila Cuomo
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, USA.
| | - Margaret J Foster
- Medical Sciences Library, Texas A&M University, College Station, TX, USA
| | - David Threadgill
- Department of Molecular and Cellular Medicine and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
15
|
Joshi S, Garlapati C, Aneja R. Epigenetic Determinants of Racial Disparity in Breast Cancer: Looking beyond Genetic Alterations. Cancers (Basel) 2022; 14:cancers14081903. [PMID: 35454810 PMCID: PMC9025441 DOI: 10.3390/cancers14081903] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary A substantial disparity in breast cancer incidence and mortality exists between African American (AA) and European American (EA) women. However, the basis for these disparities is poorly understood. In this article, we describe that gene–environment interactions mediated through epigenetic modifications may play a significant role in racial disparities in BC incidence and outcomes. Our in silico analyses and an in-depth literature survey suggest that there exists a significant difference in epigenetic patterns between AA and EA women with breast cancer. Herein, we describe the environmental factors that contribute to these epigenetic changes, which may underlie the disparate racial burden in patients with breast cancer. We suggest that AA women with higher basal epigenetic changes, may have higher pre-disposition to cancer onset, and an aggressive disease course. Pre-existing racial differences in epigenetic profiles of breast tissues raises the possibility of examining these profiles for early diagnosis. Abstract Breast cancer (BC) is the most commonly diagnosed cancer in women. Despite advancements in BC screening, prevention, and treatment, BC incidence and mortality remain high among African American (AA) women. Compared with European American (EA) women, AA women tend to be diagnosed with more advanced and aggressive tumors and exhibit worse survival outcomes. Most studies investigating the determinants of racial disparities in BC have focused on genetic factors associated with African ancestry. However, various environmental and social stressors over an individual’s life course can also shape racial stratification in BC. These social and environmental exposures result in long-term changes in gene expression mediated by epigenetic mechanisms. Epigenetics is often portrayed as an intersection of socially patterned stress and genetic expression. The enduring nature of epigenetic changes makes them suitable for studying the effects of different environmental exposures over an individual’s life course on gene expression. The role of differential social and environmental exposures in racial disparities in BC suggests varied epigenetic profiles or signatures associated with specific BC subtypes in AA and EA women. These epigenetic profiles in EA and AA women could be used as biomarkers for early BC diagnosis and disease prognosis and may prove valuable for the development of targeted therapies for BC. This review article discusses the current state of knowledge regarding epigenetic differences between AA and EA women with BC. We also discuss the role of socio-environmental factors, including psychosocial stress, environmental toxicants, and dietary factors, in delineating the different epigenetic profiles in AA and EA patients with BC.
Collapse
Affiliation(s)
- Shriya Joshi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.J.); (C.G.)
| | | | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; (S.J.); (C.G.)
- Department of Clinical and Diagnostics Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: or
| |
Collapse
|
16
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
17
|
Global DNA Methylation in Cord Blood as a Biomarker for Prenatal Lead and Antimony Exposures. TOXICS 2022; 10:toxics10040157. [PMID: 35448418 PMCID: PMC9027623 DOI: 10.3390/toxics10040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023]
Abstract
DNA methylation is an epigenetic mechanism for gene expression modulation and can be used as a predictor of future disease risks. A prospective birth cohort study was performed to clarify the effects of neurotoxicants on child development, namely, the Tohoku Study of Child Development, in Japan. This study aimed to evaluate the association of prenatal exposure to five toxic metals—arsenic, cadmium, mercury, lead (Pb), antimony (Sb), and polychlorinated biphenyls (PCBs, N = 166)—with global DNA methylation in umbilical cord blood DNA. DNA methylation markers, 5-methyl-2′-deoxycytidine (mC) and 5-hydroxymethyl-2′-deoxycytidine (hmC), were determined using liquid chromatography-tandem mass spectrometry. The mC content in cord blood DNA was positively correlated with Pb and Sb levels (r = 0.435 and 0.288, respectively) but not with cord blood PCBs. We also observed significant positive correlations among Pb levels, maternal age, and hmC content (r = 0.155 and 0.243, respectively). The multiple regression analysis among the potential predictors demonstrated consistent positive associations between Pb and Sb levels and mC and hmC content. Our results suggest that global DNA methylation is a promising biomarker for prenatal exposure to Pb and Sb.
Collapse
|
18
|
Liu A, Li X, Hao Z, Cao J, Li H, Sun M, Zhang Z, Liang R, Zhang H. Alterations of DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells induced by benzo[a]pyrene. Toxicol Ind Health 2022; 38:127-138. [PMID: 35193440 DOI: 10.1177/07482337211069233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benzo[a]pyrene (B[a]P) is a known human carcinogen and plays a major function in the initiation of lung cancer at its first proximity. However, the underlying molecular mechanisms are less well understood. In this study, we investigated the impact of B[a]P treatment on the DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells (16HBEs), and provide scientific evidence for the mechanism study on the carcinogenesis of B[a]P. We treated 16HBEs with DMSO or concentrations of B[a]P at 1, 2, and 5 mmol/L for 24 h, observed the morphological changes, determined the cell viability, DNA methylation, and mRNA levels of CYP1A1, GSTP1, and GSTM1. Compared to the DMSO controls, B[a]P treatment had significantly increased the neoplastic cell number and cell viability in 16HBEs at all three doses (1, 2, and 5 mmol/L), and had significantly reduced the CYP1A1 and GSTP1 DNA promoter methylation levels. Following B[a]P treatment, the GSTM1 promoter methylation level in 16HBEs was profoundly reduced at low dose group compared to the DMSO controls, yet it was significantly increased at both middle and high dose groups. The mRNA levels of CYP1A1, GSTP1, and GSTM1 were significantly decreased in 16HBEs following B[a]P treatment at all three doses. The findings demonstrate that B[a]P promoted cell proliferation in 16HBEs, which was possibly related to the altered DNA methylations and the inhibited mRNA levels in CYP1A1, GSTP1, and GSTM1.
Collapse
Affiliation(s)
- Aixiang Liu
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Health Information Management, 74648Shanxi Medical University Fenyang College, Fenyang, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, 442190Taiyuan Iron and Steel Co Ltd, Taiyuan, Shanxi, China
| | - Zhongsuo Hao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huan Li
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Sun
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
19
|
Pan J, Li X, Wei Y, Ni L, Xu B, Deng Y, Yang T, Liu W. Advances on the Influence of Methylmercury Exposure during Neurodevelopment. Chem Res Toxicol 2022; 35:43-58. [PMID: 34989572 DOI: 10.1021/acs.chemrestox.1c00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mercury (Hg) is a toxic heavy-metal element, which can be enriched in fauna and flora and transformed into methylmercury (MeHg). MeHg is a widely distributed environmental pollutant that may be harmful to fish-eating populations through enrichment of aquatic food chains. The central nervous system is a primary target of MeHg. Embryos and infants are more sensitive to MeHg, and exposure to MeHg during gestational feeding can significantly impair the homeostasis of offspring, leading to long-term neurodevelopmental defects. At present, MeHg-induced neurodevelopmental toxicity has become a hotspot in the field of neurotoxicology, but its mechanisms are not fully understood. Some evidence point to oxidative damage, excitotoxicity, calcium ion imbalance, mitochondrial dysfunction, epigenetic changes, and other molecular mechanisms that play important roles in MeHg-induced neurodevelopmental toxicity. In this review, advances in the study of neurodevelopmental toxicity of MeHg exposure during pregnancy and the molecular mechanisms of related pathways are summarized, in order to provide more scientific basis for the study of neurodevelopmental toxicity of MeHg.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| |
Collapse
|
20
|
Methylmercury and Polycyclic Aromatic Hydrocarbons in Mediterranean Seafood: A Molecular Anthropological Perspective. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eating seafood has numerous health benefits; however, it constitutes one of the main sources of exposure to several harmful environmental pollutants, both of anthropogenic and natural origin. Among these, methylmercury and polycyclic aromatic hydrocarbons give rise to concerns related to their possible effects on human biology. In the present review, we summarize the results of epidemiological investigations on the genetic component of individual susceptibility to methylmercury and polycyclic aromatic hydrocarbons exposure in humans, and on the effects that these two pollutants have on human epigenetic profiles (DNA methylation). Then, we provide evidence that Mediterranean coastal communities represent an informative case study to investigate the potential impact of methylmercury and polycyclic aromatic hydrocarbons on the human genome and epigenome, since they are characterized by a traditionally high local seafood consumption, and given the characteristics that render the Mediterranean Sea particularly polluted. Finally, we discuss the challenges of a molecular anthropological approach to this topic.
Collapse
|
21
|
Aryl Hydrocarbon Receptor Repressor Is Hypomethylated in Psoriasis and Promotes Psoriasis-like Inflammation in HaCaT Cells. Int J Mol Sci 2021; 22:ijms222312715. [PMID: 34884515 PMCID: PMC8657998 DOI: 10.3390/ijms222312715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
It is known that DNA hypomethylation of aryl hydrocarbon receptor repressor (AhRR), one of the epigenetic markers of environmental pollutants, causes skin diseases. However, the function and mechanisms are still unknown. We aimed to determine whether AhRR is hypomethylated in PBMC of psoriasis patients, as well as to examine the expression of psoriasis-related inflammatory cytokines and antimicrobial peptides after 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment in HaCaT cells overexpressing or silencing AhRR. AhRR was determined by qPCR, Western blot, immunohistochemistry, and immunocytochemistry in skin tissue and HaCaT cells. DNA methylation of AhRR was performed by Infinium Human Methylation450 BeadChip in PBMC of psoriasis patients and methylation-specific PCR (MSP) in HaCaT cells. NF-κB pp50 translocation and activity were performed by immunocytochemistry and luciferase reporter assay, respectively. We verified AhRR gene expression in the epidermis from psoriasis patients and healthy controls. AhRR hypomethylation in PBMC of psoriasis patients and pAhRR-HaCaT cells was confirmed. The expression level of AhRR was increased in both TCDD-treated HaCaT cells and pAhRR-HaCaT cells. NF-κB pp50 translocation and activity increased with TCDD. Our results showed that AhRR was hypomethylated and overexpressed in the lesional skin of patients with psoriasis, thereby increasing AhRR gene expression and regulating pro-inflammatory cytokines through the NF-κB signaling pathway in TCDD-treated HaCaT cells.
Collapse
|
22
|
Issah I, Arko-Mensah J, Rozek LS, Zarins KR, Agyekum TP, Dwomoh D, Basu N, Batterman S, Robins TG, Fobil JN. Global DNA (LINE-1) methylation is associated with lead exposure and certain job tasks performed by electronic waste workers. Int Arch Occup Environ Health 2021; 94:1931-1944. [PMID: 34148106 DOI: 10.1007/s00420-021-01733-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study assessed the associations between blood and urine levels of toxic metals; cadmium (Cd) and lead (Pb), and methylation levels of the LINE-1 gene among e-waste and control populations in Ghana. METHODS The study enrolled 100 male e-waste workers and 51 all-male non-e-waste workers or controls. The concentrations of Cd and Pb were measured in blood and urine using inductively coupled plasma mass spectrometry, while LINE1 methylation levels were assessed by pyrosequencing of bisulfite-converted DNA extracted from whole blood. Single and multiple metals linear regression models were used to determine the associations between metals and LINE1 DNA methylation. RESULTS Blood lead (BPb) and urine lead (UPb) showed higher median concentrations among the e-waste workers than the controls (76.82 µg/L vs 40.25 µg/L, p ≤ 0.001; and 6.89 µg/L vs 3.43 µg/L, p ≤ 0.001, respectively), whereas blood cadmium (BCd) concentration was lower in the e-waste workers compared to the controls (0.59 µg/L vs 0.81 µg/L, respectively, p = 0.003). There was no significant difference in LINE1 methylation between the e-waste and controls (85.16 ± 1.32% vs 85.17 ± 1.11%, p = 0.950). In our single metal linear regression models, BPb was significantly inversely associated with LINE1 methylation in the control group (βBPb = - 0.027, 95% CI - 0.045, - 0.010, p = 0.003). In addition, a weak association between BPb and LINE1 was observed in the multiple metals analysis in the e-waste worker group (βBPb = - 0.005, 95% CI - 0.011, 0.000, p = 0.058). CONCLUSION Continuous Pb exposure may interfere with LINE1 methylation, leading to epigenetic alterations, thus serving as an early epigenetic marker for future adverse health outcomes.
Collapse
Affiliation(s)
- Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana.
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Katie R Zarins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana
| |
Collapse
|
23
|
Fu X, He J, Zheng D, Yang X, Wang P, Tuo F, Wang L, Li S, Xu J, Yu J. Association of endocrine disrupting chemicals levels in serum, environmental risk factors, and hepatic function among 5- to 14-year-old children. Toxicology 2021; 465:153011. [PMID: 34715266 DOI: 10.1016/j.tox.2021.153011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) might increase the risk of childhood diseases by disrupting hormone-mediated processes that are critical for growth and development during childhood, however, the association among the exposure level of EDCs such as Nonylphenol (NP), Bisphenol A (BPA), Dimethyl phthalate (DMP) in children and environmental risk factors, as well as hepatic function has not been elaborated. This study aimed to discuss this interesting relationship among NP, BPA, DMP concentrations in serum, environmental risk factors, hepatic function of 5- to 14-year-old children in industrial zone, residential zone and suburb in northern district of Guizhou Province, China. In Zunyi city, 1006 children participated in cross-sectional health assessments from July to August 2018, and their parents completed identical questionnaires on the environmental risk factors of EDCs exposure to mothers and children. Serum NP, BPA and DMP concentrations were measured by high performance liquid chromatography (HPLC). Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), AST/ALT, total bilirubin (TBIL), direct bilirubin (DBIL) and indirect bilirubin (IBIL) were detected with automatic biochemical analyzer. The median concentrations of serum NP, BPA, and DMP in the participants were 45.85 ng/mL, 26.31 ng/mL and 31.62 ng/mL, respectively, which were higher than the environmental concentration limits of the U.S. National Environmental Protection Agency (EPA). Hair gels used during pregnancy, types of domestic drinking water, nail polish and cosmetics used by children were significantly positive correlated with serum NP concentration (P < 0.05). Gender, feeding pattern, plastic water cup used during pregnancy, hair spray and perfume use for children, duration of children birth, materials for baby bottle or cup and ways to plastic products were significantly positively correlated with serum BPA concentration (P < 0.05). Gender, perms used during pregnancy, hair spray and perfume use for children, using plastic lunch box during pregnancy, duration of children birth, exposure to pesticides, parents' occupations were significantly positively correlated with serum DMP concentrations (P < 0.05). Serum NP (β = 0.296, P = 0.036) and DMP (β = 0.316, P = 0.026) concentrations and TBIL level were significantly positively correlated. Serum NP concentration and the levels of IBIL (β = 0.382, P = 0.006) are significantly positively correlated. Cosmetics used during pregnancy significantly increased AST level (β = 2.641, P = 0.021). There was a positive correlation between the frequency of hair spray and perfume use for children and the AST (β = 4.241, P = 0.022). NP, BPA and DMP, which were commonly detected in the serum of children aged 5-14 years old in Zunyi City, Northern Guizhou Province, China, were closely related to the environmental risk factors of exposure environment during pregnancy, infancy and school age. Exposure to NP, BPA and DMP would have negative effects on hepatic function, and these effects showed differences in gender and geographical location. Notably,The relationships were more evident in girls than in boys.
Collapse
Affiliation(s)
- Xiangjun Fu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie He
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Deliang Zheng
- Department of Laboratory Medicine, Honghuagang District People's Hospital, Zunyi, Guizhou, 563000, PR China
| | - Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, 563000, PR China
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - FangXu Tuo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lin Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Shixu Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
24
|
Childebayeva A, Goodrich JM, Chesterman N, Leon-Velarde F, Rivera-Ch M, Kiyamu M, Brutsaert TD, Bigham AW, Dolinoy DC. Blood lead levels in Peruvian adults are associated with proximity to mining and DNA methylation. ENVIRONMENT INTERNATIONAL 2021; 155:106587. [PMID: 33940396 PMCID: PMC9903334 DOI: 10.1016/j.envint.2021.106587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/05/2023]
Abstract
BACKGROUND Inorganic lead (Pb) is common in the environment, and is toxic to neurological, renal, and cardiovascular systems. Pb exposure influences the epigenome with documented effects on DNA methylation (DNAm). We assessed the impact of low levels of Pb exposure on DNAm among non-miner individuals from two locations in Peru: Lima, the capital, and Cerro de Pasco, a highland mining town, to study the effects of Pb exposure on physiological outcomes and DNAm. METHODS Pb levels were measured in whole blood (n = 305). Blood leukocyte DNAm was determined for 90 DNA samples using the Illumina MethylationEPIC chip. An epigenome-wide association study was performed to assess the relationship between Pb and DNAm. RESULTS Individuals from Cerro de Pasco had higher Pb than individuals from Lima (p-value = 2.00E-16). Males had higher Pb than females (p-value = 2.36E-04). Pb was positively associated with hemoglobin (p-value = 8.60E-04). In Cerro de Pasco, blood Pb decreased with the distance from the mine (p-value = 0.04), and association with soil Pb was approaching significance (p-value = 0.08). We identified differentially methylated positions (DMPs) associated with genes SOX18, ZMIZ1, and KDM1A linked to neurological function. We also found 45 differentially methylated regions (DMRs), seven of which were associated with genes involved in metal ion binding and nine to neurological function and development. CONCLUSIONS Our results demonstrate that even low levels of Pb can have a significant impact on the body including changes to DNAm. We report associations between Pb and hemoglobin, Pb and distance from mining, and between blood and soil Pb. We also report associations between loci- and region-specific DNAm and Pb.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany.
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nathan Chesterman
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fabiola Leon-Velarde
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Rivera-Ch
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, CA 90095, USA
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Weyde KVF, Olsen AK, Duale N, Kamstra JH, Skogheim TS, Caspersen IH, Engel SM, Biele G, Xia Y, Meltzer HM, Aase H, Villanger GD. Gestational blood levels of toxic metal and essential element mixtures and associations with global DNA methylation in pregnant women and their infants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147621. [PMID: 34000534 DOI: 10.1016/j.scitotenv.2021.147621] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/24/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pregnant women and their fetuses are exposed to multiple toxic metals that together with variations in essential element levels may alter epigenetic regulation, such as DNA methylation. OBJECTIVES The aim of the study was to investigate the associations between gestational levels of toxic metals and essential elements and mixtures thereof, with global DNA methylation levels in pregnant women and their newborn children. METHODS Using 631 mother-child pairs from a prospective birth cohort (The Norwegian Mother, Father and Child Cohort Study), we measured maternal blood concentration (gestation week ~18) of five toxic metals and seven essential elements. We investigated associations as individual exposures and two-way interactions, using elastic net regression, and total mixture, using quantile g-computation, with blood levels of 5-methylcytocine (5mC) and 5-hydroxymethylcytosine (5hmC) in mothers during pregnancy and their newborn children (cord blood). Multiple testing was adjusted for using the Benjamini and Hochberg false discovery rate (FDR) approach. RESULTS The most sensitive marker of DNA methylation appeared to be 5mC levels. In pregnant mothers, elastic net regression indicated associations between 5mC and selenium and lead (non-linear), while in newborns results indicated relationships between maternal selenium, cobalt (non-linear) and mercury and 5mC, as well as copper (non-linear) and 5hmC levels. Several possible two-way interactions were identified (e.g. arsenic and mercury, and selenium and maternal smoking in newborns). None of these findings met the FDR threshold for multiple testing. No net effect was observed in the joint (mixture) exposure-approach using quantile g-computation. CONCLUSION We identified few associations between gestational levels of several toxic metals and essential elements and global DNA methylation in pregnant mothers and their newborn children. As DNA methylation dysregulation might be a key mechanism in disease development and thus of high importance for public health, our results should be considered as important candidates to investigate in future studies.
Collapse
Affiliation(s)
| | | | - Nur Duale
- Norwegian Institute of Public Health, Oslo, Norway
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | | | | | - Stephanie M Engel
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Guido Biele
- Norwegian Institute of Public Health, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Heidi Aase
- Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
26
|
Shiek SS, Mani MS, Kabekkodu SP, Dsouza HS. Health repercussions of environmental exposure to lead: Methylation perspective. Toxicology 2021; 461:152927. [PMID: 34492314 DOI: 10.1016/j.tox.2021.152927] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Lead (Pb) exposure has been a major public health concern for a long time now due to its permanent adverse effects on the human body. The process of lead toxicity has still not been fully understood, but recent advances in Omics technology have enabled researchers to evaluate lead-mediated alterations at the epigenome-wide level. DNA methylation is one of the widely studied and well-understood epigenetic modifications. Pb has demonstrated its ability to induce not just acute deleterious health consequences but also alters the epi-genome such that the disease manifestation happens much later in life as supported by Barkers Hypothesis of the developmental origin of health and diseases. Furthermore, these alterations are passed on to the next generation. Based on previous in-vivo, in-vitro, and human studies, this review provides an insight into the role of Pb in the development of several human disorders.
Collapse
Affiliation(s)
- Sadiya Sadiq Shiek
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Monica Shirley Mani
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Herman S Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
27
|
Zhang T, Ru YF, Wu B, Dong H, Chen L, Zheng J, Li J, Wang X, Wang Z, Wang X, Shen X, Wu J, Qian J, Miao M, Gu Y, Shi H. Effects of low lead exposure on sperm quality and sperm DNA methylation in adult men. Cell Biosci 2021; 11:150. [PMID: 34344450 PMCID: PMC8335892 DOI: 10.1186/s13578-021-00665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022] Open
Abstract
INSTRUCTION Lead (Pb) exposure is a risk factor for male infertility, but the epigenetic changes in sperm DNAattributable to lead exposure is poorly defined. METHODS In this study, we investigated whether low Pb exposure (< 10 µg/dL) affects the sperm quality. Blood, urine, and semen samples of 297 men of childbearing age were analyzed for all relevant parameters. Based on the blood Pb level (BLL), participants were allocated to RL (0-2.5 µg/dL), RM (2.5-5 µg/dL), and RH (5-10 µg/dL) groups. The 5-methylcytosine and 5-hydroxymethylcytosine patterns in the sperm DNA were identified using methylated DNA immunoprecipitation and hydroxymethylated DNA immunoprecipitation sequencing. RESULTS The non-progressive motility (NP) was significantly increased and associated with global hypomethylation of sperm DNA in the RH group compared with the RL group, indicating that aberrant sperm methylation due to low Pb exposure is possibly associated with reduced sperm motility. The hypomethylated promoter regions were primarily enriched in the calcium (Ca) homeostasis pathway. Further, the interaction between Ca and Pb was associated with sperm rapid progressive motility and asthenospermia risk, although no significant methylation abnormality was observed in those with BLL < 5 µg/dL. When BLL was > 5 µg/dL or when predicting NP, no significant Pb-Ca interaction was observed. DISCUSSION Overall, our results indicate that aberrant DNA methylation of the Ca homeostasis pathway, induced by low Pb exposure, is the potential cause for reduced sperm velocity.
Collapse
Affiliation(s)
- Tiancheng Zhang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Yan Fei Ru
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Bin Wu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Haiyan Dong
- Shanghai Kelin Institute of clinical bioinformatics, Shanghai, China
| | - Liang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Jufen Zheng
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Jianhui Li
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Xin Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Zhikai Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Xuemei Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Xiaorong Shen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Jun Wu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Jun Qian
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.
| | - Maohua Miao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.
| | - Yihua Gu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.
| | - Huijuan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Huang YF, Chang CH, Chen PJ, Lin IH, Tsai YA, Chen CF, Wang YC, Huang WY, Tsai MS, Chen ML. Prenatal Bisphenol a Exposure, DNA Methylation, and Low Birth Weight: A Pilot Study in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116144. [PMID: 34200176 PMCID: PMC8201193 DOI: 10.3390/ijerph18116144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/22/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Prenatal exposure to bisphenol A (BPA) may increase the risk of abnormal birth outcomes, and DNA methylation might mediate these adverse effects. This study aimed to investigate the effects of maternal BPA exposure on maternal and fetal DNA methylation levels and explore whether epigenetic changes are related to the associations between BPA and low birth weight. We collected urine and blood samples originating from 162 mother-infant pairs in a Taiwanese cohort study. We measured DNA methylation using the Illumina Infinium HumanMethylation 450 BeadChip in 34 maternal blood samples with high and low BPA levels based on the 75th percentile level (9.5 μg/g creatinine). Eighty-seven CpGs with the most differentially methylated probes possibly interacting with BPA exposure or birth weight were selected using two multiple regression models. Ingenuity pathway analysis (IPA) was utilized to narrow down 18 candidate CpGs related to disease categories, including developmental disorders, skeletal and muscular disorders, skeletal and muscular system development, metabolic diseases, and lipid metabolism. We then validated these genes by pyrosequencing, and 8 CpGs met the primer design score requirements in 82 cord blood samples. The associations among low birth weight, BPA exposure, and DNA methylation were analyzed. Exposure to BPA was associated with low birth weight. Analysis of the epigenome-wide findings did not show significant associations between BPA and DNA methylation in cord blood of the 8 CpGs. However, the adjusted odds ratio for the dehydrogenase/reductase member 9 (DHRS9) gene, at the 2nd CG site, in the hypermethylated group was significantly associated with low birth weight. These results support a role of BPA, and possibly DHRS9 methylation, in fetal growth. However, additional studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 360, Taiwan
- Center for Chemical Hazards and Environmental Health Risk Research, National United University, Miaoli 360, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Huang Chang
- School of Public Health, Taipei Medical University, Taipei 110, Taiwan
| | - Pei-Jung Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - I-Hsuan Lin
- VYM Genome Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yen-An Tsai
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wei-Yun Huang
- Immuno Genomics Co., Ltd., Taipei 112, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Song Tsai
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 110, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
29
|
Wei X, Cai M, Jin L. The Function of the Metals in Regulating Epigenetics During Parkinson's Disease. Front Genet 2021; 11:616083. [PMID: 33603768 PMCID: PMC7884633 DOI: 10.3389/fgene.2020.616083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Parkinson's means Parkinson's disease, a chronic degenerative disease of central nervous system. The main area which is affected by this disease is motor system. Since it firstly founded by James Parkinson in his 1817 publication, nowadays, people still have lots of questions about this disease. This review mainly summarizes the epigenetics of Parkinson's. DNA methylation is one of the epigenetic mechanisms of Parkinson's. During the development of disease, global hypomethylation, and hypermethylation happen in different areas of patients. Another epigenetic mechanism is histone modification. People believe that some metals can induce Parkinson's disease by modulating epigenetic mechanisms. This review summarizes the relationships between different metals and Parkinson's disease. However, the specific roles of most metals in epigenetics are still unknown, which need further research.
Collapse
Affiliation(s)
- Xiangzhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Menghua Cai
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lifang Jin
- Department of Biological Sciences, Shaoxing University, Shaoxing, China
| |
Collapse
|
30
|
Cai M, Zhang X, He W, Zhang J. The Involvement of Metals in Alzheimer's Disease Through Epigenetic Mechanisms. Front Genet 2020; 11:614666. [PMID: 33363576 PMCID: PMC7753070 DOI: 10.3389/fgene.2020.614666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 12/03/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of dementia among neurodegenerative diseases. Two factors were hypothesized to be involved in the pathogenesis of AD, namely beta-amyloid cascade and tauopathy. At present, accumulating evidence suggest that epigenetics may be the missing linkage between genes and environment factors, providing possible clues to understand the etiology of the development of AD. In this article, we focus on DNA methylation and histone modification involved in AD and the environment factor of heavy metals’ contribution to AD, especially epigenetic mechanisms. If we can integrate information together, and that may find new potential targets for the treatment.
Collapse
Affiliation(s)
- Menghua Cai
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangjin Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei He
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianmin Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Nguyen U, Tinsley B, Sen Y, Stein J, Palacios Y, Ceballos A, Welch C, Nzenkue K, Penn A, Murphy L, Leodones K, Casiquin J, Ivory I, Ghenta K, Danziger K, Widman E, Newman J, Triplehorn M, Hindi Z, Mulligan K. Exposure to bisphenol A differentially impacts neurodevelopment and behavior in Drosophila melanogaster from distinct genetic backgrounds. Neurotoxicology 2020; 82:146-157. [PMID: 33309840 DOI: 10.1016/j.neuro.2020.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental chemical that has been linked to behavioral differences in children and shown to impact critical neurodevelopmental processes in animal models. Though data is emerging, we still have an incomplete picture of how BPA disrupts neurodevelopment; in particular, how its impacts may vary across different genetic backgrounds. Given the genetic tractability of Drosophila melanogaster, they present a valuable model to address this question. Fruit flies are increasingly being used for assessment of neurotoxicants because of their relatively simple brain structure and variety of measurable behaviors. Here we investigated the neurodevelopmental impacts of BPA across two genetic strains of Drosophila-w1118 (control) and the Fragile X Syndrome (FXS) model-by examining both behavioral and neuronal phenotypes. We show that BPA induces hyperactivity in larvae, increases repetitive grooming behavior in adults, reduces courtship behavior, impairs axon guidance in the mushroom body, and disrupts neural stem cell development in the w1118 genetic strain. Remarkably, for every behavioral and neuronal phenotype examined, the impact of BPA in FXS flies was either insignificant or contrasted with the phenotypes observed in the w1118 strain. This data indicates that the neurodevelopmental impacts of BPA can vary widely depending on genetic background and suggests BPA may elicit a gene-environment interaction with Drosophila fragile X mental retardation 1 (dFmr1)-the ortholog of human FMR1, which causes Fragile X Syndrome and is associated with autism spectrum disorder.
Collapse
Affiliation(s)
- U Nguyen
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - B Tinsley
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Y Sen
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Stein
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Y Palacios
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - A Ceballos
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - C Welch
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Nzenkue
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - A Penn
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - L Murphy
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Leodones
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Casiquin
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - I Ivory
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Ghenta
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Danziger
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - E Widman
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Newman
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - M Triplehorn
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Z Hindi
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States.
| |
Collapse
|
32
|
Lehle JD, McCarrey JR. Differential susceptibility to endocrine disruptor-induced epimutagenesis. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa016. [PMID: 33324495 PMCID: PMC7722801 DOI: 10.1093/eep/dvaa016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 05/08/2023]
Abstract
There is now considerable evidence indicating the potential for endocrine disrupting chemicals to alter the epigenome and for subsets of these epigenomic changes or "epimutations" to be heritably transmitted to offspring in subsequent generations. While there have been many studies indicating how exposure to endocrine disrupting chemicals can disrupt various organs associated with the body's endocrine systems, there is relatively limited information regarding the relative susceptibility of different specific organs, tissues, or cell types to endocrine disrupting chemical-induced epimutagenesis. Here we review available information about different organs, tissues, cell types, and/or cell lines which have been shown to be susceptible to specific endocrine disrupting chemical-induced epimutations. In addition, we discuss possible mechanisms that may be involved, or impacted by this tissue- or cell type-specific, differential susceptibility to different endocrine disrupting chemicals. Finally, we summarize available information indicating that certain periods of development display elevated susceptibility to endocrine disrupting chemical exposure and we describe how this may affect the extent to which germline epimutations can be transmitted inter- or transgenerationally. We conclude that cell type-specific differential susceptibility to endocrine disrupting chemical-induced epimutagenesis is likely to directly impact the extent to, or manner in, which endocrine disrupting chemical exposure initially induces epigenetic changes to DNA methylation and/or histone modifications, and how these endocrine disrupting chemical-induced epimutations can then subsequently impact gene expression, potentially leading to the development of heritable disease states.
Collapse
Affiliation(s)
- Jake D Lehle
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
33
|
Mirzaeyan P, Shokrzadeh M, Salehzadeh A, Ajamian F. Association of estrogen receptor 1 (ESR1) gene (rs2234693) polymorphism, ESR1 promoter methylation status, and serum heavy metals concentration, with breast cancer: A study on Iranian women population. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
34
|
Mustieles V, D'Cruz SC, Couderq S, Rodríguez-Carrillo A, Fini JB, Hofer T, Steffensen IL, Dirven H, Barouki R, Olea N, Fernández MF, David A. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. ENVIRONMENT INTERNATIONAL 2020; 144:105811. [PMID: 32866736 DOI: 10.1016/j.envint.2020.105811] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Human biomonitoring (HBM) studies have demonstrated widespread and daily exposure to bisphenol A (BPA). Moreover, BPA structural analogues (e.g. BPS, BPF, BPAF), used as BPA replacements, are being increasingly detected in human biological matrices. BPA and some of its analogues are classified as endocrine disruptors suspected of contributing to adverse health outcomes such as altered reproduction and neurodevelopment, obesity, and metabolic disorders among other developmental and chronic impairments. One of the aims of the H2020 European Human Biomonitoring Initiative (HBM4EU) is the implementation of effect biomarkers at large scales in future HBM studies in a systematic and standardized way, in order to complement exposure data with mechanistically-based biomarkers of early adverse effects. This review aimed to identify and prioritize existing biomarkers of effect for BPA, as well as to provide relevant mechanistic and adverse outcome pathway (AOP) information in order to cover knowledge gaps and better interpret effect biomarker data. A comprehensive literature search was performed in PubMed to identify all the epidemiologic studies published in the last 10 years addressing the potential relationship between bisphenols exposure and alterations in biological parameters. A total of 5716 references were screened, out of which, 119 full-text articles were analyzed and tabulated in detail. This work provides first an overview of all epigenetics, gene transcription, oxidative stress, reproductive, glucocorticoid and thyroid hormones, metabolic and allergy/immune biomarkers previously studied. Then, promising effect biomarkers related to altered neurodevelopmental and reproductive outcomes including brain-derived neurotrophic factor (BDNF), kisspeptin (KiSS), and gene expression of nuclear receptors are prioritized, providing mechanistic insights based on in vitro, animal studies and AOP information. Finally, the potential of omics technologies for biomarker discovery and its implications for risk assessment are discussed. To the best of our knowledge, this is the first effort to comprehensively identify bisphenol-related biomarkers of effect for HBM purposes.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephan Couderq
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | | | - Jean-Baptiste Fini
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Inger-Lise Steffensen
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Hubert Dirven
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Robert Barouki
- University Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France. Institut national de la santé et de la recherche médicale (INSERM, National Institute of Health & Medical Research) UMR S-1124, Paris, France
| | - Nicolás Olea
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
35
|
Juarez PD, Hood DB, Song MA, Ramesh A. Use of an Exposome Approach to Understand the Effects of Exposures From the Natural, Built, and Social Environments on Cardio-Vascular Disease Onset, Progression, and Outcomes. Front Public Health 2020; 8:379. [PMID: 32903514 PMCID: PMC7437454 DOI: 10.3389/fpubh.2020.00379] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity, diabetes, and hypertension have increased by epidemic proportions in recent years among African Americans in comparison to Whites resulting in significant adverse cardiovascular disease (CVD) disparities. Today, African Americans are 30% more likely to die of heart disease than Whites and twice as likely to have a stroke. The causes of these disparities are not yet well-understood. Improved methods for identifying underlying risk factors is a critical first step toward reducing Black:White CVD disparities. This article will focus on environmental exposures in the external environment and how they can lead to changes at the cellular, molecular, and organ level to increase the personal risk for CVD and lead to population level CVD racial disparities. The external environment is defined in three broad domains: natural (air, water, land), built (places you live, work, and play) and social (social, demographic, economic, and political). We will describe how environmental exposures in the natural, built, and social environments "get under the skin" to affect gene expression though epigenetic, pan-omics, and related mechanisms that lead to increased risk for adverse CVD health outcomes and population level disparities. We also will examine the important role of metabolomics, proteomics, transcriptomics, genomics, and epigenomics in understanding how exposures in the natural, built, and social environments lead to CVD disparities with implications for clinical, public health, and policy interventions. In this review, we apply an exposome approach to Black:White CVD racial disparities. The exposome is a measure of all the exposures of an individual across the life course and the relationship of those exposures to health effects. The exposome represents the totality of exogenous (external) and endogenous (internal) exposures from conception onwards, simultaneously distinguishing, characterizing, and quantifying etiologic, mediating, moderating, and co-occurring risk and protective factors and their relationship to disease. Specifically, it assesses the biological mechanisms and underlying pathways through which chemical and non-chemical environmental exposures are associated with CVD onset, progression and outcomes. The exposome is a promising approach for understanding the complex relationships among environment, behavior, biology, genetics, and disease phenotypes that underlie population level, Black: White CVD disparities.
Collapse
Affiliation(s)
- Paul D Juarez
- Meharry Medical College, Nashville, TN, United States
| | - Darryl B Hood
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Min-Ae Song
- College of Public Health, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
36
|
Koga F, Kitagami S, Izumi A, Uemura T, Takayama O, Koga T, Mizoguchi T. Relationship between nutrition and reproduction. Reprod Med Biol 2020; 19:254-264. [PMID: 32684824 PMCID: PMC7360971 DOI: 10.1002/rmb2.12332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Recently, the relationship between nutrition and reproduction is being studied. In particular, when older women receive reproductive treatment, egg aging causes greater problems than organic factors. METHODS This study investigated the relationship between nutrition and reproduction with a focus on factors that cause aging, including oxidation, glycation, and chronic inflammation. A large volume of data concerning each nutrient's relationship with reproductive medicine was collected from a number of observational studies. MAIN FINDINGS The results showed that refined carbohydrates should be avoided and care should be taken to achieve proper intake of omega-3 fatty acids. Folic acid and vitamin D were also effective. For men, antioxidant measures are especially effective. The effects of antioxidants are related to insulin resistance, which causes chronic inflammation. CONCLUSION Recent research has shown that rather than meal content, meal intervals are more important for improving insulin resistance. Future research should examine lifestyle-related nutrition factors and their relationships to reproductive treatment.
Collapse
|
37
|
Drago G, Ruggieri S, Bianchi F, Sampino S, Cibella F. Birth Cohorts in Highly Contaminated Sites: A Tool for Monitoring the Relationships Between Environmental Pollutants and Children's Health. Front Public Health 2020; 8:125. [PMID: 32411642 PMCID: PMC7198735 DOI: 10.3389/fpubh.2020.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Industrial areas are characterized by the dispersion of environmental stressors that could possibly have long-term detrimental effects on both human health and the environment. Environmental contamination has been indicated to be one of the major risks for reproductive health. In this context, the effects of environmental pollution on pregnant women living in heavily polluted areas is of special interest. In fact, fetal development is a crucial phase due to the dynamic interaction between the maternal/external environments and the developing organs and tissues. Moreover, following Barker's postulate of the intrauterine origin of health and disease, the events occurring in this time window could affect future health. Birth cohorts provide the most suitable design for assessing the association between early-life and possible long-term health outcomes in highly contaminated sites. By providing an assessment of the early life environment throughout the collection of biological samples, birth cohorts offer the opportunity to study in-depth several possible confounders and outcomes by means of questionnaires and follow-ups based on clinical evaluations and bio-specimen samplings. The exposome comprises the totality of exposures from conception onwards; the birth cohort approach allows the integration of the exposures as a whole, including those related to socioeconomic status, with "omics" data from biological samples collected at birth and throughout life. In the characterization of the "fetal exposome," the placenta represents a highly informative and scarcely considered organ. For this purpose, the "Neonatal Environment and Health Outcomes" (NEHO) birth cohort has been established by enrolling pregnant women residing in contaminated sites and in surrounding areas.
Collapse
Affiliation(s)
- Gaspare Drago
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy
| | - Silvia Ruggieri
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy
| | - Fabrizio Bianchi
- National Research Council of Italy, Institute of Clinical Physiology, Pisa, Italy
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Fabio Cibella
- National Research Council of Italy, Institute for Biomedical Research and Innovation, Palermo, Italy
| |
Collapse
|
38
|
Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. CHEMOSPHERE 2020; 245:125586. [PMID: 31881386 DOI: 10.1016/j.chemosphere.2019.125586] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
Minamata disease in Japan and the large-scale poisoning by methylmercury (MeHg) in Iraq caused wide public concerns about the risk emanating from mercury for human health. Nowadays, it is widely known that all forms of mercury induce toxic effects in mammals, and increasing evidence supports the concern that environmentally relevant levels of MeHg could impact normal biological functions in wildlife. The information of mechanism involved in mercurial toxicity is growing but knowledge gaps still exist between the adverse effects and mechanisms of action, especially at the molecular level. A body of data obtained from experimental studies on mechanisms of mercurial toxicity in vivo and in vitro points to that disruption of the antioxidant system may play an important role in the mercurial toxic effects. Moreover, the accumulating evidence indicates that signaling transduction, protein or/and enzyme activity, and gene regulation are involving in mediating toxic and adaptive response to mercury exposure. We conducted here a comprehensive review of mercurial toxic effects on wildlife and human, in particular synthesized key findings of molecular pathways involved in mercurial toxicity from the cells to human. We discuss the molecular evidence related mercurial toxicity to the adverse effects, with particular emphasis on the gene regulation. The further studies relying on Omic analysis connected to adverse effects and modes of action of mercury will aid in the evaluation and validation of causative relationship between health outcomes and gene expression.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Zidie Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Uwe Strähle
- Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
39
|
Yang CF, Karmaus WJJ, Yang CC, Chen ML, Wang IJ. Bisphenol a Exposure, DNA Methylation, and Asthma in Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17010298. [PMID: 31906378 PMCID: PMC6981376 DOI: 10.3390/ijerph17010298] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/29/2022]
Abstract
Epidemiological studies have reported the relationship between bisphenol A (BPA) exposure and increased prevalence of asthma, but the mechanisms remain unclear. Here, we investigated whether BPA exposure and DNA methylation related to asthma in children. We collected urinary and blood samples from 228 children (Childhood Environment and Allergic Diseases Study cohort) aged 3 years. Thirty-three candidate genes potentially interacting with BPA exposure were selected from a toxicogenomics database. DNA methylation was measured in 22 blood samples with top-high and bottom-low exposures of BPA. Candidate genes with differential methylation levels were validated by qPCR and promoter associated CpG islands have been investigated. Correlations between the methylation percentage and BPA exposure and asthma were analyzed. According to our findings, MAPK1 showed differential methylation and was further investigated in 228 children. Adjusting for confounders, urinary BPA glucuronide (BPAG) level inversely correlated with MAPK1 promoter methylation (β = -0.539, p = 0.010). For the logistic regression analysis, MAPK1 methylation status was dichotomized into higher methylated and lower methylated groups with cut off continuous variable of median of promoter methylation percentage (50%) while performing the analysis. MAPK1 methylation was lower in children with asthma than in children without asthma (mean ± SD; 69.82 ± 5.88% vs. 79.82 ± 5.56%) (p = 0.001). Mediation analysis suggested that MAPK1 methylation acts as a mediation variable between BPA exposure and asthma. The mechanism of BPA exposure on childhood asthma might, therefore, be through the alteration of MAPK1 methylation. The mechanism of BPA exposure on childhood asthma might, therefore, be through the alteration of MAPK1 methylation.
Collapse
Affiliation(s)
- Chia-Feng Yang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.Y.); (M.-L.C.)
| | - Wilfried J. J. Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA;
| | - Chen-Chang Yang
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.Y.); (M.-L.C.)
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.Y.); (M.-L.C.)
| | - I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei 242, Taiwan
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- College of Public Health, China Medical University, Taichung 400-439, Taiwan
- National Institutes of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053,Taiwan
- Correspondence: ; Tel.: +886-2-2276-5566 (ext. 2532); Fax: +886-2-2998-8028
| |
Collapse
|
40
|
Hassan S, Ali R, Shah D, Sajjad N, Qadir J. Bisphenol A and Phthalates Exhibit Similar Toxicogenomics and Health Effects. HANDBOOK OF RESEARCH ON ENVIRONMENTAL AND HUMAN HEALTH IMPACTS OF PLASTIC POLLUTION 2020. [DOI: 10.4018/978-1-5225-9452-9.ch014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bisphenol A and phthalates are most frequently detected organic pollutants found in our surroundings because of their regular use as plasticizers in daily use polymeric products. BPA is used in manufacturing baby feeding bottles, water pipes, canned food linings, and food packaging materials. Phthalates are used in polyvinyl chloride products including clothing, toys, medical devices, and food packaging. These chemicals are not bound to the matrix and leach out into the surroundings on slight change in the environment, like alteration in pH, temperature, and pressure. Humans are continuously exposed to these chemicals through skin contact, inhalation, or ingestion when the leachates enter food, drinks, air, water, or soil. The Comparative Toxicogenomics Database (CTD) revealed that Bisphenol A has 1932 interactions with genes/proteins and few frequently used phthalates (DEHP, MEHP, DBP, BBP, and MBP) showed 484 gene/protein interactions. Similar toxicogenomics and adverse effects of Bisphenol A and phthalates on human health are attributed to their 89 common interacting genes/proteins.
Collapse
|
41
|
Elevated blood mercury level has a non-linear association with infertility in U.S. women: Data from the NHANES 2013-2016. Reprod Toxicol 2019; 91:53-58. [PMID: 31756438 DOI: 10.1016/j.reprotox.2019.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022]
Abstract
Mercury is a ubiquitous toxic heavy metal associated with an increased risk of female infertility; however, the evidence supporting this is limited and controversial. We aimed to explore the relationship between the total blood mercury and infertility in 1796 selected participants from the National Health and Nutrition Examination Survey (NHANES) (2013-2016). We found no significant association between mercury and infertility based on a fully-adjusted model (OR 1.04; 95 % CI 0.91, 1.19), and the results remained robust in a series of sensitive analysis. However, a non-linear relationship was detected. By a two-piecewise linear regression model and recursive algorithm, we identified an inflection point of 5.278 μg/L, when blood mercury was >5.278 μg/L, a 1-unit increase in mercury (log2) was associated with 157 % greater adjusted odds of infertility (OR 2.57; 95 % CI 1.12, 5.87). Our findings provide new insights to advance the research of the link between mercury and infertility.
Collapse
|
42
|
Methylmercury Epigenetics. TOXICS 2019; 7:toxics7040056. [PMID: 31717489 PMCID: PMC6958348 DOI: 10.3390/toxics7040056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Methylmercury (MeHg) has conventionally been investigated for effects on nervous system development. As such, epigenetic modifications have become an attractive mechanistic target, and research on MeHg and epigenetics has rapidly expanded in the past decade. Although, these inquiries are a recent advance in the field, much has been learned in regards to MeHg-induced epigenetic modifications, particularly in the brain. In vitro and in vivo controlled exposure studies illustrate that MeHg effects microRNA (miRNA) expression, histone modifications, and DNA methylation both globally and at individual genes. Moreover, some effects are transgenerationally inherited, as organisms not directly exposed to MeHg exhibited biological and behavioral alterations. miRNA expression generally appears to be downregulated consequent to exposure. Further, global histone acetylation also seems to be reduced, persist at distinct gene promoters, and is contemporaneous with enhanced histone methylation. Moreover, global DNA methylation appears to decrease in brain-derived tissues, but not in the liver; however, selected individual genes in the brain are hypermethylated. Human epidemiological studies have also identified hypo- or hypermethylated individual genes, which correlated with MeHg exposure in distinct populations. Intriguingly, several observed epigenetic modifications can be correlated with known mechanisms of MeHg toxicity. Despite this knowledge, however, the functional consequences of these modifications are not entirely evident. Additional research will be necessary to fully comprehend MeHg-induced epigenetic modifications and the impact on the toxic response.
Collapse
|
43
|
Ramos PS. Epigenetics of scleroderma: Integrating genetic, ethnic, age, and environmental effects. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2019; 4:238-250. [PMID: 35382507 PMCID: PMC8922566 DOI: 10.1177/2397198319855872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/15/2019] [Indexed: 08/02/2023]
Abstract
Scleroderma or systemic sclerosis is thought to result from the interplay between environmental or non-genetic factors in a genetically susceptible individual. Epigenetic modifications are influenced by genetic variation and environmental exposures, and change with chronological age and between populations. Despite progress in identifying genetic, epigenetic, and environmental risk factors, the underlying mechanism of systemic sclerosis remains unclear. Since epigenetics provides the regulatory mechanism linking genetic and non-genetic factors to gene expression, understanding the role of epigenetic regulation in systemic sclerosis will elucidate how these factors interact to cause systemic sclerosis. Among the cell types under tight epigenetic control and susceptible to epigenetic dysregulation, immune cells are critically involved in early pathogenic events in the progression of fibrosis and systemic sclerosis. This review starts by summarizing the changes in DNA methylation, histone modification, and non-coding RNAs associated with systemic sclerosis. It then discusses the role of genetic, ethnic, age, and environmental effects on epigenetic regulation, with a focus on immune system dysregulation. Given the potential of epigenome editing technologies for cell reprogramming and as a therapeutic approach for durable gene regulation, this review concludes with a prospect on epigenetic editing. Although epigenomics in systemic sclerosis is in its infancy, future studies will help elucidate the regulatory mechanisms underpinning systemic sclerosis and inform the design of targeted epigenetic therapies to control its dysregulation.
Collapse
Affiliation(s)
- Paula S Ramos
- Paula S. Ramos, Division of Rheumatology and Immunology, Department of Medicine and Department of Public Health Sciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 816, MSC 637, Charleston, SC 29425, USA.
| |
Collapse
|
44
|
Miura R, Araki A, Minatoya M, Miyake K, Chen ML, Kobayashi S, Miyashita C, Yamamoto J, Matsumura T, Ishizuka M, Kubota T, Kishi R. An epigenome-wide analysis of cord blood DNA methylation reveals sex-specific effect of exposure to bisphenol A. Sci Rep 2019; 9:12369. [PMID: 31451752 PMCID: PMC6710292 DOI: 10.1038/s41598-019-48916-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 08/15/2019] [Indexed: 12/11/2022] Open
Abstract
Exposure to bisphenol A (BPA) in utero is associated with adverse health outcome of the offspring. Differential DNA methylation at specific CpG sites may link BPA exposure to health impacts. We examined the association of prenatal BPA exposure with genome-wide DNA methylation changes in cord blood in 277 mother-child pairs in the Hokkaido Study on Environment and Children’s Health, using the Illumina HumanMethylation 450 BeadChip. We observed that a large portion of BPA-associated differentially methylated CpGs with p-value < 0.0001 was hypomethylated among all newborns (91%) and female infants (98%), as opposed to being hypermethylated (88%) among males. We found 27 and 16 CpGs with a false discovery rate (FDR) < 0.05 in the analyses for males and females, respectively. Genes annotated to FDR-corrected CpGs clustered into an interconnected genetic network among males, while they rarely exhibited any interactions in females. In contrast, none of the enrichment for gene ontology (GO) terms with FDR < 0.05 was observed for genes annotated to the male-specific CpGs with p < 0.0001, whereas the female-specific genes were significantly enriched for GO terms related to cell adhesion. Our epigenome-wide analysis of cord blood DNA methylation implies potential sex-specific epigenome responses to BPA exposure.
Collapse
Affiliation(s)
- Ryu Miura
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Atsuko Araki
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Machiko Minatoya
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Kunio Miyake
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan
| | - Sumitaka Kobayashi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Chihiro Miyashita
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, Idea Consultants, Inc., Shizuoka, Japan
| | - Toru Matsumura
- Institute of Environmental Ecology, Idea Consultants, Inc., Shizuoka, Japan
| | - Mayumi Ishizuka
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takeo Kubota
- Faculty of Child Studies, Seitoku University, Chiba, Japan
| | - Reiko Kishi
- Hokkaido University Center for Environmental and Health Sciences, Sapporo, Japan.
| |
Collapse
|
45
|
Martín-Del-Campo R, Bárcenas-Ibarra A, Lund G, Rodríguez-Ríos D, Yong-Villalobos L, García-Hernández J, García-Gasca A. Mercury Concentration, DNA Methylation, and Mitochondrial DNA Damage in Olive Ridley Sea Turtle Embryos With Schistosomus Reflexus Syndrome. Vet Pathol 2019; 56:940-949. [PMID: 31434549 DOI: 10.1177/0300985819868649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schistosomus reflexus syndrome (SR) is a rare and lethal congenital malformation that has been reported in the olive ridley sea turtle (Lepidochelys olivacea) in Mexico. Although the etiology remains unclear, it is presumed to be genetic. Since embryonic development in sea turtles largely depends on environmental conditions, we investigated whether sea turtle total mercury content participates in the etiology of SR. Given that several toxins are known to affect both DNA methylation and/or mitochondrial DNA (mtDNA) copy number, we also probed for associations of these parameters to SR and mercury exposure. We measured the levels of each variable in malformed olive ridley sea turtle embryos (either with SR or other non-SR malformations) and embryos without malformations. Malformed embryos (with or without SR) showed higher mercury concentrations compared to normal embryos, while only embryos with SR showed higher levels of methylation compared to embryos without malformations and those with other malformations. Furthermore, we uncovered a positive correlation between mercury concentrations and DNA methylation in SR embryos. With respect to mtDNA copy number, no differences were detected across experimental groups. Because of sample size limitations, this study is an initial attempt to understand the association of environmental toxins (such as mercury) and epigenetic alterations (DNA methylation) in the etiology of SR in sea turtles.
Collapse
Affiliation(s)
- Rodolfo Martín-Del-Campo
- Laboratorio de Biología Molecular y Celular, Centro de Investigación en Alimentación y Desarrollo, Mazatlán, Sinaloa, Mexico
| | - Annelisse Bárcenas-Ibarra
- Laboratorio de Biología Molecular y Celular, Centro de Investigación en Alimentación y Desarrollo, Mazatlán, Sinaloa, Mexico
| | - Gertrud Lund
- Departamento de Ingeniería Genética, CINVESTAV (GL, DRR), Irapuato, Guanajuato, Mexico
| | - Dalia Rodríguez-Ríos
- Departamento de Ingeniería Genética, CINVESTAV (GL, DRR), Irapuato, Guanajuato, Mexico
| | - Lenin Yong-Villalobos
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada, CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Jaqueline García-Hernández
- Laboratorio de Ciencias Ambientales, Centro de Investigación en Alimentación y Desarrollo, Guaymas, Sonora, Mexico
| | - Alejandra García-Gasca
- Laboratorio de Biología Molecular y Celular, Centro de Investigación en Alimentación y Desarrollo, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
46
|
Eguchi A, Nishizawa-Jotaki S, Tanabe H, Rahmutulla B, Watanabe M, Miyaso H, Todaka E, Sakurai K, Kaneda A, Mori C. An Altered DNA Methylation Status in the Human Umbilical Cord Is Correlated with Maternal Exposure to Polychlorinated Biphenyls. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152786. [PMID: 31382687 PMCID: PMC6696183 DOI: 10.3390/ijerph16152786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/26/2022]
Abstract
Maternal exposure to polychlorinated biphenyls (PCBs) results in abnormal fetal development, possibly because of epigenetic alterations. However, the association between PCB levels in cord serum with fetal DNA methylation status in cord tissue is unclear. This study aims to identify alterations in DNA methylation in cord tissue potentially associated with PCB levels in cord serum from a birth cohort in Chiba, Japan (male neonates = 32, female neonates = 43). Methylation array analysis identified five sites for female neonates (cg09878117, cg06154002, cg06289566, cg12838902, cg01083397) and one site for male neonates (cg13368805) that demonstrated a change in the methylation degree. This result was validated by pyrosequencing analysis, showing that cg06154002 (tudor domain containing 9: TDRD9) in cord tissue from female neonates is significantly correlated with total PCB levels in cord serum. These results indicate that exposure to PCBs may alter TDRD9 methylation levels, although this hypothesis requires further validation using data obtained from female neonates. However, since the present cohort is small, further studies with larger cohorts are required to obtain more data on the effects of PCB exposure and to identify corresponding biomarkers.
Collapse
Affiliation(s)
- Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan
| | - Shino Nishizawa-Jotaki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba 263-8522, Japan
- Teijin Limited, Kasumigaseki Common Gate West Tower, 2-1, Kasumigaseki 3-chome, Chiyoda-ku, Tokyo 100-0013, Japan
| | - Hiromi Tanabe
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba 263-8522, Japan
| | - Masahiro Watanabe
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan
| | - Hidenobu Miyaso
- Department of Anatomy, Tokyo Medical University, Shinjuku-ku Shinjuku 6-1-1, Tokyo 160-8402, Japan
| | - Emiko Todaka
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba 263-8522, Japan
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba 263-8522, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-8522, Japan.
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba 263-8522, Japan.
| |
Collapse
|
47
|
Henriques MC, Loureiro S, Fardilha M, Herdeiro MT. Exposure to mercury and human reproductive health: A systematic review. Reprod Toxicol 2019; 85:93-103. [PMID: 30831212 DOI: 10.1016/j.reprotox.2019.02.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Evidences from human and animal studies suggest that reproductive function may be affected by mercury. The aim of this review was to explore the mercury influence on human fertility. METHODS A systematic search was made in PubMED for papers published between 1975-2017, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS Increased mercury levels were associated with infertility or subfertility status. Further, infertile subjects with unexplained infertility showed higher levels of mercury in hair, blood and urine than fertile ones. Mercury exposure induced sperm DNA damage and abnormal sperm morphology and motility. Additionally, mercury levels were related with higher incidence of menstrual and hormonal disorders and increased rates of adverse reproductive outcomes. CONCLUSIONS Our review showed that mercury negatively impacts human reproduction, affecting the reproductive and endocrine systems in both male and female. However, the molecular mechanisms underlying the mercury-associated decline on fertility remains unknown.
Collapse
Affiliation(s)
- Magda Carvalho Henriques
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- Department of Biology & Centro de Estudos do Ambiente e do MAR (CESAM), University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria Teresa Herdeiro
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
48
|
Khan F, Momtaz S, Abdollahi M. The relationship between mercury exposure and epigenetic alterations regarding human health, risk assessment and diagnostic strategies. J Trace Elem Med Biol 2019; 52:37-47. [PMID: 30732897 DOI: 10.1016/j.jtemb.2018.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Exposure to the environmental toxicants poses a serious threat to human health. The extent of exposure and the development of diseases are interrelated with each other. Chronic exposure to mercury (Hg) increases the risk of developing serious human disorders from embryo to adulthood. OBJECTIVES The purpose of this review is to highlight the most common human disorders induced by Hg exposure on the basis of epigenetic mechanisms. A growing body of evidence shows that Hg exposure leads to alterations in the epigenetic markers. METHODS We performed an organized search of the available literature using PubMed, Google Scholar, Medline, Reaxys, EMBASE and Scopus databases. All the relevant citations, including research and review articles in English were evaluated. The search terms included mercury, Hg, epigenetics, epigenetic alterations, DNA methylation, histone modifications, microRNAs (miRNAs), and risk assessment. RESULTS Data on human toxicity due to Hg exposure shows broad variations in terms of chemical nature, doses, and the rate of exposure. Hg consumption either via foods or environmental sources may create deleterious health effects on various physiological systems at least partially through an epigenetic mechanism. CONCLUSION Hg exposure could trigger epigenetic alterations, hence leading to various human disorders including reduced newborn cerebellum size, adverse behavioral outcomes, atherosclerosis and myocardial infarction. Similarly, in adults, occupational Hg exposure has been associated with an increased risk of autoimmunity. It has been revealed that miRNAs in the woman's cervix are a novel responder to maternal Hg exposure during pregnancy. Hg-induced epigenetic alterations analysis of kidney tissues showed a significant interruption in renal function. DNA methylation and histone post-translation modifications are predominant types of Hg epigenetic alterations.
Collapse
Affiliation(s)
- Fazlullah Khan
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
|
50
|
Alvarado-Cruz I, Alegría-Torres JA, Montes-Castro N, Jiménez-Garza O, Quintanilla-Vega B. Environmental Epigenetic Changes, as Risk Factors for the Development of Diseases in Children: A Systematic Review. Ann Glob Health 2018; 84:212-224. [PMID: 30873799 PMCID: PMC6748183 DOI: 10.29024/aogh.909] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Children are susceptible to environmental contaminants and are at risk of developing diseases, more so if the exposure begins at an early age. Epidemiological studies have postulated the hypothesis of the fetal origin of disease, which is mediated by epigenetic changes. Epigenetic marks are inheritable; they modulate the gene expression and can affect human health due to the presence of environmental factors. OBJECTIVE This review focuses on DNA-methylation and its association with environmental-related diseases in children. METHODS A search for studies related to DNA-methylation in children by pre- or post-natal environmental exposures was conducted, and those studies with appropriate designs and statistical analyses and evaluations of the exposure were selected. FINDINGS Prenatal and early life environmental factors, from diet to exposure to pollutants, have been associated with epigenetic changes, specifically DNA-methylation. Thus, maternal nutrition and smoking and exposure to air particulate matter, polycyclic aromatic hydrocarbons, arsenic, heavy metals, persistent organic pollutants, and some endocrine disrupters during pregnancy have been associated with genomic and gene-specific newborns' DNA-methylation changes that have shown in some cases sex-specific patterns. In addition, these maternal factors may deregulate the placental DNA-methylation balance and could induce a fetal reprogramming and later-in-life diseases. CONCLUSIONS Exposure to environmental pollutants during prenatal and early life can trigger epigenetic imbalances and eventually the development of diseases in children. The integration of epigenetic data should be considered in future risk assessments.
Collapse
Affiliation(s)
| | | | | | - Octavio Jiménez-Garza
- Health Sciences Division, University of Guanajuato, Leon Campus, Leon, Guanajuato, MX
| | | |
Collapse
|