1
|
Ye X, Baker PN, Tong C. The updated understanding of advanced maternal age. FUNDAMENTAL RESEARCH 2024; 4:1719-1728. [PMID: 39734537 PMCID: PMC11670706 DOI: 10.1016/j.fmre.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/29/2023] [Accepted: 09/21/2023] [Indexed: 12/31/2024] Open
Abstract
The rising rates of pregnancies associated with advanced maternal age (AMA) have created unique challenges for healthcare systems worldwide. The elevated risk of poor maternal outcomes among AMA pregnancies is only partially understood and hotly debated. Specifically, AMA is associated with reduced fertility and an increased incidence of pregnancy complications. Finding a balance between global fertility policy, socioeconomic development and health care optimization ultimately depends on female fertility. Therefore, there is an urgent need to develop technologies and identify effective interventions. Support strategies should include prepregnancy screening, intervention and postpartum maintenance. Although some reviews have considered the relationship between AMA and adverse pregnancy outcomes, no previous work has comprehensively considered the long-term health effects of AMA on mothers. In this review, we will begin by presenting the current knowledge of global health issues associated with AMA and the effects of advanced age on the female reproductive system, endocrine metabolism, and placental function. We will then discuss physiological alterations, pregnancy complications, and long-term health problems caused by AMA.
Collapse
Affiliation(s)
- Xuan Ye
- National Clinical Research Center for Child Health and Disorder, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Philip N. Baker
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Chao Tong
- National Clinical Research Center for Child Health and Disorder, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Wang ZH, Wang ZJ, Liu HC, Wang CY, Wang YQ, Yue Y, Zhao C, Wang G, Wan JP. Targeting mitochondria for ovarian aging: new insights into mechanisms and therapeutic potential. Front Endocrinol (Lausanne) 2024; 15:1417007. [PMID: 38952389 PMCID: PMC11215021 DOI: 10.3389/fendo.2024.1417007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.
Collapse
Affiliation(s)
- Zi-Han Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen-Jing Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Huai-Chao Liu
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen-Yu Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu-Qi Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Yue
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guoyun Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ji-Peng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Butkiewicz AF, Amaral A, Cerveira-Pinto M, Kordowitzki P. Assessing the Influence of Maternal Age in Bovine Embryos and Oocytes: A Model for Human Reproductive Aging. Aging Dis 2024; 16:757-768. [PMID: 38916737 PMCID: PMC11964423 DOI: 10.14336/ad.2024.0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 06/26/2024] Open
Abstract
In the first weeks after fertilization, embryo mortality in cattle is significantly higher. It is well known that the age of the dam is one of the crucial factors affecting the quality of embryos and oocytes in many mammalian species. In older cattle, there are several evidences that embryo quality decreases, due to a decrease in ovarian reserve, a decrease in mtDNA and ATP, a decrease in progesterone levels, and due to susceptibility to genetic mutations. Herein, we intend to provide an updated summary of recent research on the effects of maternal age on embryos and oocytes of domestic cattle which are a widely used model species for human oocytes and early embryonic development.
Collapse
Affiliation(s)
- Aleksander Franciszek Butkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Ana Amaral
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal.
| | - Marta Cerveira-Pinto
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal.
| | - Pawel Kordowitzki
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité, Berlin, Germany.
| |
Collapse
|
4
|
Zhou Q, Liu A, Ji H, Ji J, Sun J, Ling Z, Li G, Ling X, Xu L, Chen X. Expression profiles of circular RNAs in spermatozoa from aging men. Mol Biol Rep 2023; 50:8081-8088. [PMID: 37540460 DOI: 10.1007/s11033-023-08705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Advanced paternal age (APA) is associated with decreased fertility, but the mechanism underlying APA remains unknown. CircRNAs have been reported to be ideal candidate biomarkers for diagnostic and therapeutic applications in many diseases and are also involved in spermatogenesis. Hence, we aimed to assess the circRNA expression profile of spermatozoa from aging men. METHODS AND RESULTS We recruited 6 subjects, including 3 in the younger group (men age < 40) and 3 in the APA group (men age ≥ 40). RNA sequencing was exploited to identify the expression profiles of circRNAs between the two groups. The expression levels of circRNAs were validated using real-time quantitative polymerase chain reaction (RT-qPCR). Kyoto Encyclopedia of Genes and Genomes biological pathway analysis and Gene Ontology analysis were performed to evaluate the functions of differentially expressed circRNAs (DE-circRNAs) between the two groups. In total, 18,787 circRNAs were sequenced in the spermatozoa of two groups. Our analysis revealed that there were 1056 downregulated circRNAs and 1228 upregulated circRNAs between the two groups, and KEGG analysis showed they were mainly involved in pathways including the DNA repair signaling pathway, meiotic recombination signaling pathway, and PI3K/AKT signaling pathway. CONCLUSIONS In conclusion, our study suggested that circRNAs play a vital role in spermatozoa from aging men and provided a fresh perspective on the specific regulatory mechanism of spermatozoa from aging men.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Anming Liu
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Hui Ji
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Juan Ji
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Jingwen Sun
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Zhonghui Ling
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Guangyao Li
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Lu Xu
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Xiaoning Chen
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| |
Collapse
|
5
|
Jabarpour M, Aleyasin A, Nashtaei MS, Lotfi S, Amidi F. Astaxanthin treatment ameliorates ER stress in polycystic ovary syndrome patients: a randomized clinical trial. Sci Rep 2023; 13:3376. [PMID: 36854788 PMCID: PMC9974957 DOI: 10.1038/s41598-023-28956-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
Astaxanthin (ASX), as a natural carotenoid compound, exists in various types of seafood and microorganisms. It has several possible beneficial therapeutic effects for patients with polycystic ovary syndrome (PCOS). Patients with PCOS also suffer from endoplasmic reticulum (ER) stress. In the present work, it was hypothesized that ER stress could be improved by ASX in PCOS patients. Granulosa cells (GCs) were obtained from 58 PCOS patients. The patients were classified into ASX treatment (receiving 12 mg/day for 60 days) and placebo groups. The expression levels of ER stress pathway genes and proteins were explored using Western blotting and quantitative polymerase chain reaction. To assess oxidative stress markers, follicular fluid (FF) was gained from all patients. The Student's t test was used to perform statistical analysis. After the intervention, ASX led to a considerable reduction in the expression levels of 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), and X-box-binding protein 1 compared to the placebo group, though the reduction in the messenger RNA (mRNA) expression level of activating transcription factor 6 was not statistically significant. However, ASX significantly increased the ATF4 expression level. GRP78 and CHOP protein levels represented a considerable decrease in the treatment group after the intervention. In addition, a statistically significant increase was found in the FF level of total antioxidant capacity in the treatment group. Based on clinical outcomes, no significant differences were found between the groups in terms of the oocyte number, fertilization rate, and fertility rate, but the ASX group had higher rates of high-quality oocytes, high-quality embryo, and oocyte maturity compared to the placebo group. Our findings demonstrated that ER stress in the GCs of PCOS patients could be modulated by ASX by changing the expression of genes and proteins included in the unfolding protein response.Trial registration This study was retrospectively registered on the Iranian Registry of Clinical Trials website ( www.irct.ir ; IRCT-ID: IRCT20201029049183N, 2020-11-27).
Collapse
Affiliation(s)
- Masoome Jabarpour
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955 Iran
| | - Ashraf Aleyasin
- grid.415646.40000 0004 0612 6034Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955 Iran ,grid.415646.40000 0004 0612 6034Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Lotfi
- grid.411705.60000 0001 0166 0922Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955 Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Pour Sina St, Tehran, 1416753955, Iran. .,Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Otávio KS, Passos JRS, Silva RF, Lima LF, Cadenas J, Paes VM, Correia HHV, Ferreira ACA, Canafístula FG, Bezerra MJB, Oliveira LLB, Carvalho GGC, Paier CRK, Pessoa C, Guerreiro DG, Moraes MEA, Figueiredo JR, Moura AA. Comprehensive proteomic profiling of early antral follicles from sheep. Anim Reprod Sci 2023; 248:107153. [PMID: 36502761 DOI: 10.1016/j.anireprosci.2022.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
The present study evaluates the proteome of early antral follicles from Ovis aries. Fifty follicles were collected from ovaries of adult ewes and extracted proteins were trypsin-digested, desalted and analyzed by LC-MS/MS. Genes were screened for potential modulation by miRNAs and protein data, subjected to functional enrichment analysis. Label-free mass spectrometry allowed the identification of 2503 follicle proteins, confirming vimentin, actin, lamin, heat shock proteins and histones as the most abundant ones. In silico analyses indicated that miRNAs modulate the expression of genes coding proteins of the sheep follicles involved in cell cycle, cell differentiation, aging, apoptosis, cell death, adipocyte differentiation, cell division. The most important biological processes associated with the follicle proteins were innate immune response, translation, adaptive immune response and protein folding, while molecular functions linked to the proteome of sheep antral follicles related to metal ion binding, ATP binding, oxygen binding, RNA binding and GTP binding, among others. Upload of 2503 Uniport accession codes through DAVID platform matched 1274 genes, associated with translation, metabolic process, proteolysis involved in cellular protein catabolic process, zona pellucida receptor complex and others. KEEG pathways analysis indicated genes correlated with ovine follicular development, with major pathways listed as carbon metabolism, biosynthesis of amino acids, glutathione metabolism, oxidative phosphorylation, fatty acid degradation and oocyte meiosis. This represents a comprehensive atlas of proteins expressed in sheep early antral follicles and will contribute to future identification of biomarkers for follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Kamila S Otávio
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - José R S Passos
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Renato F Silva
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Laritza F Lima
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Jesús Cadenas
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Victor M Paes
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Hudson H V Correia
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | | | | | | | - Laís L B Oliveira
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Guilherme G C Carvalho
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos R K Paier
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Pessoa
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Denise G Guerreiro
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Maria Elisabete A Moraes
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
7
|
Cozzolino M, Herraiz S, Cakiroglu Y, Garcia-Velasco JA, Tiras B, Pacheco A, Rabadan S, Kohls G, Barrio AI, Pellicer A, Seli E. Distress response in granulosa cells of women affected by PCOS with or without insulin resistance. Endocrine 2023; 79:200-207. [PMID: 36149529 DOI: 10.1007/s12020-022-03192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/03/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE In this study, we investigated whether metabolic dysfunction in women with Polycystic ovarian syndrome (PCOS) induces granulosa cell (GC) stress and activates in the endoplamatic reticulum and the mitochondria (UPRer and UPRmt, respectively). METHODS Women who were diagnosed with PCOS (based on the Rotterdam criteria), were divided into two groups, PCOS with insulin resistance (PCOS-IR; n = 20) and PCOS with no insulin resistance (PCOS-nIR; n = 20), and compared to healthy oocyte donors (CONT; n = 20). Insulin resistance (IR) was assessed on the results of homeostasis model assessment (HOMA) that determines IR using the concentration of fasting plasma glucose and fasting insuline. Expression of UPRer genes (i.e., IRE1, ATF4, ATF6, XBP1, BIP, and CHOP), and UPRmt genes (i.e., HSP60, HSP10, CLPP, and HSP40) was assessed in cumulus GCs by qRT-PCR. RESULTS We found that several genes involved in UPRer and UPRmt were overexpressed in the GCs of PCOS-IR and PCOS-nIR compared to CONT. IRE1, ATF4 and XBP1, that are activated by ER stress, were significantly overexpressed in PCOS-IR compared to CONT. BIP and CHOP were overexpressed in PCOS groups compared to CONT. HSP10 and HSP40 were upregulated in PCOS-IR and PCOS-nIR groups compared to the CONT. HSP60 and CLPP showed no statistical different expression in PCOS-IR and PCOS-nIR compared to CONT group. CONCLUSION Our findings suggest that the GCs of women with PCOS (with or without IR) are metabolically distressed and upregulate UPRer and UPRmt genes. Our study contributes to the understanding of the molecular mechanisms underlying the pathological changes that occur in the follicular microenvironment of women with PCOS.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
- IVIRMA, Roma, Italy.
- Universidad Rey Juan Carlos, Madrid, Spain.
- Grupo de investigación en Medicina Reproductiva, Fundación IVI-Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain.
| | - Sonia Herraiz
- Grupo de investigación en Medicina Reproductiva, Fundación IVI-Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Yigit Cakiroglu
- Acibadem Maslak Hospital Assisted Reproductive Technologies Unit, Istanbul, Turkey
- Department of Obstetrics and Gynecology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Bulent Tiras
- Acibadem Maslak Hospital Assisted Reproductive Technologies Unit, Istanbul, Turkey
- Department of Obstetrics and Gynecology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | | | | | | | - Antonio Pellicer
- IVIRMA, Roma, Italy
- Grupo de investigación en Medicina Reproductiva, Fundación IVI-Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- IVIRMA New Jersey, Basking Ridge, NJ, USA
| |
Collapse
|
8
|
Using Cumulus Cell Biopsy as a Non-Invasive Tool to Access the Quality of Bovine Oocytes: How Informative Are They? Animals (Basel) 2022; 12:ani12223113. [PMID: 36428341 PMCID: PMC9686866 DOI: 10.3390/ani12223113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to determine whether cumulus cells (CC) biopsy, acquired before or after in vitro maturation (IVM), presents similar gene expression pattern and if would compromises oocyte quality. First, immature cumulus oocyte complexes (COCs) were distributed: (1) maturated in groups (control); (2) individually maturated, but not biopsied; (3) subjected to CC biopsy before maturation and individually matured; (4) individually matured and submitted to CC biopsy after maturation; (5) individually matured and CC biopsied before and after maturation. Secondly, candidate genes, described as potential markers of COCs quality, were quantified by RT-qPCR in CCs before and after IVM. After in vitro fertilization (IVF), zygotes were tracked and sorted regarding their developmental potential: fully developed to embryo, cleaved and arrested, and not-cleaved. The COC’s biopsy negatively affects embryo development (p < 0.05), blastocyst cell number (p < 0.05), and apoptotic cell ratio (p < 0.05), both before and after IVM. The PTGS2, LUM, ALCAM, FSHR, PGR, SERPINE2, HAS2, and PDRX3 genes were differentially expressed (p < 0.05) on matured CCs. Only PGR gene (p = 0.04) was under-expressed on matured CCs on Not-Cleaved group. The SERPINE2 gene was overexpressed (p = 0.01) in the Cleaved group on immature CCs. In summary, none of the selected gene studies can accurately predict COC’s fate after fertilization.
Collapse
|
9
|
Dvoran M, Nemcova L, Kalous J. An Interplay between Epigenetics and Translation in Oocyte Maturation and Embryo Development: Assisted Reproduction Perspective. Biomedicines 2022; 10:biomedicines10071689. [PMID: 35884994 PMCID: PMC9313063 DOI: 10.3390/biomedicines10071689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
Germ cell quality is a key prerequisite for successful fertilization and early embryo development. The quality is determined by the fine regulation of transcriptomic and proteomic profiles, which are prone to alteration by assisted reproduction technology (ART)-introduced in vitro methods. Gaining evidence shows the ART can influence preset epigenetic modifications within cultured oocytes or early embryos and affect their developmental competency. The aim of this review is to describe ART-determined epigenetic changes related to the oogenesis, early embryogenesis, and further in utero development. We confront the latest epigenetic, related epitranscriptomic, and translational regulation findings with the processes of meiotic maturation, fertilization, and early embryogenesis that impact the developmental competency and embryo quality. Post-ART embryo transfer, in utero implantation, and development (placentation, fetal development) are influenced by environmental and lifestyle factors. The review is emphasizing their epigenetic and ART contribution to fetal development. An epigenetic parallel among mouse, porcine, and bovine animal models and human ART is drawn to illustrate possible future mechanisms of infertility management as well as increase the awareness of the underlying mechanisms governing oocyte and embryo developmental complexity under ART conditions.
Collapse
|
10
|
Vicente JS, Marco-Jiménez F, Pérez-García M, Naturil-Alfonso C, Peñaranda DS, Viudes-de-Castro MP. Oocyte quality and in vivo embryo survival after ovarian stimulation in nulliparous and multiparous rabbit does. Theriogenology 2022; 189:53-58. [PMID: 35724452 DOI: 10.1016/j.theriogenology.2022.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
Abstract
Superovulation treatments aim to stimulate multifollicular recruitment, maximizing the number of oocytes or transferable embryos produced. Factors associated with the superovulation protocol, female characteristics and many other factors are determinants in the number and quality of oocytes obtained. An accurate way to assess oocyte quality more precise than morphological appearance is genetic expression. The present study aims to compare the response of nulliparous and multiparous females to superovulatory stimulation, studying its effect on the expression of some genes associated with the activation, growth, development and oocyte-embryo transition of oocytes, as well as its impact on in vivo embryonic development and viability rate at birth. In a first experiment, the effect of stimulation treatment on the ovulation response and the expression of the MSY2, MATER, ITPR1, ITPR2, ITPR3, eIF4E, PAR1, PAPOL-A, PAPOL-G, ZAR1 and YY1 genes in nulliparous and multiparous females were determined. In a second experiment, the implantation and viability at birth of embryos from superovulated nulliparous and multiparous females were analysed. The ovulation rate was significantly higher in the superovulation groups than in the control groups. The ovulation rate was significantly increased in nulliparous females compared with multiparous does. From the eleven genes analysed, only the expression of MATER, PAPOL-A, PAPOL-G and ZAR-1 genes was shown to be different among experimental groups. Finally, in terms of implantation rate and viability at birth, the nulliparous control group showed better results than the rest of the groups. Both hyperstimulation treatment and reproductive female's history seem to alter the transcriptome of important genes related to oocyte maturation and competence acquisition, affecting in vivo embryo viability.
Collapse
Affiliation(s)
- J S Vicente
- Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - F Marco-Jiménez
- Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - M Pérez-García
- Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - C Naturil-Alfonso
- Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - D S Peñaranda
- Institute of Science and Animal Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - M P Viudes-de-Castro
- Centro de Investigación y Tecnología Animal (CITA), Instituto Valenciano de Investigaciones Agrarias (IVIA), Castellón, Spain.
| |
Collapse
|
11
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
12
|
Cumulus cell antioxidant system is modulated by patients' clinical characteristics and correlates with embryo development. J Assist Reprod Genet 2022; 39:1277-1295. [PMID: 35469374 DOI: 10.1007/s10815-022-02496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/13/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To study whether the cumulus cell antioxidant system varies accordingly to patients clinical characteristics' as age, infertility diagnosis, BMI, and stimulation protocol applied and if the antioxidant profile of cumulus cells could be used as a predictor of embryo development. METHODS A prospective study including 383 human cumulus samples provided by 191 female patients undergoing intracytoplasmic sperm injection during in vitro fertilization treatments from a local in vitro fertilization center and processed in university laboratories. Catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) enzyme activity levels and reduced glutathione (GSH) levels were measured in cumulus oophorus cells individually collected from each aspirated cumulus-oocyte complex, and the results of each sample were compared considering the oocytes outcome after ICSI and patients clinical characteristics. A total of 223 other human cumulus samples from previous studies were submitted to a gene expression meta-analysis. RESULTS The antioxidant system changes dramatically depending on patients' age, infertility diagnosis, stimulation protocol applied, and oocyte quality. SOD activity in cumulus cells revealed to be predictive of top-quality blastocysts for young patients with male factor infertility (P < 0.05), while GST levels were shown to be extremely influenced by infertility cause (P < 0.0001) and stimulation protocol applied (P < 0.05), but nonetheless, it can be used as a complementary tool for top-quality blastocyst prediction in patients submitted to intracytoplasmic sperm injection technique (ICSI) by male factor infertility (P < 0.05). CONCLUSION Through a simple and non-invasive analysis, the evaluation of redox enzymes in cumulus cells could be used to predict embryo development, in a personalized matter in specific patient groups, indicating top-quality oocytes and improving success rates in in vitro fertilization treatments. TRIAL REGISTRATION The trial was registered at UFRGS Research Ethics Committee and Plataforma Brasil under approval number 68081017.2.0000.5347 in June 6, 2019.
Collapse
|
13
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
14
|
Lee AWT, Ng JKW, Liao J, Luk AC, Suen AHC, Chan TTH, Cheung MY, Chu HT, Tang NLS, Zhao MP, Lian Q, Chan WY, Chan DYL, Leung TY, Chow KL, Wang W, Wang LH, Chen NCH, Yang WJ, Huang JY, Li TC, Lee TL. Single-cell RNA sequencing identifies molecular targets associated with poor in vitro maturation performance of oocytes collected from ovarian stimulation. Hum Reprod 2021; 36:1907-1921. [PMID: 34052851 DOI: 10.1093/humrep/deab100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION What is the transcriptome signature associated with poor performance of rescue IVM (rIVM) oocytes and how can we rejuvenate them? SUMMARY ANSWER The GATA-1/CREB1/WNT signalling axis was repressed in rIVM oocytes, particularly those of poor quality; restoration of this axis may produce more usable rIVM oocytes. WHAT IS KNOWN ALREADY rIVM aims to produce mature oocytes (MII) for IVF through IVM of immature oocytes collected from stimulated ovaries. It is not popular due to limited success rate in infertility treatment. Genetic aberrations, cellular stress and the absence of cumulus cell support in oocytes could account for the failure of rIVM. STUDY DESIGN, SIZE, DURATION We applied single-cell RNA sequencing (scRNA-seq) to capture the transcriptomes of human in vivo oocytes (IVO) (n = 10) from 7 donors and rIVM oocytes (n = 10) from 10 donors. The effects of maternal age and ovarian responses on rIVM oocyte transcriptomes were also studied. In parallel, we studied the effect of gallic acid on the maturation rate of mouse oocytes cultured in IVM medium with (n = 84) and without (n = 85) gallic acid. PARTICIPANTS/MATERIALS, SETTING, METHODS Human oocytes were collected from donors aged 28-41 years with a body mass index of <30. RNA extraction, cDNA generation, library construction and sequencing were performed in one preparation. scRNA-seq data were then processed and analysed. Selected genes in the rIVM versus IVO comparison were validated by quantitative real-time PCR. For the gallic acid study, we collected immature oocytes from 5-month-old mice and studied the effect of 10-μM gallic acid on their maturation rate. MAIN RESULTS AND THE ROLE OF CHANCE The transcriptome profiles of rIVM/IVO oocytes showed distinctive differences. A total of 1559 differentially expressed genes (DEGs, genes with at least 2-fold change and adjusted P < 0.05) were found to be enriched in metabolic processes, biosynthesis and oxidative phosphorylation. Among these DEGs, we identified a repression of WNT/β-catenin signalling in rIVM when compared with IVO oocytes. We found that oestradiol levels exhibited a significant age-independent correlation with the IVO mature oocyte ratio (MII ratio) for each donor. rIVM oocytes from women with a high MII ratio were found to have over-represented cellular processes such as anti-apoptosis. To further identify targets that contribute to the poor clinical outcomes of rIVM, we compared oocytes collected from young donors with a high MII ratio with oocytes from donors of advanced maternal age and lower MII ratio, and revealed that CREB1 is an important regulator. Thus, our study identified that GATA-1/CREB1/WNT signalling was repressed in both rIVM oocytes versus IVO oocytes and in rIVM oocytes of lower versus higher quality. Consequently we investigated gallic acid, as a potential antioxidant substrate in human rIVM medium, and found that it increased the mouse oocyte maturation rate by 31.1%. LARGE SCALE DATA Raw data from this study can be accessed through GSE158539. LIMITATIONS, REASONS FOR CAUTION In the rIVM oocytes of the high- and low-quality comparison, the number of samples was limited after data filtering with stringent selection criteria. For the oocyte stage identification, we were unable to predict the presence of oocyte spindle, so polar body extrusion was the only indicator. WIDER IMPLICATIONS OF THE FINDINGS This study showed that GATA-1/CREB1/WNT signalling was repressed in rIVM oocytes compared with IVO oocytes and was further downregulated in low-quality rIVM oocytes, providing us the foundation of subsequent follow-up research on human oocytes and raising safety concerns about the clinical use of rescued oocytes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Collaborative Research Fund, Research Grants Council, C4054-16G, and Research Committee Funding (Research Sustainability of Major RGC Funding Schemes), The Chinese University of Hong Kong. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- A W T Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - J K W Ng
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - J Liao
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - A C Luk
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - A H C Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - T T H Chan
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - M Y Cheung
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - H T Chu
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - N L S Tang
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - M P Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Q Lian
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - W Y Chan
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - D Y L Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - T Y Leung
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - K L Chow
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong SAR, PR China.,Division of Life Science, Hong Kong University of Science and Technology, Shatin, N.T., Hong Kong SAR, PR China
| | - W Wang
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - L H Wang
- Institute of Molecular and Cellular Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - N C H Chen
- Department of Infertility and Reproductive Medicine, Taiwan IVF Group Center, Hsinchu City, Taiwan
| | - W J Yang
- Department of Infertility and Reproductive Medicine, Taiwan IVF Group Center, Hsinchu City, Taiwan
| | - J Y Huang
- Department of Infertility and Reproductive Medicine, Taiwan IVF Group Center, Hsinchu City, Taiwan
| | - T C Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - T L Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| |
Collapse
|
15
|
Review: Vaspin (SERPINA12) Expression and Function in Endocrine Cells. Cells 2021; 10:cells10071710. [PMID: 34359881 PMCID: PMC8307435 DOI: 10.3390/cells10071710] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 01/31/2023] Open
Abstract
Proper functioning of the body depends on hormonal homeostasis. White adipose tissue is now known as an endocrine organ due to the secretion of multiple molecules called adipokines. These proteins exert direct effects on whole body functions, including lipid metabolism, angiogenesis, inflammation, and reproduction, whereas changes in their level are linked with pathological events, such as infertility, diabetes, and increased food intake. Vaspin-visceral adipose tissue-derived serine protease inhibitor, or SERPINA12 according to serpin nomenclature, is an adipokine discovered in 2005 that is connected to the development of insulin resistance, obesity, and inflammation. A significantly higher amount of vaspin was observed in obese patients. The objective of this review was to summarize the latest findings about vaspin expression and action in endocrine tissues, such as the hypothalamus, pituitary gland, adipose tissue, thyroid, ovary, placenta, and testis, as well as discuss the link between vaspin and pathologies connected with hormonal imbalance.
Collapse
|
16
|
Jin J, Ma Y, Tong X, Yang W, Dai Y, Pan Y, Ren P, Liu L, Fan HY, Zhang Y, Zhang S. Metformin inhibits testosterone-induced endoplasmic reticulum stress in ovarian granulosa cells via inactivation of p38 MAPK. Hum Reprod 2021; 35:1145-1158. [PMID: 32372097 PMCID: PMC7259369 DOI: 10.1093/humrep/deaa077] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Does metformin inhibit excessive androgen-induced endoplasmic reticulum (ER) stress in mouse granulosa cells (GCs) in vivo and in vitro? SUMMARY ANSWER Metformin inhibits testosterone-induced ER stress and unfolded protein response (UPR) activation by suppressing p38 MAPK phosphorylation in ovarian GCs. WHAT IS KNOWN ALREADY Polycystic ovary syndrome (PCOS) is associated with hyperandrogenism. Excessive testosterone induces ER stress and UPR activation in human cumulus cells, leading to cell apoptosis. Metformin has potential inhibitory effects on ER stress and UPR activation, as demonstrated in human pancreatic beta cells and obese mice. STUDY DESIGN, SIZE, DURATION Cumulus cells and follicular fluid were collected from 25 women with PCOS and 25 controls at our IVF centre. A dihydrotestosterone (DHT)-induced PCOS mouse model was constructed and treated with or without metformin. Primary mouse GCs and cumulus-oocyte complexes (COCs) were cultured with testosterone, metformin, a p38 MAPK inhibitor, or p38 MAPK small interfering RNA. PARTICIPANTS/MATERIALS, SETTING, METHODS The levels of UPR sensor proteins and UPR-related genes were measured in cumulus cells from PCOS and control patients by real-time quantitative PCR (qPCR) and western blot. The ovaries, oocytes, GCs and COCs were collected from PCOS mice treated with metformin and controls. The expressions of ER stress markers and p38 MAPK phosphorylation were assessed by qPCR, western blot and immunofluorescence. A subsequent in vitro analysis with primary cultured GCs and COCs was used to confirm the influence of metformin on ER stress activation by qPCR and western blot. Finally, the effects of ER stress activation on GCs and COCs in relation to LH responsiveness were examined by qPCR and COC expansion. MAIN RESULTS AND THE ROLE OF CHANCE The expression of the ER stress markers GRP78, CHOP and XBP1s in the cumulus cells was higher in PCOS patients than in control patients, as were the levels of the UPR sensor proteins p-IRE1α, p-EIF2α and GRP78. Compared to those of control mice, the ovaries, GCs and COCs of DHT-treated PCOS mice showed increased levels of ER stress marker genes and proteins. Hyperandrogenism in PCOS mouse ovaries also induced p38 MAPK phosphorylation in COCs and GCs. Metformin inhibited ER stress activation was associated with decreased p-p38 MAPK levels. In vitro experiments, testosterone-induced ER stress was mitigated by metformin or p38 MAPK inhibition in primary cultured GCs and COCs. COCs expanded rapidly in the presence of testosterone during LH administration, and ovulation-related genes, namely, Areg, Ereg, Ptgs2, Sult1e1, Ptx3 and Tnfaip6, were strongly expressed in the COCs and GCs. These effects were reversed by treatment with metformin, an ER stress inhibitor or by knockdown of p38 MAPK. LIMITATIONS, REASONS FOR CAUTION The number of PCOS patients in this study was small. WIDER IMPLICATIONS OF THE FINDINGS This study provides further evidence for metformin as a PCOS treatment. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the National Key Research and Developmental Program of China (2018YFC1004800), the Key Research and Development Program of Zhejiang Province (2017C03022), the Zhejiang Province Medical Science and Technology Plan Project (2017KY085, 2018KY457), the National Natural Science Foundation of China (31701260, 81401264, 81701514), and the Special Funds for Clinical Medical Research of the Chinese Medical Association (16020320648). The authors report no conflict of interest in this work and have nothing to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Liu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Heng-Yu Fan
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China.,Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, 310016, Hangzhou, China
| |
Collapse
|
17
|
Gualtieri R, Kalthur G, Barbato V, Di Nardo M, Adiga SK, Talevi R. Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproductive Cells. Antioxidants (Basel) 2021; 10:antiox10030337. [PMID: 33668300 PMCID: PMC7996228 DOI: 10.3390/antiox10030337] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria, fundamental organelles in cell metabolism, and ATP synthesis are responsible for generating reactive oxygen species (ROS), calcium homeostasis, and cell death. Mitochondria produce most ROS, and when levels exceed the antioxidant defenses, oxidative stress (OS) is generated. These changes may eventually impair the electron transport chain, resulting in decreased ATP synthesis, increased ROS production, altered mitochondrial membrane permeability, and disruption of calcium homeostasis. Mitochondria play a key role in the gamete competence to facilitate normal embryo development. However, iatrogenic factors in assisted reproductive technologies (ART) may affect their functional competence, leading to an abnormal reproductive outcome. Cryopreservation, a fundamental technology in ART, may compromise mitochondrial function leading to elevated intracellular OS that decreases sperm and oocytes' competence and the dynamics of fertilization and embryo development. This article aims to review the role played by mitochondria and ROS in sperm and oocyte function and the close, biunivocal relationships between mitochondrial damage and ROS generation during cryopreservation of gametes and gonadal tissues in different species. Based on current literature, we propose tentative hypothesis of mechanisms involved in cryopreservation-associated mitochondrial dysfunction in gametes, and discuss the role played by antioxidants and other agents to retain the competence of cryopreserved reproductive cells and tissues.
Collapse
Affiliation(s)
- Roberto Gualtieri
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
- Correspondence:
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India; (G.K.); (S.K.A.)
| | - Vincenza Barbato
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| | - Maddalena Di Nardo
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India; (G.K.); (S.K.A.)
- Centre for Fertility Preservation, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Riccardo Talevi
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| |
Collapse
|
18
|
Harada M, Takahashi N, Azhary JM, Kunitomi C, Fujii T, Osuga Y. Endoplasmic reticulum stress: a key regulator of the follicular microenvironment in the ovary. Mol Hum Reprod 2021; 27:gaaa088. [PMID: 33543293 DOI: 10.1093/molehr/gaaa088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Intra-ovarian local factors regulate the follicular microenvironment in coordination with gonadotrophins, thus playing a crucial role in ovarian physiology as well as pathological states such as polycystic ovary syndrome (PCOS). One recently recognized local factor is endoplasmic reticulum (ER) stress, which involves the accumulation of unfolded or misfolded proteins in the ER related to various physiological and pathological conditions that increase the demand for protein folding or attenuate the protein-folding capacity of the organelle. ER stress results in activation of several signal transduction cascades, collectively termed the unfolded protein response (UPR), which affect a wide variety of cellular functions. Recent studies have revealed diverse roles of ER stress in physiological and pathological conditions in the ovary. In this review, we summarize the most current knowledge of the regulatory roles of ER stress in the ovary, in the context of reproduction. The physiological roles of ER stress and the UPR in the ovary remain largely undetermined. On the contrary, activation of ER stress is known to impair follicular and oocyte health in various pathological conditions; moreover, ER stress also contributes to the pathogenesis of several ovarian diseases, including PCOS. Finally, we discuss the potential of ER stress as a novel therapeutic target. Inhibition of ER stress or UPR activation, by treatment with existing chemical chaperones, lifestyle intervention, or the development of small molecules that target the UPR, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Jerilee Mk Azhary
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8655, Japan
| |
Collapse
|
19
|
Wang Q, Ma X, Zhang C. Effects of thyroid hormone on ovarian cell apoptosis in the rat. Reprod Fertil Dev 2020; 32:1060-1066. [PMID: 32758353 DOI: 10.1071/rd20110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Follicle development is a complicated process regulated by thyroid hormone (TH). TH dysregulation is associated with reproductive disorders; however, the mechanism underlying these relationships remains unclear. Glucose-related protein 78 (GRP78) is a well-characterised endoplasmic reticulum stress protein related to ovarian cell apoptosis. To clarify whether GRP78 is regulated by TH and the involvement of GRP78 in follicle development, we established rat models of hypothyroidism and hyperthyroidism and investigated the effects of TH dysregulation on levels of GRP78, C/EBP homologous protein (CHOP) and cleaved caspase-3. TH dysregulation decreased levels of GRP78 and increased those of CHOP and cleaved caspase-3 in both rat models. However, treatment with equine chorionic gonadotrophin reversed these effects, as well as granulosa cell apoptosis induced by TH dysregulation. Together, these results provide evidence that TH dysregulation alters the GRP78 expression profile, triggering the apoptotic signalling pathway, and suggest that GRP78 is a novel mediator of TH in follicle development.
Collapse
Affiliation(s)
- Qiaozhi Wang
- College of Life Science, Capital Normal University, Beijing 100048, P.R. China
| | - Xiaoshu Ma
- College of Life Science, Capital Normal University, Beijing 100048, P.R. China
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, P.R. China; and Corresponding author.
| |
Collapse
|
20
|
Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 785:108320. [PMID: 32800274 DOI: 10.1016/j.mrrev.2020.108320] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022]
Abstract
It is well established that maternal age is associated with a rapid decline in the production of healthy and high-quality oocytes resulting in reduced fertility in women older than 35 years of age. In particular, chromosome segregation errors during meiotic divisions are increasingly common and lead to the production of oocytes with an incorrect number of chromosomes, a condition known as aneuploidy. When an aneuploid oocyte is fertilized by a sperm it gives rise to an aneuploid embryo that, except in rare situations, will result in a spontaneous abortion. As females advance in age, they are at higher risk of infertility, miscarriage, or having a pregnancy affected by congenital birth defects such as Down syndrome (trisomy 21), Edwards syndrome (trisomy 18), and Turner syndrome (monosomy X). Here, we review the potential molecular mechanisms associated with increased chromosome segregation errors during meiosis as a function of maternal age. Our review shows that multiple exogenous and endogenous factors contribute to the age-related increase in oocyte aneuploidy. Specifically, the weight of evidence indicates that recombination failure, cohesin deterioration, spindle assembly checkpoint (SAC) disregulation, abnormalities in post-translational modification of histones and tubulin, and mitochondrial dysfunction are the leading causes of oocyte aneuploidy associated with maternal aging. There is also growing evidence that dietary and other bioactive interventions may mitigate the effect of maternal aging on oocyte quality and oocyte aneuploidy, thereby improving fertility outcomes. Maternal age is a major concern for aneuploidy and genetic disorders in the offspring in the context of an increasing proportion of mothers having children at increasingly older ages. A better understanding of the mechanisms associated with maternal aging leading to aneuploidy and of intervention strategies that may mitigate these detrimental effects and reduce its occurrence are essential for preventing abnormal reproductive outcomes in the human population.
Collapse
Affiliation(s)
- Myy Mikwar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada
| | - Amanda J MacFarlane
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada
| | - Francesco Marchetti
- Department of Biology, Carleton University, Ottawa, Ontario, Canada; Mechanistic Studies Division, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
21
|
Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 2020; 157:R159-R179. [PMID: 30870807 DOI: 10.1530/rep-18-0431] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria, originally of bacterial origin, are highly dynamic organelles that have evolved a symbiotic relationship within eukaryotic cells. Mitochondria undergo dynamic, stage-specific restructuring and redistribution during oocyte maturation and preimplantation embryo development, necessary to support key developmental events. Mitochondria also fulfil a wide range of functions beyond ATP synthesis, including the production of intracellular reactive oxygen species and calcium regulation, and are active participants in the regulation of signal transduction pathways. Communication between not only mitochondria and the nucleus, but also with other organelles, is emerging as a critical function which regulates preimplantation development. Significantly, perturbations and deficits in mitochondrial function manifest not only as reduced quality and/or poor oocyte and embryo development but contribute to post-implantation failure, long-term cell function and adult disease. A growing body of evidence indicates that altered availability of metabolic co-factors modulate the activity of epigenetic modifiers, such that oocyte and embryo mitochondrial activity and dynamics have the capacity to establish long-lasting alterations to the epigenetic landscape. It is proposed that preimplantation embryo development may represent a sensitive window during which epigenetic regulation by mitochondria is likely to have significant short- and long-term effects on embryo, and offspring, health. Hence, mitochondrial integrity, communication and metabolism are critical links between the environment, the epigenome and the regulation of embryo development.
Collapse
Affiliation(s)
- Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Guo C, Ma W, Fan D, Ma Y, Liu L. Non spontaneous vaginal delivery was associated with lower probability of subsequent fertility. Eur J Obstet Gynecol Reprod Biol 2020; 248:30-36. [PMID: 32172023 DOI: 10.1016/j.ejogrb.2020.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Previous systematic reviews have reported that cesarean birth is associated with reduced rate of subsequent fertility. However, other common mode of delivery was poorly understood. The aim of this study was to systematically investigate the subsequent fertility in patients having different modes of non-spontaneous vaginal delivery, if compared to normal vaginal delivery. STUDY DESIGNS Medline (via PubMed), Web of Science, Embase (via Dialog), CENTRAL (via Cochrane Library), ScienceDirect (via Elsevier) and ClinicalTrial.gov were searched up to October 2019, without language restrictions in this systematic review and meta-analysis. Articles assessing the mode of delivery and subsequent fertility were included. Quality assessment was evaluated using the nine-point Newcastle Ottawa Scale by two independent reviewers. RESULTS Twenty-one articles, including 4,423,544 women of reproductive age, were included. Results showed that women had a 9% (RR: 0.91 [95 %CI 0.88, 0.94]) lower probability of subsequent fertility in primary cesarean birth group, compared with spontaneous vaginal delivery. Further analysis discovered that a 13 % (0.87, [0.85, 0.90]) lower probability of subsequent fertility was observed in women delivered by emergency cesarean birth, a 14 % (0.86, [0.82, 0.91) lower probability by elective cesarean birth, a 39 % (0.61, [0.57, 0.66]) by maternal-requested cesarean birth, and a 2% (0.98, [0.97, 1.00]) by instrumental vaginal delivery. CONCLUSIONS Non-spontaneous vaginal delivery may be associated with lower probability of subsequent fertility. Decision makers and obstetricians should be cautious when choosing the mode of delivery.
Collapse
Affiliation(s)
- Congcong Guo
- Reproductive Medicine Center, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Wenmin Ma
- Reproductive Medicine Center, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal & Child Health Hospital of Foshan, Foshan, Guangdong, 528000, China.
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Li Liu
- Department of Library, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
23
|
Bayram A, De Munck N, Elkhatib I, Arnanz A, Liñán A, Lawrenz B, Fatemi HM. Cleavage stage mitochondrial DNA is correlated with preimplantation human embryo development and ploidy status. J Assist Reprod Genet 2019; 36:1847-1854. [PMID: 31292817 PMCID: PMC6730730 DOI: 10.1007/s10815-019-01520-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To evaluate whether the mitoscore of cleavage stage embryos might correlate with developmental kinetics and the ploidy status. MATERIALS This retrospective single-center study involved all cycles between April 2016 and April 2018 in which preimplantation genetic testing for aneuploidy (PGT-A) on day 3 was performed. The mitochondrial DNA (mtDNA) content and embryo ploidy were determined on 375 single blastomere biopsies by next generation sequencing (NGS). After intracytoplasmic sperm injection, a time-lapse imaging system (embryoscope) was used to follow the development. The median mtDNA content of cleavage stage embryos (49.4) was used to stratify the embryos into two groups to compare embryo development and ploidy status: low mitoscore group (≤ 49.4) and high mitoscore group (> 49.4). RESULTS The total number of euploid embryos was equal between both mitoscore groups (32.1% versus 33.5%; p = 0.854). However, embryos in the low mitoscore group had a significantly higher cell number on day 3 (8.13 ± 1.59 versus 7.62 ± 1.5; p = 0.0013) and showed a significantly faster development up until the 8-cell stage. Mitoscore was not different between euploid and aneuploid embryos, with the same blastomere number at the time of biopsy. Furthermore, absence of cavitation within 118 h after insemination was correlated with higher mitoscore values (60.22 ± 42.23 versus 50.97 ± 13.37; p = 0.006) and a lower chance of being euploid (17.1% versus 47.4%; p = 0.001). CONCLUSION mtDNA content of cleavage stage embryos correlates with time-lapse parameters. Early blastulation is correlated with a lower mtDNA content and a higher chance of euploidy.
Collapse
Affiliation(s)
- Aşina Bayram
- IVIRMA Middle East Fertility Clinic, Abu Dhabi, United Arab Emirates.
| | - Neelke De Munck
- IVIRMA Middle East Fertility Clinic, Abu Dhabi, United Arab Emirates
| | - Ibrahim Elkhatib
- IVIRMA Middle East Fertility Clinic, Abu Dhabi, United Arab Emirates
| | - Ana Arnanz
- IVIRMA Middle East Fertility Clinic, Abu Dhabi, United Arab Emirates
| | - Alberto Liñán
- IVIRMA Middle East Fertility Clinic, Abu Dhabi, United Arab Emirates
| | - Barbara Lawrenz
- IVIRMA Middle East Fertility Clinic, Abu Dhabi, United Arab Emirates
- Obstetrical Department, Women's University Hospital Tuebingen, Tübingen, Germany
| | - Human M Fatemi
- IVIRMA Middle East Fertility Clinic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
De Munck N, Liñán A, Elkhatib I, Bayram A, Arnanz A, Rubio C, Garrido N, Lawrenz B, Fatemi HM. mtDNA dynamics between cleavage-stage embryos and blastocysts. J Assist Reprod Genet 2019; 36:1867-1875. [PMID: 31392663 PMCID: PMC6730967 DOI: 10.1007/s10815-019-01544-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022] Open
Abstract
PURPOSE The aim was to evaluate mtDNA content and its dynamics in euploid and aneuploid embryos from cleavage to blastocyst stage following consecutive biopsies. The effect of female age on mtDNA content was evaluated by comparing reproductively younger (≤ 37 years) with older (> 37 years) women. METHODS A retrospective single-centre descriptive study was performed between August 2016 and January 2017. Forty patients, with 112 embryos, undergoing preimplantation genetic testing for aneuploidies (PGT-A) by next-generation sequencing (NGS) were included. Embryos that reached the blastocyst stage and were not selected for fresh embryo transfer were included following consecutive biopsies of a single blastomere on day 3 and trophectoderm biopsy of day 5 blastocysts. RESULTS Cleavage-stage mtDNA was significantly lower in fast cleaving embryos (p = 0.016). Based on the concordance between day 3 and day 5 biopsies, a difference was identified in blastocyst mtDNA content between groups (p = 0.019); true euploid blastocysts presented a lower mtDNA content. No association was identified between cleavage-stage mtDNA content and ploidy status (OR 1.008 [0.981-1.036], p = 0.565) nor between blastocyst mtDNA content and ploidy outcome (OR 0.954 [0.898-1.014], p = 0.129). No difference was found when comparing mtDNA content and ploidy outcome between the two reproductive age groups (p = 0.505 (cleavage stage) and p = 0.774 (blastocyst)). CONCLUSION Mitochondrial DNA content of cleavage-stage embryos and blastocysts is unable to predict ploidy status. Subgroup analysis based on ploidy concordance between day 3 and day 5 revealed a significantly lower mtDNA content for true euploid blastocysts. Reproductive ageing does not affect mtDNA content.
Collapse
Affiliation(s)
- Neelke De Munck
- IVIRMA Middle East Fertility Clinic, Marina Village, Villa B22-23, Abu Dhabi, United Arab Emirates
| | - Alberto Liñán
- IVIRMA Middle East Fertility Clinic, Marina Village, Villa B22-23, Abu Dhabi, United Arab Emirates
- IVIRMA Middle East Fertility Clinic, Muscat, Sultanate of Oman
| | - Ibrahim Elkhatib
- IVIRMA Middle East Fertility Clinic, Marina Village, Villa B22-23, Abu Dhabi, United Arab Emirates
- IVIRMA Middle East Fertility Clinic, Muscat, Sultanate of Oman
| | - Aşina Bayram
- IVIRMA Middle East Fertility Clinic, Marina Village, Villa B22-23, Abu Dhabi, United Arab Emirates
| | - Ana Arnanz
- IVIRMA Middle East Fertility Clinic, Marina Village, Villa B22-23, Abu Dhabi, United Arab Emirates
| | | | - Nicolas Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Barbara Lawrenz
- IVIRMA Middle East Fertility Clinic, Marina Village, Villa B22-23, Abu Dhabi, United Arab Emirates
- Obstetrical Department, Women’s University Hospital Tuebingen, Tuebingen, Germany
| | - Human M. Fatemi
- IVIRMA Middle East Fertility Clinic, Marina Village, Villa B22-23, Abu Dhabi, United Arab Emirates
- IVIRMA Middle East Fertility Clinic, Muscat, Sultanate of Oman
| |
Collapse
|
25
|
Chen M, Wong SL, Wu LL, Gordon YE, Heilbronn LK, Robker RL. Differential impacts of gonadotrophins, IVF and embryo culture on mouse blastocyst development. Reprod Biomed Online 2019; 39:372-382. [PMID: 31109895 DOI: 10.1016/j.rbmo.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/08/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
RESEARCH QUESTION Conception via assisted reproductive technology (ART) increases the risk of type 2 diabetes and cardiovascular disease in adulthood. Underlying differences between ART-conceived and in-vivo-conceived embryos that contribute to this increased risk are, however, not known. DESIGN This study examined the developmental characteristics of mouse blastocysts derived from ART- compared with in-vivo-conceived embryos. To determine the effect of ovarian stimulation versus IVF versus in-vitro embryo culture on phenotype, six distinct groups of blastocysts were generated. Female mice were naturally cycling or treated with high or mild doses of gonadotrophin, followed by natural mating or IVF under clinical conditions. Embryo morphokinetics were assessed by continuous time-lapse monitoring. Cell lineage allocation to the inner cell mass (Oct4+) or trophectoderm (Cdx2+) was determined by immunohistochemistry, and mitochondrial DNA (mtDNA) copy number was measured by quantitative PCR. RESULTS Ovarian stimulation increased embryo number but reduced the percentage of blastocysts. Morphokinetic analysis showed that gonadotrophin treatment led to advanced development (P < 0.05) due to earlier post-pronuclear breakdown. The blastocyst rate was reduced in IVF embryos compared with those fertilized in vivo before culture (P < 0.001). Morphokinetics showed that embryo development was slower in all the IVF groups (P < <0.05), due to a delay from the 3-cell stage. A reduced total and trophectoderm cell number was observed in all groups of cultured blastocysts compared with naturally conceived blastocysts (P < 0.01). Gonadotrophin treatment did not affect the blastocyst mtDNA copy number; however, IVF embryos exhibited reduced mtDNA copy number compared with naturally conceived embryos. CONCLUSION Ovarian stimulation, IVF and in-vitro culture differentially impair blastocyst developmental kinetics, differentiation and mtDNA copy number.
Collapse
Affiliation(s)
- Miaoxin Chen
- Robinson Research Institute, University of Adelaide, Australia; Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine Shanghai, China
| | - Siew L Wong
- Robinson Research Institute, University of Adelaide, Australia
| | - Linda L Wu
- Robinson Research Institute, University of Adelaide, Australia
| | - Yasmyn E Gordon
- Robinson Research Institute, University of Adelaide, Australia
| | | | | |
Collapse
|
26
|
Xu HY, Geng SS, Li TT, Fu Q, Lu SS, Liang XW, Lu YQ, Zhang M, Yang XG, Lu KH. Maturation of buffalo oocytes in vitro with acetyl-L-carnitine improves cryotolerance due to changes in mitochondrial function and the membrane lipid profile. Reprod Fertil Dev 2019; 31:386-394. [DOI: 10.1071/rd18102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022] Open
Abstract
The effects of acetyl-l-carnitine (ALC) supplementation during IVM on subsequently vitrified buffalo oocytes were evaluated, followed by determination of the mitochondrial DNA copy number, measurement of mitochondrial membrane potential (MMP) and identification of the lipid profile of oocyte membranes as markers of oocyte quality after vitrification. Supplementation with ALC during IVM significantly improved the rates of oocyte cleavage and morula and blastocyst formation, and increased MMP after vitrification compared with unsupplemented vitrified oocytes (P<0.05). Using a bidirectional orthogonal projection to latent structures discriminant analysis based on positive ion matrix-assisted laser desorption ionisation time-of-flight mass spectrometry data, five phospholipid ions (m/z 728.7 (phosphatidylcholine (PC) 32:3), 746.9 (PC 32:5), 760.6 (PC 34:1), 768.8 (PC P-36:3) and 782.6 (PC 36:4); P<0.05) were identified as significantly more abundant in fresh oocytes than in unsupplemented vitrified oocytes. Meanwhile, three phospholipid ions (m/z 734.6 (PC 32:0), 760.6 (PC 34:1), and 782.6 (PC 36:4); P<0.05) were more abundant in ALC-supplemented vitrified oocytes than in unsupplemented vitrified oocytes. Therefore, supplementation with ALC during IVM may improve buffalo oocyte quality after vitrification by enhancing mitochondrial function and altering the phospholipid composition of vitrified oocyte membranes.
Collapse
|
27
|
Srirattana K, St John JC. Transmission of Dysfunctional Mitochondrial DNA and Its Implications for Mammalian Reproduction. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2019; 231:75-103. [PMID: 30617719 DOI: 10.1007/102_2018_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes proteins for the electron transport chain which produces the vast majority of cellular energy. MtDNA has its own replication and transcription machinery that relies on nuclear-encoded transcription and replication factors. MtDNA is inherited in a non-Mendelian fashion as maternal-only mtDNA is passed onto the next generation. Mutation to mtDNA can cause mitochondrial dysfunction, which affects energy production and tissue and organ function. In somatic cell nuclear transfer (SCNT), there is an issue with the mixing of two populations of mtDNA, namely from the donor cell and recipient oocyte. This review focuses on the transmission of mtDNA in SCNT embryos and offspring. The transmission of donor cell mtDNA can be prevented by depleting the donor cell of its mtDNA using mtDNA depletion agents prior to SCNT. As a result, SCNT embryos harbour oocyte-only mtDNA. Moreover, culturing SCNT embryos derived from mtDNA depleted cells in media supplemented with a nuclear reprograming agent can increase the levels of expression of genes related to embryo development when compared with non-depleted cell-derived embryos. Furthermore, we have reviewed how mitochondrial supplementation in oocytes can have beneficial effects for SCNT embryos by increasing mtDNA copy number and the levels of expression of genes involved in energy production and decreasing the levels of expression of genes involved in embryonic cell death. Notably, there are beneficial effects of mtDNA supplementation over the use of nuclear reprograming agents in terms of regulating gene expression in embryos. Taken together, manipulating mtDNA in donor cells and/or oocytes prior to SCNT could enhance embryo production efficiency.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Mitochondrial Genetics Group, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Justin C St John
- Mitochondrial Genetics Group, Hudson Institute of Medical Research, Clayton, VIC, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
28
|
The activated DNA double-strand break repair pathway in cumulus cells from aging patients may be used as a convincing predictor of poor outcomes after in vitro fertilization-embryo transfer treatment. PLoS One 2018; 13:e0204524. [PMID: 30235328 PMCID: PMC6147527 DOI: 10.1371/journal.pone.0204524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/10/2018] [Indexed: 01/17/2023] Open
Abstract
Women with advanced maternal age exhibit low anti-Müllerian hormone (AMH) levels and an altered follicular environment, which is associated with poor oocyte quality and embryonic developmental potential. However, the underlying mechanism is poorly understood. The present study aimed to assesswhether aging patients exhibit an activated DNA double-strandbreak (DSB) repair pathway in cumulus cells and thus, an association with poor outcomes after in vitro fertilization-embryo transfer (IVF-ET) treatment. Cumulus cells from young (≤29 y) and aging (≥37 y) human female patients were collected after oocyte retrieval. Our results indicated that aging patients showed a higher rate of γ-H2AX-positive cells than in young patients (24.33±4.55 vs.12.40±2.31, P<0.05). We also found that the mRNA expression levels of BRCA1, ATM, MRE11 and RAD51 were significantly elevated in aging cumulus cells. Accordingly, significantly increased protein levels of phospho-H2AX, BRCA1, ATM, MRE11 and RAD51 could be observed in aging cumulus cells. Moreover, aging cumulus cells showed a more frequent occurrence of early apoptosis than young cumulus cells. This study found that increases in DSBs and the activation of the repair pathway are potential indicators that may be used to predictoutcomes after IVF-ET treatment.
Collapse
|
29
|
McLay LK, Nagarajan-Radha V, Green MP, Jones TM. Dim artificial light at night affects mating, reproductive output, and reactive oxygen species inDrosophila melanogaster. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:419-428. [DOI: 10.1002/jez.2164] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/06/2018] [Accepted: 04/01/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Lucy Katherine McLay
- School of BioSciences, Faculty of Science; The University of Melbourne; Melbourne Victoria Australia
| | | | - Mark Philip Green
- School of BioSciences, Faculty of Science; The University of Melbourne; Melbourne Victoria Australia
| | - Therésa Melanie Jones
- School of BioSciences, Faculty of Science; The University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
30
|
Embryonal mitochondrial DNA: relationship to embryo quality and transfer outcomes. J Assist Reprod Genet 2018; 35:871-877. [PMID: 29508122 DOI: 10.1007/s10815-018-1147-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/25/2018] [Indexed: 12/27/2022] Open
Abstract
PURPOSE The aim was to study the association between embryonal mitochondrial DNA (mtDNA) content and embryo quality and implantation outcomes. METHODS A retrospective chart review was performed with data collected from a private IVF center database. The study population included female infertility patients with ages ranging from 31 to 38 years old, and the main outcome measures were embryo quality and transfer outcomes. RESULTS From a total of 1510 blastocyst biopsies, the majority of embryos consisted of grade 1 (High), followed by grade 2 (mid), and grade 3 (poor). Embryos with higher mtDNA content were found to be of poorer quality (grade 3) relative to grades 1 and 2 (P = 0.003). Using a logistic model, mtDNA best predicted lowest and highest grades, but not mid-grade embryos. There was no correlation between mtDNA content and the subjects' age (R2 = 0.0018). In an analysis of only euploid embryos (N = 717), there was no longer an association between mtDNA content and embryo quality (P = 0.834). There was no difference in mtDNA content between groups of embryos that did and did not implant (P = 0.53). There was also no association noted between mtDNA content and ongoing pregnancy. Compared to day 6, day 5 blastocysts contain significantly higher amounts of mtDNA (P = 0.0005), lower rates of aneuploidy (P < 0.001), and were more likely to be high-quality blastocysts (grade 1) (P < 0.001). CONCLUSION Although the mtDNA content shows some association to the morphologic grade of an embryo, this association does not persist in an analysis of only euploid embryos. Mitochondrial DNA content also does not appear to be associated with implantation or ongoing pregnancy. Day 5 blastocysts have significantly higher mtDNA content compared to day 6 blastocysts.
Collapse
|
31
|
Manipulating the Mitochondrial Genome To Enhance Cattle Embryo Development. G3-GENES GENOMES GENETICS 2017; 7:2065-2080. [PMID: 28500053 PMCID: PMC5499117 DOI: 10.1534/g3.117.042655] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mixing of mitochondrial DNA (mtDNA) from the donor cell and the recipient oocyte in embryos and offspring derived from somatic cell nuclear transfer (SCNT) compromises genetic integrity and affects embryo development. We set out to generate SCNT embryos that inherited their mtDNA from the recipient oocyte only, as is the case following natural conception. While SCNT blastocysts produced from Holstein (Bos taurus) fibroblasts were depleted of their mtDNA, and oocytes derived from Angus (Bos taurus) cattle possessed oocyte mtDNA only, the coexistence of donor cell and oocyte mtDNA resulted in blastocysts derived from nondepleted cells. Moreover, the use of the reprogramming agent, Trichostatin A (TSA), further improved the development of embryos derived from depleted cells. RNA-seq analysis highlighted 35 differentially expressed genes from the comparison between blastocysts generated from nondepleted cells and blastocysts from depleted cells, both in the presence of TSA. The only differences between these two sets of embryos were the presence of donor cell mtDNA, and a significantly higher mtDNA copy number for embryos derived from nondepleted cells. Furthermore, the use of TSA on embryos derived from depleted cells positively modulated the expression of CLDN8, TMEM38A, and FREM1, which affect embryonic development. In conclusion, SCNT embryos produced by mtDNA depleted donor cells have the same potential to develop to the blastocyst stage without the presumed damaging effect resulting from the mixture of donor and recipient mtDNA.
Collapse
|
32
|
Abstract
This review attempts to summarize the known literature on high responders to ovarian stimulation during assisted reproductive techniques (ART). Response to gonadotrophins is subject to significant interindividual and intercycle variation, thus carrying a risk of high response or poor response to ovarian stimulation regimens. The main risk for high responders is the development of ovarian hyperstimulation syndrome (OHSS) which is associated with significant morbidity. Hence, the definition of high responders in the literature has primarily focussed on risk factors for OHSS. Strategies to reduce OHSS including tailoring of the ovarian stimulation regimens and adjusting gonadotrophin doses according to patient characteristics and findings during the cycle of stimulation. In addition, modifying the type of ovulation trigger used and adjuvant therapies, such as metformin, intravenous colloids and vascular endothelial growth factor blockers, have also been studied as options to reduce OHSS. Apart from the risk of OHSS, high response also appears to have an adverse impact on the oocyte and endometrium, though there is a paucity of data regarding the extent and mechanisms behind this impact.
Collapse
Affiliation(s)
- Mariano Mascarenhas
- a Seacroft Hospital , Leeds Centre for Reproductive Medicine , Leeds , United Kingdom
| | - Adam H Balen
- a Seacroft Hospital , Leeds Centre for Reproductive Medicine , Leeds , United Kingdom
| |
Collapse
|
33
|
Roles of Grp78 in Female Mammalian Reproduction. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:129-155. [PMID: 28389754 DOI: 10.1007/978-3-319-51409-3_7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The glucose-regulated protein (GRP78) also referred to as immunoglobulin heavy chain binding protein (Bip) is one of the best characterized endoplasmic reticulum (ER) chaperone proteins, which belongs to the heat-shock protein (HSP) family. GRP78 as a central regulator of ER stress (ERS) plays many important roles in cell survival and apoptosis through controlling the activation of transmembrane ERS sensors: PKR-like ER-associated kinase (PERK), inositol requiring kinase 1 (IRE1), and activating transcription factor 6 (ATF6). Many studies have reported that GRP78 is involved in the physiological and pathological process in female reproduction, including follicular development, corpus luteum (CL), oviduct, uterus, embryo, preimplantation development, implantation/decidualization, and the placenta. The present review summarizes the biological or pathological roles and signaling mechanisms of GRP78 during the reproductive processes. Further study on the functions and mechanisms of GRP78 may provide new insight into mammalian reproduction, which not only enhance the understanding of the physiological roles but also support therapy target against infertility.
Collapse
|
34
|
Hammond ER, McGillivray BC, Wicker SM, Peek JC, Shelling AN, Stone P, Chamley LW, Cree LM. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil Steril 2016; 107:220-228.e5. [PMID: 27865449 DOI: 10.1016/j.fertnstert.2016.10.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To characterize nuclear and mitochondrial DNA (mtDNA) in spent culture media from normally developing blastocysts to determine whether it could be used for noninvasive genetic assessment. DESIGN Prospective embryo cohort study. SETTING Academic center and private in vitro fertilization (IVF) clinic. PATIENT(S) Seventy patients undergoing intracytoplasmic sperm injection (ICSI) and 227 blastocysts. INTERVENTION(S) Culture media assessment, artificial blastocoele fluid collapse and DNA analysis using digital polymerase chain reaction (dPCR), long-range PCR, quantitative PCR (qPCR), and DNA fingerprinting. MAIN OUTCOME MEASURE(S) Presence of nuclear and mtDNA in three different commercial culture media from Vitrolife and Irvine Scientific, spent embryo media assessment at the cleavage and blastocyst stages of development, and analysis of the internal media controls for each patient that had been exposed to identical conditions as embryo media but did not come into contact with embryos. RESULT(S) Higher levels of nuclear and mtDNA were observed in the culture media that had been exposed to embryos compared with the internal media controls. Nuclear DNA (∼4 copies) and mtDNA (∼600 copies) could be detected in spent media, and the levels increased at the blastocyst stage. No increase in DNA was detected after artificial blastocoele fluid collapse. Mixed sex chromosome DNA was detected. This originated from contamination in the culture media and from maternal (cumulus) cells. Due to the limited amount of template, the presence of embryonic nuclear DNA could not be confirmed by DNA fingerprinting analysis. CONCLUSION(S) Currently DNA from culture media cannot be used for genetic assessment because embryo-associated structures release DNA into the culture medium and the DNA is of mixed origin.
Collapse
Affiliation(s)
- Elizabeth R Hammond
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Brent C McGillivray
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sophie M Wicker
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Peter Stone
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Larry W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lynsey M Cree
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Fertility Associates, Auckland, New Zealand.
| |
Collapse
|
35
|
Mattern F, Herrmann D, Heinzmann J, Hadeler KG, Bernal-Ulloa SM, Haaf T, Niemann H. DNA methylation and mRNA expression of developmentally important genes in bovine oocytes collected from donors of different age categories. Mol Reprod Dev 2016; 83:802-814. [PMID: 27567027 DOI: 10.1002/mrd.22692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022]
Abstract
Epigenetic changes are critical for the acquisition of developmental potential by oocytes and embryos, yet these changes may be sensitive to maternal ageing. Here, we investigated the impact of maternal ageing on DNA methylation and mRNA expression in a panel of eight genes that are critically involved in oocyte and embryo development. Bovine oocytes were collected from donors of three different age categories-prepubertal (9-12 months old), mature (3-7 years old), and aged (8-11 years old)-and were analyzed for gene-specific DNA methylation (bTERF2, bREC8, bBCL-XL, bPISD, bBUB1, bDNMT3Lo, bH19, and bSNRPN) and mRNA expression (bTERF2, bBCL-XL, bPISD, and bBUB1). A total of 1,044 alleles with 88,740 CpGs were amplified and sequenced from 362 bovine oocytes. Most of the detected molecules were either fully methylated or completely unmethylated. Only 9 out of 1,044 alleles (<1%) were abnormally methylated (>50% of CpGs with an aberrant methylation status), and seven of the nine abnormally methylated alleles were within only two candidate genes (bDNMT3Lo and bH19). No significant differences were detected with regard to mRNA expression between oocytes from the three groups of donors. These results suggest that genes predominantly important for early embryo development (bH19 and bDNMT3Lo) are less resistant to abnormal methylation than genes critically involved in oocyte development (bTERF2, bBCL-XL, bPISD, bBUB1, and bSNRPN). Establishment of DNA methylation in bovine oocytes seems to be largely resistant to changes caused by maternal ageing, irrespective of whether the genes are critical to achieve developmental competence in oocytes or early embryos. Mol. Reprod. Dev. 83: 802-814, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Felix Mattern
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Doris Herrmann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany
| | - Julia Heinzmann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany
| | | | | | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany.
| |
Collapse
|
36
|
Li R, Liu Y, Chen N, Zhang Y, Song G, Zhang Z. Valproate Attenuates Nitroglycerin-Induced Trigeminovascular Activation by Preserving Mitochondrial Function in a Rat Model of Migraine. Med Sci Monit 2016; 22:3229-37. [PMID: 27618395 PMCID: PMC5029177 DOI: 10.12659/msm.900185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Migraine is a chronic disease that interferes with life quality and work productivity. Valproate shows protective effects against migraine, yet the underlying mechanisms are unclear. This study aimed to evaluate the potential effect of valproate on migraine using a rat model of nitroglycerin-induced trigeminovascular activation, as well as to explore the underlying mechanism. Material/Methods Intraperitoneal injection of nitroglycerin was conducted to induce trigeminovascular activation in rats. To explore the protective effect of valproate, a low dose (100 mg/kg) or a high dose (200 mg/kg) of valproate was intraperitoneally injected into rats, and then the levels of 5-hydroxytryptamine and nitric oxide in the peripheral blood were examined. The mtDNA copy number and the protein levels of peroxisome proliferator-activated receptor-γ coactivator 1α, mitochondrial transcription factor A, and peroxisome proliferator-activated receptor-γ in the spinal trigeminal nucleus were detected to evaluate the biogenesis of mitochondria. The mitochondrial energy metabolism was determined by the mitochondrial membrane potential and the levels of adenosine triphosphate, cytochrome C oxidase, and reactive oxygen species. Results Valproate attenuated nitroglycerin-induced trigeminovascular activation in rats, with reduced scratching behavior and restored 5-hydroxytryptamine and nitric oxide levels. Moreover, the mitochondrial energy metabolism and the biogenesis of mitochondria were preserved by valproate in nitroglycerin-treated rats. Conclusions The protective effect of valproate against migraine may be achieved through the modulation of mitochondrial biogenesis and function. Our study provides evidence for the potential use of valproate in the treatment of migraine.
Collapse
Affiliation(s)
- Ruxian Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yushuang Liu
- Department of Emergency Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China (mainland)
| | - Nan Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yitong Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Ge Song
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
37
|
May-Panloup P, Boucret L, Chao de la Barca JM, Desquiret-Dumas V, Ferré-L'Hotellier V, Morinière C, Descamps P, Procaccio V, Reynier P. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update 2016; 22:725-743. [PMID: 27562289 DOI: 10.1093/humupd/dmw028] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There is a great inter-individual variability of ovarian ageing, and almost 20% of patients consulting for infertility show signs of premature ovarian ageing. This feature, taken together with delayed childbearing in modern society, leads to the emergence of age-related ovarian dysfunction concomitantly with the desire for pregnancy. Assisted reproductive technology is frequently inefficacious in cases of ovarian ageing, thus raising the economic, medical and societal costs of the procedures. OBJECTIVE AND RATIONAL Ovarian ageing is characterized by quantitative and qualitative alteration of the ovarian oocyte reserve. Mitochondria play a central role in follicular atresia and could be the main target of the ooplasmic factors determining oocyte quality adversely affected by ageing. Indeed, the oocyte is the richest cell of the body in mitochondria and depends largely on these organelles to acquire competence for fertilization and early embryonic development. Moreover, the oocyte ensures the uniparental transmission and stability of the mitochondrial genome across the generations. This review focuses on the role played by mitochondria in ovarian ageing and on the possible consequences over the generations. SEARCH METHODS PubMed was used to search the MEDLINE database for peer-reviewed original articles and reviews concerning mitochondria and ovarian ageing, in animal and human species. Searches were performed using keywords belonging to three groups: 'mitochondria' or 'mitochondrial DNA'; 'ovarian reserve', 'oocyte', 'ovary' or 'cumulus cells'; and 'ageing' or 'ovarian ageing'. These keywords were combined with other search phrases relevant to the topic. References from these articles were used to obtain additional articles. OUTCOMES There is a close relationship, in mammalian models and humans, between mitochondria and the decline of oocyte quality with ageing. Qualitatively, ageing-related mitochondrial (mt) DNA instability, which leads to the accumulation of mtDNA mutations in the oocyte, plays a key role in the deterioration of oocyte quality in terms of competence and of the risk of transmitting mitochondrial abnormalities to the offspring. In contrast, some mtDNA haplogroups are protective against the decline of ovarian reserve. Quantitatively, mitochondrial biogenesis is crucial during oogenesis for constituting a mitochondrial pool sufficiently large to allow normal early embryonic development and to avoid the untimely activation of mitochondrial biogenesis. Ovarian ageing also seriously affects the dynamic nature of mitochondrial biogenesis in the surrounding granulosa cells that may provide interesting alternative biomarkers of oocyte quality. WIDER IMPLICATIONS A fuller understanding of the involvement of mitochondria in cases of infertility linked to ovarian ageing would contribute to a better management of the disorder in the future.
Collapse
Affiliation(s)
- Pascale May-Panloup
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France .,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Lisa Boucret
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France.,PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France
| | - Juan-Manuel Chao de la Barca
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Valérie Desquiret-Dumas
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Véronique Ferré-L'Hotellier
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Catherine Morinière
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Philippe Descamps
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Vincent Procaccio
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| | - Pascal Reynier
- PREMMi/Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, Angers, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|
38
|
Otten ABC, Theunissen TEJ, Derhaag JG, Lambrichs EH, Boesten IBW, Winandy M, van Montfoort APA, Tarbashevich K, Raz E, Gerards M, Vanoevelen JM, van den Bosch BJC, Muller M, Smeets HJM. Differences in Strength and Timing of the mtDNA Bottleneck between Zebrafish Germline and Non-germline Cells. Cell Rep 2016; 16:622-30. [PMID: 27373161 DOI: 10.1016/j.celrep.2016.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 04/15/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022] Open
Abstract
We studied the mtDNA bottleneck in zebrafish to elucidate size, timing, and variation in germline and non-germline cells. Mature zebrafish oocytes contain, on average, 19.0 × 10(6) mtDNA molecules with high variation between oocytes. During embryogenesis, the mtDNA copy number decreases to ∼170 mtDNA molecules per primordial germ cell (PGC), a number similar to that in mammals, and to ∼50 per non-PGC. These occur at the same developmental stage, implying considerable variation in mtDNA copy number in (non-)PGCs of the same female, dictated by variation in the mature oocyte. The presence of oocytes with low mtDNA numbers, if similar in humans, could explain how (de novo) mutations can reach high mutation loads within a single generation. High mtDNA copy numbers in mature oocytes are established by mtDNA replication during oocyte development. Bottleneck differences between germline and non-germline cells, due to early differentiation of PGCs, may account for different distribution patterns of familial mutations.
Collapse
Affiliation(s)
- Auke B C Otten
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Tom E J Theunissen
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Josien G Derhaag
- Department of Obstetrics and Gynaecology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Ellen H Lambrichs
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Iris B W Boesten
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Marie Winandy
- Laboratory of Organogenesis and Regeneration, GIGA-Research, Univérsité de Liège, 4000 Liège, Belgium
| | - Aafke P A van Montfoort
- Department of Obstetrics and Gynaecology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Katsiaryna Tarbashevich
- Institute for Cell Biology, Centre for Molecular Biology of Inflammation, Münster University, 48149 Münster, Germany
| | - Erez Raz
- Institute for Cell Biology, Centre for Molecular Biology of Inflammation, Münster University, 48149 Münster, Germany
| | - Mike Gerards
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University Medical Centre, 6200MD, the Netherlands
| | - Jo M Vanoevelen
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Bianca J C van den Bosch
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands
| | - Marc Muller
- Laboratory of Organogenesis and Regeneration, GIGA-Research, Univérsité de Liège, 4000 Liège, Belgium
| | - Hubert J M Smeets
- Department of Genetics and Cell Biology, Clinical Genomics Unit, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, 6200MD Maastricht, the Netherlands; Maastricht Centre for Systems Biology (MaCSBio), Maastricht University Medical Centre, 6200MD, the Netherlands.
| |
Collapse
|
39
|
Hammond ER, Shelling AN, Cree LM. Nuclear and mitochondrial DNA in blastocoele fluid and embryo culture medium: evidence and potential clinical use. Hum Reprod 2016; 31:1653-61. [PMID: 27270971 DOI: 10.1093/humrep/dew132] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/17/2016] [Indexed: 11/12/2022] Open
Abstract
The ability to screen embryos for aneuploidy or inherited disorders in a minimally invasive manner may represent a major advancement for the future of embryo viability assessment. Recent studies have demonstrated that both blastocoele fluid and embryo culture medium contain genetic material, which can be isolated and subjected to downstream genetic analysis. The blastocoele fluid may represent an alternative source of nuclear DNA for aneuploidy testing, although the degree to which the isolated genetic material is solely representative of the developing embryo is currently unclear. In addition to nuclear DNA, mitochondrial DNA (mtDNA) can be detected in the embryo culture medium. Currently, the origin of this nuclear and mtDNA has not been fully evaluated and there are several potential sources of contamination that may contribute to the genetic material detected in the culture medium. There is however evidence that the mtDNA content of the culture medium is related to embryo fragmentation levels and its presence is predictive of blastulation, indicating that embryo development may influence the levels of genetic material detected. If the levels of genetic material are strongly related to aspects of embryo quality, then this may be a novel biomarker of embryo viability. If the genetic material does have an embryo origin, the mechanisms by which DNA may be released into the blastocoele fluid and embryo culture medium are unknown, although apoptosis may play a role. While the presence of this genetic material is an exciting discovery, the DNA in the blastocoele fluid and embryo culture medium appears to be of low yield and integrity, which makes it challenging to study. Further research aimed at assessing the methodologies used for both isolating and analysing this genetic material, as well as tracing its origin, are needed in order to evaluate its potential for clinical use. Should such methodologies prove to be routinely successful and the DNA recovered demonstrated to be embryonic in origin, then they may be used in a minimally invasive and less technical methodology for genetic analysis and embryo viability assessment than those currently available.
Collapse
Affiliation(s)
- Elizabeth R Hammond
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Lynsey M Cree
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand Fertility Associates, Greenlane, Auckland 1051, New Zealand
| |
Collapse
|
40
|
Pawlak P, Chabowska A, Malyszka N, Lechniak D. Mitochondria and mitochondrial DNA in porcine oocytes and cumulus cells — A search for developmental competence marker. Mitochondrion 2016; 27:48-55. [DOI: 10.1016/j.mito.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
|
41
|
Ferreira RM, Chiaratti MR, Macabelli CH, Rodrigues CA, Ferraz ML, Watanabe YF, Smith LC, Meirelles FV, Baruselli PS. The Infertility of Repeat-Breeder Cows During Summer Is Associated with Decreased Mitochondrial DNA and Increased Expression of Mitochondrial and Apoptotic Genes in Oocytes1. Biol Reprod 2016; 94:66. [DOI: 10.1095/biolreprod.115.133017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/29/2016] [Indexed: 11/01/2022] Open
|
42
|
Hammond ER, Green MP, Shelling AN, Berg MC, Peek JC, Cree LM. Oocyte mitochondrial deletions and heteroplasmy in a bovine model of ageing and ovarian stimulation. Mol Hum Reprod 2016; 22:261-71. [PMID: 26792869 DOI: 10.1093/molehr/gaw003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/11/2016] [Indexed: 01/07/2023] Open
Abstract
STUDY HYPOTHESIS Maternal ageing and ovarian stimulation result in the accumulation of mitochondrial DNA (mtDNA) deletions and heteroplasmy in individual oocytes from a novel bovine model for human assisted reproductive technology (ART). STUDY FINDING The levels of mtDNA deletions detected in oocytes increased with ovarian ageing. Low levels of mtDNA heteroplasmy were apparent across oocytes and no relationship was identified with respect to ovarian ageing or ovarian stimulation. WHAT IS KNOWN ALREADY Oocyte quality decreases with ovarian ageing and it is postulated that the mtDNA may have a role in this decline. The impact of ovarian stimulation on oocyte quality is poorly understood. Human studies investigating these effects are often limited by the use of low quality oocytes and embryos, variation in age and ovarian stimulation regimens within the patients studied, as well as genetic and environmental variability. Further, no study has investigated mtDNA heteroplasmy in individual oocytes using next-generation sequencing (NGS), and little is known about whether the oocyte accumulates heteroplasmic mtDNA mutations following ageing or ovarian stimulation. STUDY DESIGN, SAMPLES/MATERIALS, METHODS A novel bovine model for the effect of stimulation and age in human ART was undertaken using cows generated by somatic cell nuclear transfer (SCNT) from one founder, to produce a homogeneous population with reduced genetic and environmental variability. Oocytes and somatic tissues were collected from young (3 years of age; n = 4 females) and old (10 years of age; n = 5 females) cow clones following multiple natural ovarian cycles, as well as oocytes following multiple mild (FSH only) and standard (based on human a long GnRH agonist protocol) ovarian stimulation cycles. In addition, oocytes were recovered in a natural cycle from naturally conceived cows aged 4-13.5 years (n = 10) to provide a heterogeneous cohort for mtDNA deletion studies. The presence or absence of mtDNA deletions were investigated using long-range PCR in individual oocytes (n = 62). To determine the detection threshold for mtDNA heteroplasmy levels in individual oocytes, a novel NGS methodology was validated; artificial mixtures of the Bos taurus and Bos indicus mitochondrial genome were generated at 1, 2, 5, 15 and 50% ratios to experimentally mimic different levels of heteroplasmy. This NGS methodology was then employed to determine mtDNA heteroplasmy levels in single oocytes (n = 24). Oocyte mtDNA deletion and heteroplasmy data were analysed by binary logistic regression with respect to the effects of ovarian ageing and ovarian stimulation regimens. MAIN RESULTS AND THE ROLE OF CHANCE Ovarian ageing, but not ovarian stimulation, increased the number of oocytes exhibiting mtDNA deletions (P = 0.04). A minimum mtDNA heteroplasmy level of 2% was validated as a sensitive (97-100%) threshold for variant detection in individual oocytes using NGS. Few mtDNA heteroplasmies were detected across the individual oocytes, with only 15 oocyte-specific variants confined to two of the 24 oocytes studied. There was no relationship (P > 0.05) evident between ovarian ageing or ovarian stimulation and the presence of mtDNA heteroplasmies. LIMITATIONS, REASON FOR CAUTION The low number of oocytes collected from the natural ovarian cycles limited the analysis. Fertilization and developmental potential of the oocytes was not assessed as the oocytes were destroyed for mtDNA deletion and heteroplasmy analysis. WIDER IMPLICATIONS OF THE FINDINGS If the findings of this model apply to the human, this study suggests that the incidence of mtDNA deletions increases with age, but not with degree of ovarian stimulation, while the frequency of mtDNA heteroplasmies may be low regardless of ovarian ageing or level of ovarian stimulation. STUDY FUNDING AND COMPETING INTERESTS Funding was provided by Fertility Associates, the Nurture Foundation for Reproductive Research, the Fertility Society of Australia, and the Auckland Medical Research Foundation. J.C.P. is a shareholder of Fertility Associates and M.P.G. received a fellowship from Fertility Associates. The other authors of this manuscript declare no conflict of interest that could be perceived as prejudicing the impartiality of the reported research.
Collapse
Affiliation(s)
- Elizabeth R Hammond
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Mark P Green
- AgResearch Ltd, Ruakura Research Centre, Hamilton 3240, New Zealand The Liggins Institute, University of Auckland, Auckland 1023, New Zealand School of BioSciences, University of Melbourne, Parkville, Melbourne 3010, VIC, Australia
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Martin C Berg
- AgResearch Ltd, Ruakura Research Centre, Hamilton 3240, New Zealand
| | - John C Peek
- Fertility Associates, Greenlane, Auckland 1051, New Zealand
| | - Lynsey M Cree
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand Fertility Associates, Greenlane, Auckland 1051, New Zealand
| |
Collapse
|
43
|
Abstract
Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research.
Collapse
|