1
|
Black V, Bafligil C, Greaves E, Zondervan KT, Becker CM, Hellner K. Modelling Endometriosis Using In Vitro and In Vivo Systems. Int J Mol Sci 2025; 26:580. [PMID: 39859296 PMCID: PMC11766166 DOI: 10.3390/ijms26020580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Endometriosis is a chronic inflammatory condition characterised by the presence of endometrium-like tissue outside the uterus. Despite its high prevalence and recent advances in molecular science, many aspects of endometriosis and its pathophysiology are still poorly understood. Previously, in vitro and in vivo modelling have been instrumental in establishing our current understanding of endometriosis. As the field of molecular science and the advance towards personalised medicine is ever increasing, more sophisticated models are continually being developed. These hold great potential to provide more intricate knowledge of the underlying pathophysiology and facilitate investigations into potential future approaches to diagnosis and treatment. This review provides an overview of different in vitro and in vivo models of endometriosis that are pertinent to establishing our current understanding. Moreover, we discuss new cross-cutting approaches to endometriosis modelling, such as the use of microfluidic cultures and 3D printing, which have the potential to shape the future of endometriosis research.
Collapse
Affiliation(s)
- Verity Black
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Women’s Centre, Oxford OX3 9DU, UK; (V.B.); (K.T.Z.); (C.M.B.)
| | - Cemsel Bafligil
- Botnar Research Centre, NIHR Biomedical Research Unit Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Krina T. Zondervan
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Women’s Centre, Oxford OX3 9DU, UK; (V.B.); (K.T.Z.); (C.M.B.)
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christian M. Becker
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Women’s Centre, Oxford OX3 9DU, UK; (V.B.); (K.T.Z.); (C.M.B.)
| | - Karin Hellner
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Women’s Centre, Oxford OX3 9DU, UK; (V.B.); (K.T.Z.); (C.M.B.)
| |
Collapse
|
2
|
Anchan MM, Kalthur G, Datta R, Majumdar K, P K, Dutta R. Unveiling the fibrotic puzzle of endometriosis: An overlooked concern calling for prompt action. F1000Res 2024; 13:721. [PMID: 39669683 PMCID: PMC11635194 DOI: 10.12688/f1000research.152368.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Endometriosis is a benign, estrogen-dependent, persistent chronic inflammatory heterogeneous condition that features fibrotic adhesions caused by periodic bleeding. The characteristic ectopic lesions are marked by a widely spread dense fibrotic interstitium comprising of fibroblasts, myofibroblasts, collagen fibers, extracellular proteins, inflammatory cells, and active angiogenesis. Fibrosis is now recognized as a critical component of endometriosis because of which current treatments, such as hormonal therapy and surgical excision of lesions are largely ineffective with severe side effects, high recurrence rates, and significant morbidity. The symptoms include dysmenorrhea (cyclic or noncyclic), dyspareunia, abdominal discomfort, and infertility. The significant lack of knowledge regarding the underlying root causes, etiology, and complex pathogenesis of this debilitating condition, hinders early diagnosis and implement effective therapeutic approaches with minimal side effects presenting substantial hurdles in endometriosis management. Emerging research offer a close relationship between endometriosis and fibrosis, which is believed to be tightly linked to pain, a primary contributor to the deterioration of the patient's quality of life. However, the underlying pathophysiological cellular and molecular signaling pathways behind endometriosis-associated fibrosis are poorly addressed. The available experimental disease models have tremendous challenges in reproducing the human characteristics of the disease limiting the treatment effectiveness. Future translational research on the topic has been hindered by the lack of an adequate fibrotic model of endometriosis emphasizing the necessity of etiological exploration. This review article focuses on recent developments in the field and highlight the necessity for novel fibrotic models for early diagnosis, a better understanding the disease's etiology and develop effective anti-fibrotic treatments. By addressing these knowledge gaps, we want to open fresh avenues for a thorough investigation and extended research in the field of endometriosis.
Collapse
Affiliation(s)
- Megha M Anchan
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | - Kabita Majumdar
- Gauhati Medical College & Hospital IVF centre, Bhangagarh, Gauhati Medical College, Assam, 781032, India
| | - Karthikeyan P
- Department of General Surgery, Government Kallakurichi Medical College, Government Kallakurichi Medical College, Kallakurichi, Tamil Nadu, India
| | - Rahul Dutta
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
3
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
4
|
Li R, Liu H, Liu Y. The cGAS-STING pathway and female reproductive system diseases. Front Immunol 2024; 15:1447719. [PMID: 39445027 PMCID: PMC11496054 DOI: 10.3389/fimmu.2024.1447719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
The cGAS-STING pathway has become a crucial role in the detection of cytosolic DNA and the initiation of immune responses. The cGAS-STING pathway not only mediates protective immune defense against various DNA-containing pathogens but also detects tumor-derived DNA to generate intrinsic anti-tumor immunity. However, abnormal activation of the cGAS-STING pathway by self-DNA can also lead to autoimmune diseases and inflammatory disorders. This article reviews the mechanisms and functions of the cGAS-STING pathway, as well as the latest research progress in female reproductive-related diseases. We focus on the regulatory mechanisms and roles of this pathway in common female reproductive disorders, discuss the clinical potential of the cGAS-STING pathway as biomarkers and therapeutic agents for female reproductive diseases, as well as the research controversies, technical issues, and biological knowledge gaps that need to be resolved. Furthermore, we provide new ideas for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Ruijie Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Dutta S, Lee J, Banu SK, Arosh JA. Dual inhibition of AKT and ERK1/2 pathways restores the expression of progesterone Receptor-B in endometriotic lesions through epigenetic mechanisms. Mol Cell Endocrinol 2024; 592:112290. [PMID: 38825223 DOI: 10.1016/j.mce.2024.112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Endometriosis is an estrogen-dependent and progesterone-resistant gynecological inflammatory disease of reproductive-age women. Progesterone resistance, loss of progesterone receptor -B (PR-B) in the stromal cells of the endometrium, is one of the hallmarks of endometriosis and a major contributing factor for infertility in endometriosis patients. Loss of PR-B in the stromal cells of the endometriotic lesions poses resistance to the success of progesterone-based therapy. The working hypothesis is that PR-B is hypermethylated and epigenetically silenced, and inhibition of AKT and ERK1/2 pathways will decrease the hypermethylation, reverse the epigenetic silencing, and restore the expression of PR-B via DNA methylation and histone modification mechanisms in the endometriotic lesions. The objectives are to (i) determine the effects of dual inhibition of AKT and ERK1/2 pathways on the expression of PR-B and DNA methylation and histone modification protein machinery in the endometriotic lesions and (ii) identify the underlying epigenetic mechanisms of PR-B restoration in the endometriotic lesions. The results indicate that dual inhibition of AKT and ERK1/2 pathways decreases the hypermethylation, reverses the epigenetic silencing, and restores the expression of PR-B via DNA methylation and H3K9 and H3K27 methylation mechanisms in the endometriotic lesions or endometriotic stromal cells of human origin. These results support the novel concept that restored expression of PR-B in the endometriotic lesions and endometrium may improve the clinical outcome of progesterone therapy in endometriosis patients.
Collapse
Affiliation(s)
- Sudipta Dutta
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA
| | - JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA
| | - Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA.
| |
Collapse
|
6
|
Wang M, Gu Y, Meng S, Kang L, Yang J, Sun D, Liu Y, Wan Z, Shan Y, Xue D, Su C, Li S, RanYan, Liu Y, Pan Y, Zhao Y. Association between MAPK and PI3K/Akt signaling pathway-related gene polymorphisms and migraine. Mol Genet Genomic Med 2024; 12:e2503. [PMID: 39140707 PMCID: PMC11323340 DOI: 10.1002/mgg3.2503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The causes of migraine remain unclear. Evidence suggests that the MAPK and PI3K/Akt signaling pathways play a role in migraine pathogenesis. However, studies on genetic polymorphisms in the two pathways associated with migraine are still limited. METHODS This study included 226 migraineurs and 452 age- and sex-matched nonmigraine control individuals. Genotyping of 31 Single Nucleotide Polymorphisms (SNPs) in 21 genes was performed. The relationship between migraine and gene polymorphisms was analyzed by using logistic regression. SNP-SNP interactions were examined by a generalized multifactor dimension reduction (GMDR) approach. The possible role of SNPs was evaluated with gene expression data from the GTEx database. RESULTS The RASGRP2-rs2230414 GT genotype was associated with decreased migraine risk compared with the wild-type GG genotype [ORadj (95% CI): 0.674(0.458-0.989)]. PIK3R1-rs3730089 was associated with migraine in the recessive model [ORadj (95% CI): 1.446(1.004-2.083)]. The CACNA1H-rs61734410 CT genotype was associated with migraine risk [ORadj (95% CI): 1.561(1.068-2.281)]. One significant two-way SNP-SNP interaction was found (PRKCA rs2228945-BDNF rs6265) (p = 0.0107). Significant eQTL and sQTL signals were observed for the SNP rs2230414. CONCLUSIONS This is the first study to systematically reveal significant associations between MAPK and PI3K/Akt signaling pathway-related gene polymorphisms and migraine risk.
Collapse
Affiliation(s)
- Mingxue Wang
- Department of Epidemiology, School of Public HealthHarbin Medical UniversityHarbinChina
| | - Yujia Gu
- Chronic Disease Prevention and Treatment ClinicHeilongjiang Provincial Center for Disease Control and PreventionHarbinChina
| | - Shuhan Meng
- Department of Epidemiology, School of Public HealthHarbin Medical UniversityHarbinChina
| | - Lixin Kang
- Department of Epidemiology, School of Public HealthHarbin Medical UniversityHarbinChina
| | - Jing Yang
- Department of NeurologyBeidahuang Group Hongxinglong HospitalShuangyashanChina
| | - Degang Sun
- Department of NeurologyBeidahuang Group Hongxinglong HospitalShuangyashanChina
| | - Yuxing Liu
- Catheterization RoomBeidahuang Group Hongxinglong HospitalShuangyashanChina
| | - Ze Wan
- Science and Education SectionBeidahuang Group Hongxinglong HospitalShuangyashanChina
| | - Yi Shan
- Physical Examination SectionBeidahuang Group Baoquanling HospitalHegangChina
| | - Dongjie Xue
- Department of NeurologyHegang He Mine HospitalHegangChina
| | - Chang Su
- Department of Internal MedicineBaoquanling Farm HospitalHegangChina
| | - Shufen Li
- Vaccination ClinicBaoquanling Farm HospitalHegangChina
| | - RanYan
- Department of Epidemiology, School of Public HealthHarbin Medical UniversityHarbinChina
| | - Yu Liu
- Chronic Disease Prevention and Treatment ClinicHeilongjiang Provincial Center for Disease Control and PreventionHarbinChina
| | - Yonghui Pan
- Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yashuang Zhao
- Department of Epidemiology, School of Public HealthHarbin Medical UniversityHarbinChina
| |
Collapse
|
7
|
Zhao X, Zhao Y, Zhang Y, Fan Q, Ke H, Chen X, Jin L, Tang H, Jiang Y, Ma J. Unraveling pathogenesis, biomarkers and potential therapeutic agents for endometriosis associated with disulfidptosis based on bioinformatics analysis, machine learning and experiment validation. J Biol Eng 2024; 18:42. [PMID: 39061076 PMCID: PMC11282767 DOI: 10.1186/s13036-024-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Endometriosis (EMs) is an enigmatic disease of yet-unknown pathogenesis. Disulfidptosis, a novel identified form of programmed cell death resulting from disulfide stress, stands a chance of treating diverse ailments. However, the potential roles of disulfidptosis-related genes (DRGs) in EMs remain elusive. This study aims to thoroughly explore the key disulfidptosis genes involved in EMs, and probe novel diagnostic markers and candidate therapeutic compounds from the aspect of disulfidptosis based on bioinformatics analysis, machine learning, and animal experiments. RESULTS Enrichment analysis on key module genes and differentially expressed genes (DEGs) of eutopic and ectopic endometrial tissues in EMs suggested that EMs was closely related to disulfidptosis. And then, we obtained 20 and 16 disulfidptosis-related DEGs in eutopic and ectopic endometrial tissue, respectively. The protein-protein interaction (PPI) network revealed complex interactions between genes, and screened nine and ten hub genes in eutopic and ectopic endometrial tissue, respectively. Furthermore, immune infiltration analysis uncovered distinct differences in the immunocyte, human leukocyte antigen (HLA) gene set, and immune checkpoints in the eutopic and ectopic endometrial tissues when compared with health control. Besides, the hub genes mentioned above showed a close correlation with the immune microenvironment of EMs. Furthermore, four machine learning algorithms were applied to screen signature genes in eutopic and ectopic endometrial tissue, including the binary logistic regression (BLR), the least absolute shrinkage and selection operator (LASSO), the support vector machine-recursive feature elimination (SVM-RFE), and the extreme gradient boosting (XGBoost). Model training and hyperparameter tuning were implemented on 80% of the data using a ten-fold cross-validation method, and tested in the testing sets which determined the excellent diagnostic performance of these models by six indicators (Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, Accuracy, and Area Under Curve). And seven eutopic signature genes (ACTB, GYS1, IQGAP1, MYH10, NUBPL, SLC7A11, TLN1) and five ectopic signature genes (CAPZB, CD2AP, MYH10, OXSM, PDLIM1) were finally identified based on machine learning. The independent validation dataset also showed high accuracy of the signature genes (IQGAP1, SLC7A11, CD2AP, MYH10, PDLIM1) in predicting EMs. Moreover, we screened 12 specific compounds for EMs based on ectopic signature genes and the pharmacological impact of tretinoin on signature genes was further verified in the ectopic lesion in the EMs murine model. CONCLUSION This study verified a close association between disulfidptosis and EMs based on bioinformatics analysis, machine learning, and animal experiments. Further investigation on the biological mechanism of disulfidptosis in EMs is anticipated to yield novel advancements for searching for potential diagnostic biomarkers and revolutionary therapeutic approaches in EMs.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingnan Fan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huanxiao Ke
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linxi Jin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongying Tang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jing Ma
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
- Research Institute of Women's Reproductive Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
8
|
Yin W, Li X, Liu P, Li Y, Liu J, Yu S, Tai S. Digestive system deep infiltrating endometriosis: What do we know. J Cell Mol Med 2023; 27:3649-3661. [PMID: 37632165 PMCID: PMC10718155 DOI: 10.1111/jcmm.17921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Digestive system infiltrating endometriosis (DSIE) is an uncommon form of endometriosis in the digestive system. DSIE often occurs in the intestines (especially the sigmoid rectum), liver, gallbladder and pancreas. Clinically, DSIE presents with the same symptoms as endometriosis, including cyclic pain, bleeding and infertility, in addition to specific biliary/intestinal obstruction and gastrointestinal bleeding. Compared to general endometriosis, DSIE has unique biological behaviour and pathophysiological mechanisms. Most DSIEs are deep invasive endometrioses, characterized by metastasis to the lymph nodes and lymphatic vessels, angiogenesis, peripheral nerve recruitment, fibrosis and invasion of surrounding tissues. DSIE-related peripheral angiogenesis is divided into three patterns: angiogenesis, vasculogenesis and inosculation. These patterns are regulated by interactions between multiple hypoxia-hormone cytokines. The nerve growth factors regulate the extensive neurofibril recruitment in DSIE lesions, which accounts for severe symptoms of deep pain. They are also associated with fibrosis and the aggressiveness of DSIE. Cyclic changes in DSIE lesions, recurrent inflammation and oxidative stress promote repeated tissue injury and repair (ReTIAR) mechanisms in the lesions, accelerating fibril formation and cancer-related mutations. Similar to malignant tumours, DSIE can also exhibit aggressiveness derived from collective cell migration mediated by E-cadherin and N-cadherin. This often makes DSIE misdiagnosed as a malignant tumour of the digestive system in clinical practice. In addition to surgery, novel treatments are urgently required to effectively eradicate this lesion.
Collapse
Affiliation(s)
- Wenze Yin
- Department of Hepatic SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaoqing Li
- Department of PathologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Peng Liu
- Laboratory of Medical GeneticsHarbin Medical UniversityHarbinChina
| | - Yingjie Li
- Department of PathologySix Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jin Liu
- Department of PathologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shan Yu
- Department of PathologySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Sheng Tai
- Department of Hepatic SurgerySecond Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
9
|
Chang LY, Shan J, Hou XX, Li DJ, Wang XQ. Synergy between Th1 and Th2 responses during endometriosis: A review of current understanding. J Reprod Immunol 2023; 158:103975. [PMID: 37331087 DOI: 10.1016/j.jri.2023.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Endometriosis is widely perceived as an estrogen-dependent chronic disorder with infertility and pelvic pain. Although the etiology of endometriosis has remained elusive, many studies have proclaimed the relevance of immune system disorders with endometriosis. With the discovery that the dysregulation of multiple biological functions in endometriosis is caused by the aberrant differentiation of T helper cells, a shift towards Th2 immune response may account for the disease progression. This review attempts to present mechanisms of cytokines, chemokines, signal pathways, transcription factors and some other factors related with the derivation of Th1/Th2 immune response involved in the development of endometriosis. The current understanding of treatment approaches and potential therapeutic targets will also be outlined with brief discussion.
Collapse
Affiliation(s)
- Ling-Yu Chang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China
| | - Jing Shan
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China
| | - Xin-Xin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Da-Jin Li
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China.
| | - Xiao-Qiu Wang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China.
| |
Collapse
|
10
|
Garcia Garcia JM, Vannuzzi V, Donati C, Bernacchioni C, Bruni P, Petraglia F. Endometriosis: Cellular and Molecular Mechanisms Leading to Fibrosis. Reprod Sci 2023; 30:1453-1461. [PMID: 36289173 PMCID: PMC10160154 DOI: 10.1007/s43032-022-01083-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Endometriosis is a chronic inflammatory condition affecting women of reproductive age. A relevant feature of endometriosis is the presence of fibrotic tissue inside and around the lesions, thus contributing to the classic endometriosis-related symptoms, pain, and infertility. The molecular mechanisms responsible for the development of fibrosis in endometriosis are not yet defined. The present review aimed to examine the biological mechanisms and signalling pathways involved in fibrogenesis of endometriotic lesions, highlighting the difference between deep infiltrating and ovarian endometriosis. The main cell types involved in the development of fibrosis are platelets, myofibroblasts, macrophages, and sensory nerve fibers. Members of the transforming growth factor (TGF) -β family, as well as the receptor Notch, or the bioactive sphingolipid sphingosine 1-phosphate (S1P), play a role in the development of tissue fibrosis, resulting in their metabolism and/or their signalling pathways altered in endometriotic lesions. It is relevant the knowledge of the molecular mechanisms that guide and support fibrosis in endometriosis, to identify new drug targets and provide new therapeutic approaches to patients.
Collapse
Affiliation(s)
- Jose Manuel Garcia Garcia
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Valentina Vannuzzi
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Chiara Donati
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Caterina Bernacchioni
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Paola Bruni
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy
| | - Felice Petraglia
- Obstetrics and Gynecology and Molecular Biology, Department of Experimental and Clinical Biomedical Sciences "M. Serio, " University of Florence, Florence, Italy.
| |
Collapse
|
11
|
Zhu S, Chen Q, Sun J, Du W, Chen Z, Yu M, Tao J, Zhou Y, Zhao Y, Zhang Q. The cGAS-STING pathway promotes endometriosis by up-regulating autophagy. Int Immunopharmacol 2023; 117:109644. [PMID: 36878046 DOI: 10.1016/j.intimp.2022.109644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2023]
Abstract
OBJECTIVE To investigate the roles of the cGAS-STING signal pathway and autophagy in the disease progression of endometriosis and to explore the regulatory mechanism of the cGAS-STING signal pathway on autophagy. DESIGN A case-control experimental study, in vitro primary cell culture study, and in vivo animal research. MAIN OUTCOME MEASURES Immunohistochemistry, RT-PCR and Western Blot were used to detect cGAS-STING signal pathway and autophagy expression differences in human and rat models. The lentivirus was used to overexpress STING in cells. The expression level of autophagy in human endometrial stromal cells (HESCs) transfected with lv-STING was detected by Western Blot, RT-PCR, and immunofluorescence. Transwell migration and invasion assays were conducted to assess cellular motility. The STING antagonist was applicated in vivo to investigate the therapeutic effects. RESULTS The expression levels of the cGAS-STING signal pathway and autophagy in Human and Rat ectopic endometrium were increased. STING overexpression promotes the expression of autophagy in human endometrial stromal cells (HESCs). STING overexpression enhances the migration and invasion of the human endometrial stromal cells (HESCs), but the addition of autophagy antagonists could significantly reverse this. STING antagonists inhibited the expression of autophagy in vivo and reduced the volume of ectopic lesions. CONCLUSION The expression levels of the cGAS-STING signal pathway and autophagy were increased in endometriosis. cGAS-STING signal pathway promotes the development of endometriosis by upregulating autophagy.
Collapse
Affiliation(s)
- Sennan Zhu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Qiuyu Chen
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Jindan Sun
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Wenzhuo Du
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Ziqi Chen
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Mengqi Yu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Jiayu Tao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Yi Zhou
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Zhejiang 325000, Wenzhou, China
| | - Yu Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiong Zhang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
12
|
Tan Z, Gong X, Li Y, Hung SW, Huang J, Wang CC, Chung JPW. Impacts of endometrioma on ovarian aging from basic science to clinical management. Front Endocrinol (Lausanne) 2023; 13:1073261. [PMID: 36686440 PMCID: PMC9848590 DOI: 10.3389/fendo.2022.1073261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Endometriosis is a common reproductive disorder characterized by the presence of endometrial implants outside of the uterus. It affects ~1 in 10 women of reproductive age. Endometriosis in the ovary, also known as endometrioma (OMA), is the most frequent implantation site and the leading cause of reproductive failure in affected women. Ovarian aging is one of the characteristic features of OMA, however its underlying mechanism yet to be determined. Accumulated evidence has shown that pelvic and local microenvironments in women with OMA are manifested, causing detrimental effects on ovarian development and functions. Whilst clinical associations of OMA with poor ovarian reserve, premature ovarian insufficiency, and early menopause have been reported. Moreover, surgical ablation, fenestration, and cystectomy of OMA can further damage the normal ovarian reservoir, and trigger hyperactivation of primordial follicles, subsequently resulting in the undesired deterioration of ovarian functions. Nevertheless, there is no effective treatment to delay or restore ovarian aging. This review comprehensively summarised the pathogenesis and study hypothesis of ovarian aging caused by OMA in order to propose potential therapeutic targets and interventions for future studies.
Collapse
Affiliation(s)
- Zhouyurong Tan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xue Gong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yiran Li
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jin Huang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jacqueline Pui Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Higher Oxidative Stress in Endometriotic Lesions Upregulates Senescence-Associated p16 ink4a and β-Galactosidase in Stromal Cells. Int J Mol Sci 2023; 24:ijms24020914. [PMID: 36674426 PMCID: PMC9860681 DOI: 10.3390/ijms24020914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Endometriosis affects a significant proportion of women worldwide; however, no definitive cure for this disease has been discovered to date. Oxidative stress promotes endometriotic lesion maintenance in the peritoneal cavity in women. Furthermore, there is evidence of the mitogen-activated protein kinase (MAPK) signaling pathway and senescence involvement in the physiopathogenesis of endometriosis. Reactive oxygen species (ROS) cause oxidative damage and are expected to trigger senescence in the endometrium while also causing alterations in MAPK signaling. However, the role of ROS in the senescence-associated phenotype in endometriosis remains unknown. In this context, this study attempted to delineate the pathways linking ROS to senescence in endometrial and endometriotic lesions of healthy individuals and those with endometriosis. Our results indicate a higher presence of ROS in endometriotic lesions, and the upregulation of MAPK. Furthermore, we show that endometriotic lesions in stromal cells stimulated with hydrogen peroxide develop more senescence traits than eutopic and non-endometriosis endometrium. Overall, endometriotic cells respond differently to extracellular distress. Our contribution to further research in this field contributed to the roadmap of endometriosis' search for alternative treatments.
Collapse
|
14
|
Regulation of angiogenesis by microRNAs and long non-coding RNAs in endometriosis. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Targeting NOX4 disrupts the resistance of papillary thyroid carcinoma to chemotherapeutic drugs and lenvatinib. Cell Death Dis 2022; 8:177. [PMID: 35396551 PMCID: PMC8990679 DOI: 10.1038/s41420-022-00994-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022]
Abstract
Advanced differentiated thyroid cancer cells are subjected to extreme nutritional starvation which contributes to develop resistance to treatments; however, the underlying mechanism remains unclear. Cells were subjected to serum deprivation by culture in medium containing 0.5% fetal bovine serum. A CCK8 assay, cell death Detection ELISAPLUS kit, and PI staining were conducted to determine cell viability, cell apoptosis, and cell cycle, respectively. NADPH oxidase 4 (NOX4) knockdown–stable cell lines were generated by lentivirus-mediated shRNA knockdown in BCPAP cells and TPC-1 cells. Etoposide and doxorubicin, two chemotherapeutic drugs, as well as lenvatinib were utilized to determine the effect of NOX4 on drug resistance. Lenvatinib-resistant BCPAP cells (LRBCs) were established to confirm this effect. The underlining mechanisms of NOX4 under starvation were explored using western blot. Finally, GLX351322, an inhibitor targeting NOX4, was used to inhibit NOX4-derived ROS in vitro and detect its effect on drug resistance of tumor cells in vivo. NOX4 is overexpressed under serum deprivation in BCPAP or TPC-1 cells. NOX4 knockdown impairs cell viability, increases cell apoptosis, extends G1 phase during cell cycle and modulates the level of energy-associated metabolites in starved cells. When the starved cells or LRBCs are treated with chemotherapeutic drugs or Lenvatinib, NOX4 knockdown inhibits cell viability and aggravates cell apoptosis depending on NOX4-derived ROS production. Mechanistically, starvation activates TGFβ1/SMAD3 signal, which mediates NOX4 upregulation. The upregulated NOX4 then triggers ERKs and PI3K/AKT pathway to influence cell apoptosis. GLX351322, a NOX4-derived ROS inhibitor, has an inhibitory effect on cell growth in vitro and the growth of BCPAP-derived even LRBCs-derived xenografts in vivo. These findings highlight NOX4 and NOX4-derived ROS as a potential therapeutic target in resistance to PTC.
Collapse
|
16
|
CHCHD2 Regulates Mitochondrial Function and Apoptosis of Ectopic Endometrial Stromal Cells in the Pathogenesis of Endometriosis. Reprod Sci 2022; 29:2152-2164. [DOI: 10.1007/s43032-021-00831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
|
17
|
Metformin as a Potential Treatment Option for Endometriosis. Cancers (Basel) 2022; 14:cancers14030577. [PMID: 35158846 PMCID: PMC8833654 DOI: 10.3390/cancers14030577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a common disease in women of reproductive age, and its pathogenesis seems to be largely affected by hormone imbalance, inflammation, oxidative stress, and autophagy dysregulation. These pathophysiological disturbances interact with one another through mechanisms that are still awaiting elucidation. The aim of this article is to present current knowledge regarding the possibilities of using metformin in the pharmacological treatment of endometriosis. Metformin is an insulin sensitizer widely used for the treatment of type 2 diabetes mellitus. The pleiotropic effects of metformin are mainly exerted through the activation of AMP-activated protein kinase, which is the key cellular energy homeostasis regulator that inhibits mTOR, a major autophagy suppressor. Metformin regresses endometriotic implants by increasing the activity of superoxide dismutase. It is also an inhibitor of metalloproteinase-2, decreasing the levels of the vascular endothelial growth factor and matrix metalloproteinase-9 in animal studies. In endometriosis, metformin might modify the stroma-epithelium communication via Wnt2/β-catenin. With its unique therapeutic mechanisms and no serious side effects, metformin seems to be a helpful anti-inflammatory and anti-proliferative agent in the treatment of endometriosis. It could be a missing link for the successful treatment of this chronic disease.
Collapse
|
18
|
Arosh JA, Lee J, Banu SK. Effects of dual inhibition of AKT and ERK1/2 pathways on endometrial pro-inflammatory, hormonal, and epigenetic microenvironment in endometriosis. Mol Cell Endocrinol 2022; 539:111446. [PMID: 34478807 DOI: 10.1016/j.mce.2021.111446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023]
Abstract
Endometriosis is an estrogen-dependent and progesterone-resistant gynecological inflammatory disease of reproductive-age women. The prevalence of endometriosis is ~5-10% in reproductive-age women, increasing to 20-30% in women with subfertility. The current anti-estrogen therapies can be prescribed only for a short time because of the undesirable side effects on menstruation, pregnancy, bone health, and failure to prevent a recurrence. The causes of endometriosis-associated infertility are multifactorial and poorly understood. The objective of the present study was to determine the inhibitory effects of AKT and/or ERK1/2 pathways on the microenvironment of the endometrium in a xenograft mouse model of endometriosis of human origin. Results indicate that dual inhibition of AKT and ERK1/2 pathways, but not inhibition of either AKT or ERK1/2 pathway, suppresses the growth of the endometriotic lesions in vivo. Dual inhibition of AKT and ERK1/2 pathways suppresses the production of proinflammatory cytokines, decreases E2 biosynthesis and signaling, and restores progesterone receptor-B signaling components in the epithelial and stromal cells of the endometrium in a cell-specific manner. These results together suggest that dual inhibition of AKT and ERK1/2 pathways suppresses the estrogen-dominant state and concomitantly increases the progesterone-responsive state of the endometrium. Therefore, dual inhibition of AKT and ERK1/2 pathways could emerge as long-term nonsteroidal therapy for endometriosis.
Collapse
Affiliation(s)
- Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA.
| | - JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA
| |
Collapse
|
19
|
Hussain T, Murtaza G, Metwally E, Kalhoro DH, Kalhoro MS, Rahu BA, Sahito RGA, Yin Y, Yang H, Chughtai MI, Tan B. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediators Inflamm 2021; 2021:9962860. [PMID: 34616234 PMCID: PMC8490076 DOI: 10.1155/2021/9962860] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022] Open
Abstract
It has been widely known that oxidative stress disrupts the balance between reactive oxygen species (ROS) and the antioxidant system in the body. During pregnancy, the physiological generation of ROS is involved in a variety of developmental processes ranging from oocyte maturation to luteolysis and embryo implantation. While abnormal overproduction of ROS disrupts these processes resulting in reproductive failure. In addition, excessive oxidative stress impairs maternal and placental functions and eventually results in fetal loss, IUGR, and gestational diabetes mellitus. Although some oxidative stress is inevitable during pregnancy, a balancing act between oxidant and antioxidant production is necessary at different stages of the pregnancy. The review aims to highlight the importance of maintaining oxidative and antioxidant balance throughout pregnancy. Furthermore, we highlight the role of oxidative stress in pregnancy-related diseases.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad 38000, Pakistan
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Baban Ali Rahu
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | | | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad 38000, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
| |
Collapse
|
20
|
Zheng W, Wang J, Wu J, Wang T, Huang Y, Liang X, Cao L. Exploration of the Modulatory Property Mechanism of ELeng Capsule in the Treatment of Endometriosis Using Transcriptomics Combined With Systems Network Pharmacology. Front Pharmacol 2021; 12:674874. [PMID: 34220510 PMCID: PMC8249582 DOI: 10.3389/fphar.2021.674874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 01/27/2023] Open
Abstract
Endometriosis is a common gynecological disease and causes severe chronic pelvic pain and infertility. Growing evidence showed that traditional Chinese medicine (TCM) plays an active role in the treatment of endometriosis. ELeng Capsule (ELC) is a Chinese medicine formula used for the treatment of endometriosis for several years. However, the mechanisms of ELC have not been fully characterized. In this study, network pharmacology and mRNA transcriptome analysis were used to study various therapeutic targets in ELC. As a result, 40 compounds are identified, and 75 targets overlapped with endometriosis-related proteins. The mechanism of ELC for the treatment of endometriosis is based on the function modules of inducing apoptosis, inhibiting angiogenesis, and regulating immunity mainly through signaling molecules and interaction (neuroactive ligand-receptor interaction), immune system-associated pathways (toll-like receptor signaling pathway), vascular endothelial growth factor (VEGF) signaling, and MAPK signaling pathway based on network pharmacology. In addition, based on RNA-sequence analysis, we found that the mechanism of ELC was predominantly associated with the regulation of the function modules of actin and cytoskeleton, epithelial-mesenchymal transition (EMT), focal adhesion, and immunity-associated pathways. In conclusion, ELC exerted beneficial effects on endometriosis, and the potential mechanism could be realized through functional modules, such as inducing apoptosis and regulating angiogenesis, cytoskeleton, and EMT. This work not only provides insights into the therapeutic mechanism of TCM for treating endometriosis but also offers an efficient way for drug discovery and development from herbal medicine.
Collapse
Affiliation(s)
- Weilin Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yangxue Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixing Cao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Vallée A, Vallée JN, Le Blanche A, Lecarpentier Y. PPARγ Agonists: Emergent Therapy in Endometriosis. Pharmaceuticals (Basel) 2021; 14:ph14060543. [PMID: 34204039 PMCID: PMC8229142 DOI: 10.3390/ph14060543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023] Open
Abstract
Endometriosis is one of the major gynecological diseases of reproductive-age women. This disease is characterized by the presence of glands and stroma outside the uterine cavity. Several studies have shown the major role of inflammation, angiogenesis, adhesion and invasion, and apoptosis in endometriotic lesions. Nevertheless, the mechanisms underlying endometriotic mechanisms still remain unclear and therapies are not currently efficient. The introduction of new agents can be effective by improving the condition of patients. PPARγ ligands can directly modulate these pathways in endometriosis. However, data in humans remain low. Thus, the purpose of this review is to summarize the potential actions of PPARγ agonists in endometriosis by acting on inflammation, angiogenesis, invasion, adhesion, and apoptosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80000 Amiens, France;
- DACTIM-Mis, Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| | - Alain Le Blanche
- Laboratoire CeRSM (EA-2931), UPL, Université Paris Nanterre, F92000 Nanterre, France;
- Hôpital René-Dubos de Pontoise and Université de Versailles-Saint-Quentin, Simone Veil UFR des Sciences de la Santé, 78180 Montigny-le-Bretonneux, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 77100 Meaux, France;
| |
Collapse
|
22
|
Joshi NR, Kohan-Ghadr HR, Roqueiro DS, Yoo JY, Fru K, Hestermann E, Yuan L, Ho SM, Jeong JW, Young SL, Lessey BA, Fazleabas AT. Genetic and epigenetic changes in the eutopic endometrium of women with endometriosis: association with decreased endometrial αvβ3 integrin expression. Mol Hum Reprod 2021; 27:6163298. [PMID: 33693877 DOI: 10.1093/molehr/gaab018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
About 40% of women with infertility and 70% of women with pelvic pain suffer from endometriosis. The pregnancy rate in women undergoing IVF with low endometrial integrin αvβ3 (LEI) expression is significantly lower compared to the women with high endometrial integrin αvβ3 (HEI). Mid-secretory eutopic endometrial biopsies were obtained from healthy controls (C; n=3), and women with HEI (n=4) and LEI (n=4) and endometriosis. Changes in gene expression were assessed using human gene arrays and DNA methylation data were derived using 385 K Two-Array Promoter Arrays. Transcriptional analysis revealed that LEI and C groups clustered separately with 396 differentially expressed genes (DEGs) (P<0.01: 275 up and 121 down) demonstrating that transcriptional and epigenetic changes are distinct in the LEI eutopic endometrium compared to the C and HEI group. In contrast, HEI vs C and HEI vs LEI comparisons only identified 83 and 45 DEGs, respectively. The methylation promoter array identified 1304 differentially methylated regions in the LEI vs C comparison. The overlap of gene and methylation array data identified 14 epigenetically dysregulated genes and quantitative RT-PCR analysis validated the transcriptomic findings. The analysis also revealed that aryl hydrocarbon receptor (AHR) was hypomethylated and significantly overexpressed in LEI samples compared to C. Further analysis validated that AHR transcript and protein expression are significantly (P<0.05) increased in LEI women compared to C. The increase in AHR, together with the altered methylation status of the 14 additional genes, may provide a diagnostic tool to identify the subset of women who have endometriosis-associated infertility.
Collapse
Affiliation(s)
- Niraj R Joshi
- Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | | | | | - Jung Yoon Yoo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Karenne Fru
- Coastal Reproductive Endocrinology and Infertility, Wilmington, NC, USA
| | | | - Lingwen Yuan
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shuk-Mei Ho
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jae-Wook Jeong
- Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Steven L Young
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | |
Collapse
|
23
|
Bora G, Yaba A. The role of mitogen-activated protein kinase signaling pathway in endometriosis. J Obstet Gynaecol Res 2021; 47:1610-1623. [PMID: 33590617 DOI: 10.1111/jog.14710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/10/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
AIM Endometriosis is an estrogen-dependent chronic inflammatory condition which causes pain, infertility, and predisposition for ovarian cancer. Endometriosis generates a unique microenvironment for survivability of endometriotic lesions which includes cell proliferation, differentiation, migration, and apoptosis. For these cellular activities, cascading activations of intracellular kinases are needed. Many kinase signaling pathways, IKKβ/NK-κB pathway, PI3K/AKT/mTOR, and the mitogen-activated protein kinase (MAPK) pathways (ERK1/2, p38, and JNK), are activated in endometriosis. In this review, we focus on the role of MAPK pathways in endometriosis. METHODS To identify the role of MAP Kinase signaling pathway in endometriosis we searched the Pubmed database using the search terms in various combinations "endometriosis," "endometrium," "ovary," "MAPK pathway," "ERK pathway," "p38 pathway," "JNK pathway," "estrogen," and "progesterone." RESULTS According to the current literature, MAPK signaling pathway has various roles in generating microenvironment and survival of endometriosis. Abnormal MAPK activation in migration, implantation, growth, invasion into the pelvic structures, proliferation, and apoptosis leads to the form of endometriosis and to worsen the condition in patients with endometriosis. CONCLUSION To further investigations on the effective and long-term endometriosis treatment, MAPK signaling pathways may be targeted. Molecular mechanism of MAPK signaling pathway in endometriosis should be more deeply understood and clinical trials should be more commonly performed for possible new endometriosis treatments to improve fertility and rescue endometriosis irreversibly.
Collapse
Affiliation(s)
- Gizem Bora
- Department of Histology and Embryology, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Aylin Yaba
- Department of Histology and Embryology, Yeditepe University School of Medicine, İstanbul, Turkey
| |
Collapse
|
24
|
Shin HY, Yang W, Chay DB, Lee EJ, Chung JY, Kim HS, Kim JH. Tetraspanin 1 promotes endometriosis leading to ovarian clear cell carcinoma. Mol Oncol 2021; 15:987-1004. [PMID: 33331115 PMCID: PMC8024726 DOI: 10.1002/1878-0261.12884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) reportedly develops from endometriosis. However, the molecular mechanism underlying its malignant progression to OCCC remains elusive. This study aimed to identify an essential gene in the malignant transformation of endometriosis to OCCC. We performed RNA sequencing in formalin‐fixed, paraffin‐embedded (FFPE) tissues of endometriosis (n = 9), atypical endometriosis (AtyEm) (n = 18), adjacent endometriosis to OCCC (AdjEm) (n = 7), and OCCC (n = 17). We found that tetraspanin 1 (TSPAN1) mRNA level was significantly increased by 2.4‐ (DESeq2) and 3.4‐fold (edgeR) in AtyEm and by 80.7‐ (DESeq2) and 101‐fold (edgeR) in OCCC relative to endometriosis. We confirmed that TSPAN1 protein level was similarly overexpressed in OCCC tissues and cell lines. In immortalized endometriosis cell lines, TSPAN1 overexpression enhanced cell growth and invasion. Mechanistically, TSPAN1 triggered AMP‐activated protein kinase (AMPK) activity, promoting endometriosis and cell growth. Upregulated levels of TSPAN1 are considered an early event in the development of high‐risk endometriosis that could progress to ovarian cancer. Our study suggests the potential of TSPAN1 as a screening candidate for high‐risk endometriosis.
Collapse
Affiliation(s)
- Ha-Yeon Shin
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Wookyeom Yang
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Doo Byung Chay
- Department of Obstetrics and Gynecology, Sahmyook Medical Center, Seoul, Korea
| | - Eun-Ju Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Yong Chung
- Experimental Pathology Lab., Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Brassica Bioactives Could Ameliorate the Chronic Inflammatory Condition of Endometriosis. Int J Mol Sci 2020; 21:ijms21249397. [PMID: 33321760 PMCID: PMC7763502 DOI: 10.3390/ijms21249397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic, inflammatory, hormone-dependent disease characterized by histological lesions produced by the presence of endometrial tissue outside the uterine cavity. Despite the fact that an estimated 176 million women are affected worldwide by this gynecological disorder, risk factors that cause endometriosis have not been properly defined and current treatments are not efficient. Although the interaction between diet and human health has been the focus of many studies, little information about the correlation of foods and their bioactive derivates with endometriosis is available. In this framework, Brassica crops have emerged as potential candidates for ameliorating the chronic inflammatory condition of endometriosis, due to their abundant content of health-promoting compounds such as glucosinolates and their hydrolysis products, isothiocyanates. Several inflammation-related signaling pathways have been included among the known targets of isothiocyanates, but those involving aquaporin water channels have an important role in endometriosis. Therefore, the aim of this review is to highlight the promising effects of the phytochemicals present in Brassica spp. as major candidates for inclusion in a dietary approach aiming to improve the inflammatory condition of women affected with endometriosis. This review points out the potential roles of glucosinolates and isothiocyanates from Brassicas as anti-inflammatory compounds, which might contribute to a reduction in endometriosis symptoms. In view of these promising results, further investigation of the effect of glucosinolates on chronic inflammatory diseases, either as diet coadjuvants or as therapeutic molecules, should be performed. In addition, we highlight the involvement of aquaporins in the maintenance of immune homeostasis. In brief, glucosinolates and the modulation of cellular water by aquaporins could shed light on new approaches to improve the quality of life for women with endometriosis.
Collapse
|
26
|
García-Peñarrubia P, Ruiz-Alcaraz AJ, Martínez-Esparza M, Marín P, Machado-Linde F. Hypothetical roadmap towards endometriosis: prenatal endocrine-disrupting chemical pollutant exposure, anogenital distance, gut-genital microbiota and subclinical infections. Hum Reprod Update 2020; 26:214-246. [PMID: 32108227 DOI: 10.1093/humupd/dmz044] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometriosis is a gynaecological hormone-dependent disorder that is defined by histological lesions generated by the growth of endometrial-like tissue out of the uterus cavity, most commonly engrafted within the peritoneal cavity, although these lesions can also be located in distant organs. Endometriosis affects ~10% of women of reproductive age, frequently producing severe and, sometimes, incapacitating symptoms, including chronic pelvic pain, dysmenorrhea and dyspareunia, among others. Furthermore, endometriosis causes infertility in ~30% of affected women. Despite intense research on the mechanisms involved in the initial development and later progression of endometriosis, many questions remain unanswered and its aetiology remains unknown. Recent studies have demonstrated the critical role played by the relationship between the microbiome and mucosal immunology in preventing sexually transmitted diseases (HIV), infertility and several gynaecologic diseases. OBJECTIVE AND RATIONALE In this review, we sought to respond to the main research question related to the aetiology of endometriosis. We provide a model pointing out several risk factors that could explain the development of endometriosis. The hypothesis arises from bringing together current findings from large distinct areas, linking high prenatal exposure to environmental endocrine-disrupting chemicals with a short anogenital distance, female genital tract contamination with the faecal microbiota and the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. SEARCH METHODS We performed a search of the scientific literature published until 2019 in the PubMed database. The search strategy included the following keywords in various combinations: endometriosis, anogenital distance, chemical pollutants, endocrine-disrupting chemicals, prenatal exposure to endocrine-disrupting chemicals, the microbiome of the female reproductive tract, microbiota and genital tract, bacterial vaginosis, endometritis, oestrogens and microbiota and microbiota-immune system interactions. OUTCOMES On searching the corresponding bibliography, we found frequent associations between environmental endocrine-disrupting chemicals and endometriosis risk. Likewise, recent evidence and hypotheses have suggested the active role of genital subclinical microbial infections in the development and clinical progression of endometriosis. Hence, we can envisage a direct relationship between higher prenatal exposure to oestrogens or estrogenic endocrine-disrupting compounds (phthalates, bisphenols, organochlorine pesticides and others) and a shorter anogenital distance, which could favour frequent postnatal episodes of faecal microbiota contamination of the vulva and vagina, producing cervicovaginal microbiota dysbiosis. This relationship would disrupt local antimicrobial defences, subverting the homeostasis state and inducing a subclinical inflammatory response that could evolve into a sustained immune dysregulation, closing the vicious cycle responsible for the development of endometriosis. WIDER IMPLICATIONS Determining the aetiology of endometriosis is a challenging issue. Posing a new hypothesis on this subject provides the initial tool necessary to design future experimental, clinical and epidemiological research that could allow for a better understanding of the origin of this disease. Furthermore, advances in the understanding of its aetiology would allow the identification of new therapeutics and preventive actions.
Collapse
Affiliation(s)
- Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología. Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Pilar Marín
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB, Murcia, Spain
| | - Francisco Machado-Linde
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Reina Sofía, CARM, Murcia, Spain
| |
Collapse
|
27
|
Huang ZX, Mao XM, Wu RF, Huang SM, Ding XY, Chen QH, Chen QX. RhoA/ROCK pathway mediates the effect of oestrogen on regulating epithelial-mesenchymal transition and proliferation in endometriosis. J Cell Mol Med 2020; 24:10693-10704. [PMID: 32725958 PMCID: PMC7521234 DOI: 10.1111/jcmm.15689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Endometriosis is a benign gynaecological disease appearing with pelvic pain, rising dysmenorrhoea and infertility seriously impacting on 10% of reproductive‐age females. This research attempts to demonstrate the function and molecular mechanism of RhoA/ROCK pathway on epithelial‐mesenchymal transition (EMT) and proliferation in endometriosis. The expression of Rho family was abnormally changed in endometriotic lesions; in particular, RhoA and ROCK1/2 were significantly elevated. Overexpression of RhoA in human eutopic endometrial epithelial cells (eutopic EECs) enhanced the cell mobility, epithelial‐mesenchymal transition (EMT) and proliferation, and RhoA knockdown exhibited the opposite function. Oestrogen up‐regulated the RhoA activity and expression of RhoA and ROCK1/2. RhoA overexpression reinforced the effect of oestrogen on promoting EMT and proliferation, and RhoA knockdown impaired the effect of oestrogen. oestrogen receptor α (ERα) was involved with the regulation of oestrogen on EMT and proliferation and up‐regulated RhoA activity and expression of RhoA and ROCK1/2. The function of ERα was modulated by the change in RhoA expression. Furthermore, phosphorylated ERK that was enhanced by oestrogen and ERα promoted the protein expression of RhoA/ROCK pathway. Endometriosis mouse model revealed that oestrogen enhanced the size and weight of endometriotic lesions. The expression of RhoA and phosphorylated ERK in mouse endometriotic lesions was significantly elevated by oestrogen. We conclude that abnormal activated RhoA/ROCK pathway in endometriosis is responsible for the function of oestrogen/ERα/ERK signalling, which promoted EMT and proliferation and resulted in the development of endometriosis.
Collapse
Affiliation(s)
| | - Xiao-Mei Mao
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Rong-Feng Wu
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Shao-Min Huang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xin-Yu Ding
- The Key Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City and Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qiong-Hua Chen
- The Key Laboratory of Research and Diagnosis of Gynecological Diseases of Xiamen City and Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qing-Xi Chen
- School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
28
|
Li H, Ma RQ, Cheng HY, Ye X, Zhu HL, Chang XH. Fibrinogen alpha chain promotes the migration and invasion of human endometrial stromal cells in endometriosis through focal adhesion kinase/protein kinase B/matrix metallopeptidase 2 pathway†. Biol Reprod 2020; 103:779-790. [PMID: 32697296 DOI: 10.1093/biolre/ioaa126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/04/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
Fibrinogen alpha chain (FGA), a cell adhesion molecule, contains two arginyl-glycyl-aspartic acid (RGD) cell adhesion sequences. Our previous study demonstrated that FGA, as an up-regulated protein in endometriosis (EM), was closely related to disease severity and involved in the development of EM. However, the biological functions and underlying mechanism of FGA in EM have not been fully understood. To explore the roles of FGA in EM, we analyzed the effects of FGA on the biological behaviors of human primary eutopic endometrial stromal cells (EuESC). The results indicated FGA knockdown suppressed the migration and invasion ability of EuESC, which also altered the distribution of cytoskeletal filamentous and cell morphology. Western blot analysis demonstrated that knockdown of FGA attenuated the migration-related protein levels of vimentin and matrix metallopeptidase 2 (MMP-2), but not integrin subunit alpha V (ITGAV) and integrin subunit beta 3 (ITGB3). Meanwhile, integrin-linked transduction pathways were detected. We found FGA knockdown significantly suppressed the expression of focal adhesion kinase (FAK) level and protein kinase B (AKT) phosphorylation, without extracellular-signal-regulated kinase (ERK) dependent pathways. Treatment with the AKT inhibitor MK2206 or RGD antagonist highly decreased the effects of FGA on the migration and invasion of EuESC. RGD antagonist treatment strongly inhibited FAK- and AKT-dependent pathways, but not ERK pathways. Our data indicated that FGA may enhance the migration and invasion of EuESC through RGD sequences binding integrin and activating the FAK/AKT/MMP-2 signaling pathway. This novel finding suggests that FGA may provide a novel potential approach to the treatment of EM, which provides a new way to understand the pathogenesis of EM.
Collapse
Affiliation(s)
- Hui Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Center of Gynecological Oncology, Peking University People's Hospital, Beijing, China
| | - Rui-Qiong Ma
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Center of Gynecological Oncology, Peking University People's Hospital, Beijing, China
| | - Hong-Yan Cheng
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Center of Gynecological Oncology, Peking University People's Hospital, Beijing, China
| | - Xue Ye
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Center of Gynecological Oncology, Peking University People's Hospital, Beijing, China
| | - Hong-Lan Zhu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Xiao-Hong Chang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China.,Center of Gynecological Oncology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
29
|
Yu J, Berga SL, Zou W, Taylor RN. Interleukin-1β inhibits estrogen receptor-α, progesterone receptors A and B and biomarkers of human endometrial stromal cell differentiation: implications for endometriosis. Mol Hum Reprod 2020; 25:625-637. [PMID: 31408162 DOI: 10.1093/molehr/gaz045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/22/2019] [Indexed: 02/06/2023] Open
Abstract
Human blastocyst nidation in the uterus and successful pregnancy require coordinated endometrial expression of estrogen receptor (ER)-α, progesterone receptors (PR)-A and -B and the gap junction protein, connexin (Cx)43. Our prior work established that inflammation associated with conditions of reduced fecundity, particularly endometriosis, can perturb eutopic decidual function. In the current studies, we have modeled endometrial decidualization in primary human endometrial stromal cell cultures derived from normal controls (NESC) and from the eutopic endometria of women with endometriosis (EESC) to test the hypothesis that a proinflammatory cytokine, interleukin (IL)-1β, can disrupt stromal cell differentiation. The cells were grown under a standard protocol with hormones (10 nM 17β-estradiol, 100 nM progesterone and 0.5 mM dibutyryl cAMP) for up to 7 days in the absence or presence of IL-1β. Time-course experiments showed that IL-1β compromised decidual function in both NESC and EESC, which was accompanied by rapid phosphorylation of ER-α, PR and Cx43 and their cellular depletion. Inhibition of the extracellular signal-regulated kinase (ERK)1/2 pathway by a selective pharmacological blocker (PD98059) or siRNA interference, or the addition of hormones themselves, blocked the phosphorylation of ERK mediators; increased the production of steroid receptors, Cx43, prolactin, insulin-like growth factor binding protein-1 (IGFBP)-1 and vascular endothelial growth factor (VEGF) and accelerated the differentiation. The results indicate that inhibition of IL-1β can enhance decidualization in NESC and EESC in vitro. Strategies to interfere with this pathway might be implemented as an in vivo approach to enhance fertility in women with endometriosis and, potentially, other inflammatory pathologies.
Collapse
Affiliation(s)
- Jie Yu
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sarah L Berga
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Wei Zou
- Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.,Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
30
|
Matsuzaki S, Pouly JL, Canis M. Dose-dependent pro- or anti-fibrotic responses of endometriotic stromal cells to interleukin-1β and tumor necrosis factor α. Sci Rep 2020; 10:9467. [PMID: 32528066 PMCID: PMC7289797 DOI: 10.1038/s41598-020-66298-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
Endometriosis are characterized by dense fibrous tissue. Numerous studies have investigated roles of inflammation on the pathophysiology of endometriosis. However, the interplay of inflammation and fibrosis remains to be clarified. Here we show that low levels of interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNFα) promoted a fibrotic phenotype, whereas high levels of IL-1β and TNFα inactivated the fibrotic phenotype of endometriotic stromal cells (Ectopic-ES). IL-1β 10 pg/mL and TNFα 100 and 1,000 pg/mL had minimal effects, whereas the highest dose of IL-1β (100 pg/mL) significantly decreased collagen gel contraction in Ectopic-ES. Furthermore, in Ectopic-ES, low levels of IL-1β (1 pg/mL) and/or TNFα 10 pg/mL significantly increased Col I mRNA expression, whereas higher doses of IL-1β (10 and/or 100 pg/mL) and/or TNFα (100 and/or 1,000 pg/mL) significantly decreased Col I and/or αSMA mRNA expression and the percentage of cells with Col I + and/or αSMA + stress fibers. In contrast, in either menstrual endometrial stromal cells of patients with endometriosis or those of healthy women, varying doses of IL-1β and/or TNFα had no significant effects on either Col I or αSMA mRNA/protein expression. The present findings bring into question whether we should still continue to attempt anti-inflammatory treatment strategies for endometriosis.
Collapse
Affiliation(s)
- Sachiko Matsuzaki
- CHU Clermont-Ferrand, Chirurgie Gynécologique, Clermont-Ferrand, France.
- Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMA, Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Chirurgie Gynécologique, 1, Place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand, France.
| | - Jean-Luc Pouly
- CHU Clermont-Ferrand, Chirurgie Gynécologique, Clermont-Ferrand, France
- Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMA, Clermont-Ferrand, France
| | - Michel Canis
- CHU Clermont-Ferrand, Chirurgie Gynécologique, Clermont-Ferrand, France
- Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMA, Clermont-Ferrand, France
| |
Collapse
|
31
|
Feng Y, Zhan F, Zhong Y, Tan B. Effects of human umbilical cord mesenchymal stem cells derived from exosomes on migration ability of endometrial glandular epithelial cells. Mol Med Rep 2020; 22:715-722. [PMID: 32626977 PMCID: PMC7339775 DOI: 10.3892/mmr.2020.11137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the effects of human umbilical cord mesenchymal stem cells (Huc‑MSCs)‑derived exosomes on the migratory abilities of endometrial glandular epithelial cells, and to evaluate the underlying mechanism from the perspective of epithelial‑mesenchymal transition (EMT). Huc‑MSCs were prepared from human umbilical cord, and eutopic endometrial glandular epithelial cells were isolated from patients with endometriosis. The exosomes derived from Huc‑MSCs (Huc‑MSCs‑exo) were prepared using an exosome extraction kit. The endometrial glandular epithelial cells were randomly divided into two groups: Huc‑MSCs‑exo and control. Cell migratory ability was assessed and western blotting was used to detect the expression levels of EMT. The results of the present study demonstrated that Huc‑MSCs‑exo treatment significantly enhanced the migration of endometrial glandular epithelial cells from patients with endometriosis (P<0.05). The present study also demonstrated that treatment with Huc‑MSCs‑exo inhibited the expression levels of E‑cadherin and promoted the expression levels of Vimentin and N‑cadherin at both the mRNA and protein level. The results of the current study indicate that Huc‑MSCs‑exo enhance the migratory ability of endometrial glandular epithelial cells via promotion of EMT.
Collapse
Affiliation(s)
- Ying Feng
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fuliang Zhan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanying Zhong
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Buzhen Tan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
32
|
Vallée A, Lecarpentier Y. Curcumin and Endometriosis. Int J Mol Sci 2020; 21:E2440. [PMID: 32244563 PMCID: PMC7177778 DOI: 10.3390/ijms21072440] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is one of the main common gynecological disorders, which is characterized by the presence of glands and stroma outside the uterine cavity. Some findings have highlighted the main role of inflammation in endometriosis by acting on proliferation, apoptosis and angiogenesis. Oxidative stress, an imbalance between reactive oxygen species and antioxidants, could have a key role in the initiation and progression of endometriosis by resulting in inflammatory responses in the peritoneal cavity. Nevertheless, the mechanisms underlying this disease are still unclear and therapies are not currently efficient. Curcumin is a major anti-inflammatory agent. Several findings have highlighted the anti-oxidant, anti-inflammatory and anti-angiogenic properties of curcumin. The purpose of this review is to summarize the potential action of curcumin in endometriosis by acting on inflammation, oxidative stress, invasion and adhesion, apoptosis and angiogenesis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hôtel-Dieu Hospital, AP-HP, Paris-Descartes University, 75004 Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 77100 Meaux, France;
| |
Collapse
|
33
|
Park S, Song G, Lim W. Myricetin inhibits endometriosis growth through cyclin E1 down-regulation in vitro and in vivo. J Nutr Biochem 2019; 78:108328. [PMID: 31952013 DOI: 10.1016/j.jnutbio.2019.108328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/15/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
Endometriosis is a benign gynecological condition prevalent among reproductive-aged women. Although active research and studies have been carried out to discover new drugs, surgery and hormone therapy are still the gold standard for endometriosis treatment. Nowadays, various flavonoids are considered long-term supplements for different diseases. Myricetin, a flavonol, has antiproliferative, anti- or pro-oxidant, and anticancer effects in gynecological diseases. Here, we reveal for the first time, to our knowledge, the antigrowth effects of myricetin in endometriosis. Myricetin inhibited cell proliferation and cell cycle progression of human VK2/E6E7 and End1/E6E7 cells and induced apoptosis, with the loss of mitochondrial membrane potential and accumulation of reactive oxygen species and calcium ions. Additionally, myricetin decreased the activation of AKT and ERK1/2 proteins, whereas it induced p38 activation in both cell lines. Moreover, myricetin decreased lesion size in the endometriosis mouse model via Ccne1 inhibition. Thus, myricetin has antiproliferative effects on endometriosis through cell cycle regulation.
Collapse
Affiliation(s)
- Sunwoo Park
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
34
|
Abstract
Endometriosis is one of the most common benign gynecological diseases in women of reproductive age worldwide. In past decades, a number of in-vitro models have been used to investigate the pathology and therapeutic methods for the treatment of endometriosis. The current review summarized the majority of currently available in-vitro models, which utilize a variety of cell or tissues types, including endometriotic cell lines, primary endometrial stromal cells, endometrial stem cells, endometrial explants, peritoneal explants and immune cells. These cells or tissues are cultured individually, co-cultured in 2D or 3D systems with various matrices or cultured in chicken chorioallantotic membranes and amniotic membranes culture systems. These models are able to represent one or more aspects of the process of endometriosis. These models are helpful and can be used to investigate the development of endometriosis and the underlying mechanisms of this disorder in detail, and help investigators select appropriate models for their experiments. Recently, the new concept of endometriosis as a fibrotic condition will lead research to investigate the differentiation of myofibroblasts and the development of fibrosis in endometriotic lesions, which will increase the development of novel models that can be used to investigate endometriotic fibrosis.
Collapse
Affiliation(s)
- Hongjie Fan
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
35
|
Viganò P, Ottolina J, Bartiromo L, Bonavina G, Schimberni M, Villanacci R, Candiani M. Cellular Components Contributing to Fibrosis in Endometriosis: A Literature Review. J Minim Invasive Gynecol 2019; 27:287-295. [PMID: 31785417 DOI: 10.1016/j.jmig.2019.11.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Endometriosis-related fibrosis represents a complex phenomenon with underlying mechanisms yet to be clarified. Fibrosis is consistently present in all disease forms and contributes to classic endometriosis-related symptoms of pain and infertility. The purpose of this literature review was to examine the role of various cellular populations and biologic mechanisms and signaling pathways in inducing fibrogenesis of endometriotic lesions. A search was performed through PubMed and MEDLINE for animal and human studies published in English in the last 23 years that examined fibrosis in superficial, ovarian, and deep infiltrating endometriosis. The main cell types found to be involved in the development of fibrosis were platelets, macrophages, ectopic endometrial cells, and sensory nerve fibers. Interactions among each of the cell types contribute to the production of fibrosis through the production of soluble factors, mostly transforming growth factor-β but also other cytokines and neuropeptides. Cell types known to be critical to the pathophysiology of endometriosis also contribute to fibrogenesis, thus supporting the theory that fibrosis is an inherent part of endometriosis.
Collapse
Affiliation(s)
- Paola Viganò
- Reproductive Sciences Lab, Division of Genetics and Cell Biology (Dr. Vigano).
| | - Jessica Ottolina
- Gynecology/Obstetrics Unit (Drs. Ottolina, Bartiromo, Bonavina, Schimberni, Villanacci, and Candiani), San Raffaele Scientific Institute, Milan, Italy
| | - Ludovica Bartiromo
- Gynecology/Obstetrics Unit (Drs. Ottolina, Bartiromo, Bonavina, Schimberni, Villanacci, and Candiani), San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Bonavina
- Gynecology/Obstetrics Unit (Drs. Ottolina, Bartiromo, Bonavina, Schimberni, Villanacci, and Candiani), San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Schimberni
- Gynecology/Obstetrics Unit (Drs. Ottolina, Bartiromo, Bonavina, Schimberni, Villanacci, and Candiani), San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Villanacci
- Gynecology/Obstetrics Unit (Drs. Ottolina, Bartiromo, Bonavina, Schimberni, Villanacci, and Candiani), San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Candiani
- Gynecology/Obstetrics Unit (Drs. Ottolina, Bartiromo, Bonavina, Schimberni, Villanacci, and Candiani), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
36
|
Zhou CF, Liu MJ, Wang W, Wu S, Huang YX, Chen GB, Liu LM, Peng DX, Wang XF, Cai XZ, Li XX, Feng WQ, Ma Y. miR-205-5p inhibits human endometriosis progression by targeting ANGPT2 in endometrial stromal cells. Stem Cell Res Ther 2019; 10:287. [PMID: 31547870 PMCID: PMC6757391 DOI: 10.1186/s13287-019-1388-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/21/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND miRNA expression profiles in ectopic endometrium (EC) serving as pathophysiologic genetic fingerprints contribute to determining endometriosis progression; however, the underlying molecular mechanisms remain unknown. METHODS miRNA microarray analysis was used to determine the expression profiling of EC fresh tissues. qRT-PCR was performed to screen miR-205-5p expression in EC tissues. The roles of miR-205-5p and its candidate target gene, angiopoietin-2 (ANGPT2), in endometriosis progression were confirmed on the basis of both in vitro and in vivo systems. miR-205-5p and ANGPT2 expression were measured by in situ hybridization and immunochemistry, and their clinical significance was statistically analysed. RESULTS miR-205-5p was screened as a novel suppressor of endometriosis through primary ectopic endometrial stromal cell migration, invasion, and apoptosis assay in vitro, along with endometrial-like xenograft growth and apoptosis in vivo. In addition, ANGPT2 was identified as a direct target of miR-205-5p through bioinformatic target prediction and luciferase reporter assay. Re-expression and knockdown of ANGPT2 could respectively rescue and simulate the effects induced by miR-205-5p. Importantly, the miR-205-5p-ANGPT2 axis was found to activate the ERK/AKT pathway in endometriosis. Finally, miR-205-5p and ANGPT2 expression were closely correlated with the endometriosis severity. CONCLUSION The newly identified miR-205-5p-ANGPT2-AKT/ERK axis illustrates the molecular mechanism of endometriosis progression and may represent a novel diagnostic biomarker and therapeutic target for disease treatment.
Collapse
Affiliation(s)
- Chen-Fei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Min-Juan Liu
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Xin Huang
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Guo-Bin Chen
- Department of Obstetrics and Gynecology, Shenzhen Maternal and Child Healthcare Hospital of Southern Medical University, Shenzhen, 518028, China
| | - Li-Min Liu
- Department of Obstetrics and Gynecology, Shenzhen Maternal and Child Healthcare Hospital of Southern Medical University, Shenzhen, 518028, China
| | - Dong-Xian Peng
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Xue-Feng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Xu-Zi Cai
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Xiao-Xuan Li
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Wan-Qin Feng
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Ying Ma
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China.
| |
Collapse
|
37
|
Jiang J, Yu K, Jiang Z, Xue M. IL-37 affects the occurrence and development of endometriosis by regulating the biological behavior of endometrial stromal cells through multiple signaling pathways. Biol Chem 2019; 399:1325-1337. [PMID: 29924731 DOI: 10.1515/hsz-2018-0254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Endometriosis (EMs) is a chronic inflammatory condition. Interleukin (IL)-37 is a member of the IL-1 family and an anti-inflammatory cytokine. This study aimed to evaluate the possible role of IL-37 in the EMs pathogenesis. We investigated the in vivo effect of IL-37 on EMs by injection with recombinant human IL-37 (rhIL-37) into EMs mice. Furthermore, we evaluated the in vitro effects of IL-37 on proliferation, adhesion, migration and invasiveness of endometrial stromal cells (ESCs), and explored whether Wnt/β-catenin and mitogen-activated protein kinase (MAPK) pathways were involved in this process. In cultured ESCs, IL-37 overexpression significantly suppressed both protein and mRNA expression of the inflammation-associated cytokines, including IL-1β, IL-6, IL-10 and tumor necrosis factor (TNF-α). Furthermore, IL-37 overexpression significantly inhibited ESCs proliferation, adhesion, migration, invasion and the activity of matrix metalloproteinase (MMP)-2 and MMP-9. In contrast, knockdown of IL-37 exerted the opposite effects. Importantly, the IL-37-mediated action in ESCs was through inactivation of Wnt/β-catenin, p38 MAPK, extracellular signal-related kinases MAPK and c-Jun N-terminal kinase MAPK pathways. Moreover, EMs mice treated with rhIL-37 showed the decreased endometriotic-like lesion size and lesion weight, lower expression of IL-1β, IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), soluble intercellular adhesion molecule-I (ICAM-I) and MMP-2/9 activity in peritoneal fluid compared with the wide type (WT) EMs mice. These findings suggest that IL-37 suppresses cell proliferation, adhesion, migration and invasion of human ESCs through multiple signaling pathways, thereby affecting the occurrence and development of EMs.
Collapse
Affiliation(s)
- Jianfa Jiang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, No. 138 tongzipo, Yuelu District, Changsha 100730, Hunan, China
| | - Kenan Yu
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, No. 138 tongzipo, Yuelu District, Changsha 100730, Hunan, China
| | - Zhaoying Jiang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, No. 138 tongzipo, Yuelu District, Changsha 100730, Hunan, China
| | - Min Xue
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, No. 138 tongzipo, Yuelu District, Changsha 100730, Hunan, China
| |
Collapse
|
38
|
Samimi M, Pourhanifeh MH, Mehdizadehkashi A, Eftekhar T, Asemi Z. The role of inflammation, oxidative stress, angiogenesis, and apoptosis in the pathophysiology of endometriosis: Basic science and new insights based on gene expression. J Cell Physiol 2019; 234:19384-19392. [PMID: 31004368 DOI: 10.1002/jcp.28666] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/24/2023]
Abstract
Endometriosis is a frequent and chronic illness in young women which could be defined by the existence of endometrial stroma and glands outside of the normal site of the lining of the uterus. It has painful symptoms. The advanced stage of endometriosis may lead to gynecological malignancies, such as ovarian cancer, and other complications, including infertility. However, its exact physiopathology is not well known. Recent studies have shown the possible roles of inflammation along with oxidative stress. Additionally, angiogenesis and apoptosis dysregulation contribute to endometriosis pathophysiology. Therapeutic strategies and continuing attempts, to conquer endometriosis should be done regarding molecular signaling pathways. Thus, the present review summarizes current studies and focuses on molecular mechanisms.
Collapse
Affiliation(s)
- Mansooreh Samimi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Tahereh Eftekhar
- Reproductive Health Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
39
|
Arosh JA, Banu SK. Dual inhibition of ERK1/2 and AKT pathways is required to suppress the growth and survival of endometriotic cells and lesions. Mol Cell Endocrinol 2019; 484:78-92. [PMID: 30578826 PMCID: PMC6528834 DOI: 10.1016/j.mce.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/16/2023]
Abstract
Endometriosis is an estrogen-dependent and progesterone-resistant gynecological inflammatory disease of reproductive-age women. Current hormonal therapies targeting estrogen can be prescribed only for a short time. It indicates a need for non-hormonal therapy. ERK1/2 and AKT pathways control several intracellular signaling molecules that control growth and survival of cells. Objectives of the present study are to determine the dual inhibitory effects of ERK1/2 and AKT pathways: (i) on proliferation, survival, and apoptosis of human endometrioitc epithelial cells and stromal cells in vitro; (ii) on growth and survival of endometrioitc lesions in vivo in xenograft mouse model of endometriosis of human origin; and (iii) establish the associated ERK1/2 and AKT downstream intracellular signaling modules in the pathogenesis of endometriosis. Our results indicated that combined inhibition of ERK1/2 and AKT pathways highly decreased the growth and survival of human endometriotic epithelial cells and stromal cells in vitro and suppressed the growth of endometriotic lesions in vivo compared to inhibition of either ERK1/2 or AKT pathway individually. This cause-effect is associated with dysregulated intracellular signaling modules associated with cell cycle, cell survival, and cell apoptosis pathways. Collectively, our results indicate that dual inhibition of ERK1/2 and AKT pathways could emerge as potential non-hormonal therapy for the treatment of endometriosis.
Collapse
Affiliation(s)
- Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, 77843, College Station, USA.
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, 77843, College Station, USA
| |
Collapse
|
40
|
Ameliorative effects of luteolin against endometriosis progression in vitro and in vivo. J Nutr Biochem 2019; 67:161-172. [PMID: 30925413 DOI: 10.1016/j.jnutbio.2019.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/21/2019] [Accepted: 02/25/2019] [Indexed: 12/24/2022]
Abstract
Endometriosis is a common gynecological disease in reproductive-aged women. Generally, accumulation of backflow and debris of endometrial tissue develops into a lesion outside of the endometrium, inducing severe pelvic pain and infertility in some patients. Hormone therapy and surgery are the main treatments available, but various therapeutic phytochemicals are being reviewed in animal studies or clinical trials for endometriosis patients nowadays. However, the therapeutic effects of luteolin in human endometriosis have not been studied well. Here, we demonstrate that luteolin exerts antiproliferative and apoptotic effects in human VK2/E6E7 and End1/E6E7 and in an animal endometriosis model. Luteolin inhibits cell proliferation through cell cycle arrest and induces apoptosis through DNA fragmentation in VK2/E6E7 and End1/E6E7 cells. Cytosolic calcium levels, ROS production and lipid peroxidation also increased dose-dependently (0, 5, 10 and 20 μM) in the treatment with luteolin. In VK2/E6E7 and End1/E6E7 cells, luteolin decreased ERK1/2, JNK and PI3K/AKT signal proteins while activating P38. In addition, intraperitoneal injection of luteolin in the endometriosis mouse model reduced lesion size compared to vehicle-injected mice. Ccne1, Cdk2 and Cdk4 were significantly down-regulated in the autoimplanted endometriosis lesions of mice intraperitoneally injected with luteolin. Knockdown of CCNE1 mRNA in VK2/E6E7 and End1/E6E7 cells decreased cell viability through inhibition of G0/G1 phase progression and increased apoptosis. Together, our results imply that luteolin suppresses endometriosis development by regulation of the PI3K/AKT and MAPK signal proteins as well as the expression of CCNE1 in vitro and in vivo.
Collapse
|
41
|
Wang L, Zhao J, Li Y, Wang Z, Kang S. Genome-wide analysis of DNA methylation in endometriosis using Illumina Human Methylation 450 K BeadChips. Mol Reprod Dev 2019; 86:491-501. [PMID: 30740831 DOI: 10.1002/mrd.23127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
Endometriosis is a common chronic gynecologic disorder characterized by the presence and growth of endometrial-like tissue outside of the uterine cavity. Although the exact etiology remains unclear, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of endometriosis. Here, we used the Illumina Human Methylation 450 K BeadChip Array to analyze the genome-wide DNA methylation profiles of six endometriotic lesions and six eutopic endometria from patients with ovarian endometriosis and six endometria of women without endometriosis. Compared with the eutopic endometria of women with endometriosis, 12,159 differentially methylated CpG sites and 375 differentially methylated promoter regions were identified in endometriotic lesions. GO analyses showed that these putative differentially methylated genes were primarily associated with immune response, inflammatory response, response to steroid hormone stimulus, cell adhesion, negative regulation of apoptosis, and activation of the MAPK activity. In addition, the expression levels of DNMT1, DNMT3A, DNMT3B, and MBD2 in endometriotic lesions and eutopic endometria were significantly decreased compared with control endometria. Our findings suggest that aberrant DNA methylation status in endometriotic lesions may play a significant role in the pathogenesis and progression of endometriosis.
Collapse
Affiliation(s)
- Lixian Wang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian Zhao
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Li
- Department of Molecular Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zihe Wang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shan Kang
- Department of Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
42
|
Park S, Lim W, Song G. Delphinidin induces antiproliferation and apoptosis of endometrial cells by regulating cytosolic calcium levels and mitochondrial membrane potential depolarization. J Cell Biochem 2018; 120:5072-5084. [DOI: 10.1002/jcb.27784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/06/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Sunwoo Park
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul Korea
| | - Whasun Lim
- Department of Biomedical Sciences Marine Biological Food & Drug Research Center, Catholic Kwandong University Gangneung Korea
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul Korea
| |
Collapse
|
43
|
Guo S. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018; 17:369-397. [PMID: 30377392 PMCID: PMC6194252 DOI: 10.1002/rmb2.12221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One recent study reports cancer driver mutations in deep endometriosis, but its biological/clinical significance remains unclear. Since the natural history of endometriosis is essentially gradual progression toward fibrosis, it is thus hypothesized that the six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation. METHODS Extensive PubMed search to see whether RP and another set of driver genes not yet reported (NR) to be mutated in endometriosis have any roles in fibrogenesis. All studies reporting on the role of fibrogenesis of the genes in both RP and NR sets were retrieved and evaluated in this review. RESULTS All six RP genes were involved in various aspects of fibrogenesis as compared with only three NR genes. These nine genes can be anchored in networks linking with their upstream and downstream genes that are known to be aberrantly expressed in endometriosis, piecing together seemingly unrelated findings. CONCLUSIONS Given that somatic driver mutations can and do occur frequently in physiologically normal tissues, it is argued that these mutations in endometriosis are not necessarily synonymous with malignancy or premalignancy, but the result of enormous pressure for fibrogenesis.
Collapse
Affiliation(s)
- Sun‐Wei Guo
- Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiChina
| |
Collapse
|
44
|
Matsuzaki S, Pouly J, Canis M. Reply to the letter from Barra et al. Br J Pharmacol 2018; 175:3628-3629. [PMID: 29984419 PMCID: PMC6086979 DOI: 10.1111/bph.14390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/23/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sachiko Matsuzaki
- CHU Clermont‐Ferrand, Chirurgie GynécologiqueClermont‐FerrandFrance
- Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMAClermont‐FerrandFrance
| | - Jean‐Luc Pouly
- CHU Clermont‐Ferrand, Chirurgie GynécologiqueClermont‐FerrandFrance
- Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMAClermont‐FerrandFrance
| | - Michel Canis
- CHU Clermont‐Ferrand, Chirurgie GynécologiqueClermont‐FerrandFrance
- Université Clermont Auvergne, Institut Pascal, UMR6602, CNRS/UCA/SIGMAClermont‐FerrandFrance
| |
Collapse
|
45
|
Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol 2018; 16:80. [PMID: 30126412 PMCID: PMC6102891 DOI: 10.1186/s12958-018-0391-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/23/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, the study of oxidative stress (OS) has become increasingly popular. In particular, the role of OS on female fertility is very important and has been focused on closely. The occurrence of OS is due to the excessive production of reactive oxygen species (ROS). ROS are a double-edged sword; they not only play an important role as secondary messengers in many intracellular signaling cascades, but they also exert indispensable effects on pathological processes involving the female genital tract. ROS and antioxidants join in the regulation of reproductive processes in both animals and humans. Imbalances between pro-oxidants and antioxidants could lead to a number of female reproductive diseases. This review focuses on the mechanism of OS and a series of female reproductive processes, explaining the role of OS in female reproduction and female reproductive diseases caused by OS, including polycystic ovary syndrome (PCOS), endometriosis, preeclampsia and so on. Many signaling pathways involved in female reproduction, including the Keap1-Nrf2, NF-κB, FOXO and MAPK pathways, which are affected by OS, are described, providing new ideas for the mechanism of reproductive diseases.
Collapse
Affiliation(s)
- Jiayin Lu
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Zixu Wang
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Jing Cao
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Yaoxing Chen
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Yulan Dong
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| |
Collapse
|
46
|
Chronic Niche Inflammation in Endometriosis-Associated Infertility: Current Understanding and Future Therapeutic Strategies. Int J Mol Sci 2018; 19:ijms19082385. [PMID: 30104541 PMCID: PMC6121292 DOI: 10.3390/ijms19082385] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease that affects up to 10% of women of reproductive age and accounts for up to 50% of female infertility cases. It has been highly associated with poorer outcomes of assisted reproductive technology (ART), including decreased oocyte retrieval, lower implantation, and pregnancy rates. A better understanding of the pathogenesis of endometriosis-associated infertility is crucial for improving infertility treatment outcomes. Current theories regarding how endometriosis reduces fertility include anatomical distortion, ovulatory dysfunction, and niche inflammation-associated peritoneal or implantation defects. This review will survey the latest evidence on the role of inflammatory niche in the peritoneal cavity, ovaries, and uterus of endometriosis patients. Nonhormone treatment strategies that target these inflammation processes are also included. Furthermore, mesenchymal stem cell-based therapies are highlighted for potential endometriosis treatment because of their immunomodulatory effects and tropism toward inflamed lesion foci. Potential applications of stem cell therapy in treatment of endometriosis-associated infertility in particular for safety and efficacy are discussed.
Collapse
|
47
|
Identification of small-molecule ligands that bind to MiR-21 as potential therapeutics for endometriosis by screening ZINC database and in-vitro assays. Gene 2018; 662:46-53. [DOI: 10.1016/j.gene.2018.03.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/17/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022]
|
48
|
Matsuzaki S, Pouly JL, Canis M. In vitro and in vivo effects of MK2206 and chloroquine combination therapy on endometriosis: autophagy may be required for regrowth of endometriosis. Br J Pharmacol 2018; 175:1637-1653. [PMID: 29457968 DOI: 10.1111/bph.14170] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/18/2017] [Accepted: 01/31/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE A high recurrence rate after medical treatment is a major clinical problem for patients with endometriosis. Here, we have evaluated the in vitro effects of combined treatment with MK2206 (an AKT inhibitor) + chloroquine on cell growth and regrowth of endometriotic stromal cells and the in vivo effects on endometriotic implants in a mouse xenograft model of endometriosis. EXPERIMENTAL APPROACH We evaluated the effects of autophagy inhibition by knockdown of the ATG13, Beclin-1 and ATG12 genes and pharmacological agents (chloroquine, bafilomycin A1 or 3-methyalanine) individually and in combination with MK2206 on cell growth and/or cell regrowth of endometriotic stromal cells in vitro. Furthermore, we evaluated treatment with MK2206 + chloroquine on endometriotic implants in a mouse xenograft model of endometriosis. KEY RESULTS Combined treatment with MK2206 and chloroquine markedly reduced cell growth and regrowth after discontinuation of treatment in endometriotic stromal cells compared with cells treated with either drug alone. Autophagy inhibition by ATG13, Beclin-1 or ATG12 gene knockdown only affected regrowth of endometriotic stromal cells, but not endometrial stromal cells from the same patients, after a 72 h discontinuation of the combined treatment. Furthermore, combined treatment reduced the size of endometriotic implants, whereas no effects on endometriotic implants treated with either drug alone were observed in a mouse xenograft model of endometriosis. CONCLUSIONS AND IMPLICATIONS The present findings suggest that a novel strategy for treatment of endometriosis may involve decreasing the number of endometriotic cells that can survive treatment and then preventing regrowth by autophagy inhibition.
Collapse
Affiliation(s)
- Sachiko Matsuzaki
- Chirurgie Gynécologique, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Institut Pascal, UMR6602, Université Clermont Auvergne, CNRS/UCA/SIGMA, Clermont-Ferrand, France
| | - Jean-Luc Pouly
- Chirurgie Gynécologique, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Institut Pascal, UMR6602, Université Clermont Auvergne, CNRS/UCA/SIGMA, Clermont-Ferrand, France
| | - Michel Canis
- Chirurgie Gynécologique, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Institut Pascal, UMR6602, Université Clermont Auvergne, CNRS/UCA/SIGMA, Clermont-Ferrand, France
| |
Collapse
|
49
|
Laschke MW, Menger MD. Basic mechanisms of vascularization in endometriosis and their clinical implications. Hum Reprod Update 2018; 24:207-224. [PMID: 29377994 DOI: 10.1093/humupd/dmy001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vascularization is a major hallmark in the pathogenesis of endometriosis. An increasing number of studies suggests that multiple mechanisms contribute to the vascularization of endometriotic lesions, including angiogenesis, vasculogenesis and inosculation. OBJECTIVE AND RATIONALE In this review, we provide an overview of the basic mechanisms of vascularization in endometriosis and give special emphasis on their future clinical implications in the diagnosis and therapy of the disease. SEARCH METHODS Literature searches were performed in PubMed for English articles with the key words 'endometriosis', 'endometriotic lesions', 'angiogenesis', 'vascularization', 'vasculogenesis', 'endothelial progenitor cells' and 'inosculation'. The searches included both animal and human studies. No restriction was set for the publication date. OUTCOMES The engraftment of endometriotic lesions is typically associated with angiogenesis, i.e. the formation of new blood vessels from pre-existing ones. This angiogenic process underlies the complex regulation by angiogenic growth factors and hormones, which activate intracellular pathways and associated signaling molecules. In addition, circulating endothelial progenitor cells (EPCs) are mobilized from the bone marrow and recruited into endometriotic lesions, where they are incorporated into the endothelium of newly developing microvessels, referred to as vasculogenesis. Finally, preformed microvessels in shed endometrial fragments inosculate with the surrounding host microvasculature, resulting in a rapid blood supply to the ectopic tissue. These vascularization modes offer different possibilities for the establishment of novel diagnostic and therapeutic approaches. Angiogenic growth factors and EPCs may serve as biomarkers for the diagnosis and classification of endometriosis. Blood vessel formation and mature microvessels in endometriotic lesions may be targeted by means of anti-angiogenic compounds and vascular-disrupting agents. WIDER IMPLICATIONS The establishment of vascularization-based approaches in the management of endometriosis still represents a major challenge. For diagnostic purposes, reliable angiogenic and vasculogenic biomarker panels exhibiting a high sensitivity and specificity must be identified. For therapeutic purposes, novel compounds selectively targeting the vascularization of endometriotic lesions without inducing severe side effects are required. Recent progress in the field of endometriosis research indicates that these goals may be achieved in the near future.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
50
|
Cao Y, Ye Q, Zhuang M, Xie S, Zhong R, Cui J, Zhou J, Zhu Y, Zhang T, Cao L. Ginsenoside Rg3 inhibits angiogenesis in a rat model of endometriosis through the VEGFR-2-mediated PI3K/Akt/mTOR signaling pathway. PLoS One 2017; 12:e0186520. [PMID: 29140979 PMCID: PMC5687597 DOI: 10.1371/journal.pone.0186520] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/03/2017] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the link between the inhibitory effect of ginsenoside Rg3 on the ectopic endometrium growth and the VEGFR-2-mediated PI3K/Akt/mTOR signaling pathway, a mechanism known to inhibit angiogenesis and induce ectopic endometrial cell apoptosis. MATERIALS AND METHODS A model of endometriosis was established by allotransplantation in rats. The rats were randomly divided into 5 groups: the ginsenoside Rg3 low-dose group (group A,5mg/kgBW/d of ginsenoside Rg3), the ginsenoside Rg3 high-dose group (group B, 10mg/kgBW/d of ginsenoside Rg3), the gestrinone group (group C, 0.5mg/kgBW/d of gestrinone), the control group (groupD, 10ml/kg BW/d of 0.5%CMC-Na) and the ovariectomized group (group E, 10ml/kgBW/d of 0.5%CMC-Na). Rats were executed after 21 days of continuous administration. The ectopic endometrium volume was measured and the inhibitory rate was calculated. The levels of serum estradiol (E2) and progesterone (P) were detected by Electro-Chemiluminescence Immunoassay (ECLI). The protein expressionof VEGF, VEGFR-2, p-Akt, and p-mTOR inthe ectopic endometrium wastested by immunohistochemistry(IHC) and Western Blotting. The mRNA expression levels of VEGF, VEGFR-2, Akt, and mTOR were tested by Real-Time Polymerase Chain Reaction (PCR). The apoptosis rate of the ectopic endometrial cells was detected by Terminal Deoxynucleotidyl Transferase-mediated Digoxigenin-dUTP Nick-End Labeling Assay(TUNEL). MAIN RESULTS Tissue measurements revealed a dose-dependent inhibition effect of ginsenoside Rg3 on the growth of the ectopic endometrium in treated rats compared to controls. Immunohistochemical and Western Blotting assays confirmed that the expression of VEGF, p-Akt, and p-mTOR was down-regulated in ginsenoside Rg3 -treated lesions. Real-time PCR results also showed that the mRNA expression levels of VEGF, Akt, and mTOR in the ectopic endometrium were reduced. CONCLUSIONS The present study demonstrates, for the first time, that ginsenoside Rg3 suppresses angiogenesis in developing endometrial lesions. The ginsenoside Rg3 inhibitory effect on the growth of the ectopic endometrium in EMs rats might occur through the blocking of the VEGFR-2-mediated PI3K/Akt/mTOR signaling pathway, thus halting angiogenesis and promoting the apoptosis of ectopic endometrial cells.
Collapse
Affiliation(s)
- Yang Cao
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ye
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengfei Zhuang
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuwu Xie
- Department of Reproductive Pharmacology, NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Ruihua Zhong
- Department of Reproductive Pharmacology, NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Jingang Cui
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jieyun Zhou
- Department of Reproductive Pharmacology, NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Yan Zhu
- Department of Reproductive Pharmacology, NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
- * E-mail: (YZ); (TZ)
| | - Tingting Zhang
- Department of Gynecology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (YZ); (TZ)
| | - Lin Cao
- Department of Reproductive Pharmacology, NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| |
Collapse
|