1
|
Subirá J, Soriano MJ, Del Castillo LM, de Los Santos MJ. Mitochondrial replacement techniques to resolve mitochondrial dysfunction and ooplasmic deficiencies: where are we now? Hum Reprod 2025; 40:585-600. [PMID: 40083121 DOI: 10.1093/humrep/deaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/26/2024] [Indexed: 03/16/2025] Open
Abstract
Mitochondria are the powerhouses of cell and play crucial roles in proper oocyte competence, fertilization, and early embryo development. Maternally inherited mitochondrial DNA (mtDNA) mutations can have serious implications for individuals, leading to life-threatening disorders and contribute to ovarian ageing and female infertility due to poor oocyte quality. Mitochondrial replacement techniques (MRTs) have emerged as a promising approach not only to replace defective maternal mitochondria in patients carrying mtDNA mutations, but also to enhance oocyte quality and optimize IVF outcomes for individuals experiencing infertility. There are two main categories of MRT based on the source of mitochondria. In the heterologous approach, mitochondria from a healthy donor are transferred to the recipient's oocyte. This approach includes several methodologies such as germinal vesicle, pronuclear, maternal spindle, and polar body transfer. However, ethical concerns have been raised regarding the potential inheritance of third-party genetic material and the development of heteroplasmy. An alternative approach to avoid these issues is the autologous method. One promising autologous technique was the autologous germline mitochondrial energy transfer (AUGMENT), which involved isolating oogonial precursor cells from the patient, extracting their mitochondria, and then injecting them during ICSI. However, the efficacy of AUGMENT has been debated following the results of a randomized clinical trial (RCT) that demonstrated no significant benefit over conventional IVF. Recent developments have focused on novel approaches based on autologous, non-invasively derived stem cells to address infertility. While these techniques show promising results, further RCTs are necessary to establish their effectiveness and safety for clinical use. Only after robust evidence becomes available could MRT potentially become a viable treatment option for overcoming infertility and enabling patients to have genetically related embryos. This review aims to provide an overview of the current state of MRTs in addressing low oocyte quality due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jessica Subirá
- IVIRMA Global Research Alliance, IVI-RMA Valencia, Valencia, Spain
- IVI Foundation, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - María José Soriano
- Reproductive Medicine Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Luis Miguel Del Castillo
- Reproductive Medicine Research Group, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynaecology, School of Medicine, University of Valencia, Valencia, Spain
| | - María José de Los Santos
- IVIRMA Global Research Alliance, IVI-RMA Valencia, Valencia, Spain
- IVI Foundation, Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
2
|
Song J, Xiao L, Zhang Z, Wang Y, Kouis P, Rasmussen LJ, Dai F. Effects of reactive oxygen species and mitochondrial dysfunction on reproductive aging. Front Cell Dev Biol 2024; 12:1347286. [PMID: 38465288 PMCID: PMC10920300 DOI: 10.3389/fcell.2024.1347286] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Mitochondria, the versatile organelles crucial for cellular and organismal viability, play a pivotal role in meeting the energy requirements of cells through the respiratory chain located in the inner mitochondrial membrane, concomitant with the generation of reactive oxygen species (ROS). A wealth of evidence derived from contemporary investigations on reproductive longevity strongly indicates that the aberrant elevation of ROS level constitutes a fundamental factor in hastening the aging process of reproductive systems which are responsible for transmission of DNA to future generations. Constant changes in redox status, with a pro-oxidant shift mainly through the mitochondrial generation of ROS, are linked to the modulation of physiological and pathological pathways in gametes and reproductive tissues. Furthermore, the quantity and quality of mitochondria essential to capacitation and fertilization are increasingly associated with reproductive aging. The article aims to provide current understanding of the contributions of ROS derived from mitochondrial respiration to the process of reproductive aging. Moreover, understanding the impact of mitochondrial dysfunction on both female and male fertility is conducive to finding therapeutic strategies to slow, prevent or reverse the process of gamete aging, and thereby increase reproductive longevity.
Collapse
Affiliation(s)
- Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Li Xiao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zhehao Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yujin Wang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Panayiotis Kouis
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:590-610. [PMID: 37724254 PMCID: PMC10471094 DOI: 10.1515/mr-2022-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 09/20/2023]
Abstract
Ovarian reserve is essential for fertility and influences healthy aging in women. Advanced maternal age correlates with the progressive loss of both the quantity and quality of oocytes. The molecular mechanisms and various contributing factors underlying ovarian aging have been uncovered. In this review, we highlight some of critical factors that impact oocyte quantity and quality during aging. Germ cell and follicle reserve at birth determines reproductive lifespan and timing the menopause in female mammals. Accelerated diminishing ovarian reserve leads to premature ovarian aging or insufficiency. Poor oocyte quality with increasing age could result from chromosomal cohesion deterioration and misaligned chromosomes, telomere shortening, DNA damage and associated genetic mutations, oxidative stress, mitochondrial dysfunction and epigenetic alteration. We also discuss the intervention strategies to delay ovarian aging. Both the efficacy of senotherapies by antioxidants against reproductive aging and mitochondrial therapy are discussed. Functional oocytes and ovarioids could be rejuvenated from pluripotent stem cells or somatic cells. We propose directions for future interventions. As couples increasingly begin delaying parenthood in life worldwide, understanding the molecular mechanisms during female reproductive aging and potential intervention strategies could benefit women in making earlier choices about their reproductive health.
Collapse
Affiliation(s)
- Zhengmao Zhu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
| | - Wanxue Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lin Liu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Tianjin Union Medical Center, Institute of Translational Medicine, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Role of Mitochondria Transfer in Infertility: A Commentary. Cells 2022; 11:cells11121867. [PMID: 35740996 PMCID: PMC9221194 DOI: 10.3390/cells11121867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Mitochondria transfer techniques were first designed to prevent the transmission of diseases due to mutations in mtDNA, as these organelles are exclusively transmitted to the offspring by the oocyte. Despite this, given the crucial role of mitochondria in oocyte maturation, fertilization and subsequent embryo development, these approaches have been proposed as new potential strategies to overcome poor oocyte quality in infertile patients. This condition is a very common cause of infertility in patients of advanced maternal age, and patients with previous in vitro fertilization (IVF) attempt failures of oocyte origin. In this context, the enrichment or the replacement of the whole set of the oocyte mitochondria may improve its quality and increase these patients’ chances of success after an IVF treatment. In this short review, we will provide a brief overview of the main human studies using heterologous and autologous mitochondria transfer techniques in the reproductive field, focusing on the etiology of the treated patients and the final outcome. Although there is no current clearly superior mitochondria transfer technique, efforts must be made in order to optimize them and bring them into regular clinical practice, giving these patients a chance to achieve a pregnancy with their own oocytes.
Collapse
|
5
|
Podolak A, Woclawek-Potocka I, Lukaszuk K. The Role of Mitochondria in Human Fertility and Early Embryo Development: What Can We Learn for Clinical Application of Assessing and Improving Mitochondrial DNA? Cells 2022; 11:797. [PMID: 35269419 PMCID: PMC8909547 DOI: 10.3390/cells11050797] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are well known as 'the powerhouses of the cell'. Indeed, their major role is cellular energy production driven by both mitochondrial and nuclear DNA. Such a feature makes these organelles essential for successful fertilisation and proper embryo implantation and development. Generally, mitochondrial DNA is exclusively maternally inherited; oocyte's mitochondrial DNA level is crucial to provide sufficient ATP content for the developing embryo until the blastocyst stage of development. Additionally, human fertility and early embryogenesis may be affected by either point mutations or deletions in mitochondrial DNA. It was suggested that their accumulation may be associated with ovarian ageing. If so, is mitochondrial dysfunction the cause or consequence of ovarian ageing? Moreover, such an obvious relationship of mitochondria and mitochondrial genome with human fertility and early embryo development gives the field of mitochondrial research a great potential to be of use in clinical application. However, even now, the area of assessing and improving DNA quantity and function in reproductive medicine drives many questions and uncertainties. This review summarises the role of mitochondria and mitochondrial DNA in human reproduction and gives an insight into the utility of their clinical use.
Collapse
Affiliation(s)
- Amira Podolak
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Krzysztof Lukaszuk
- Invicta Research and Development Center, 81-740 Sopot, Poland;
- Department of Obstetrics and Gynecological Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
6
|
Dai X, Yi X, Wang Y, Xia W, Tao J, Wu J, Miao D, Chen L. PQQ Dietary Supplementation Prevents Alkylating Agent-Induced Ovarian Dysfunction in Mice. Front Endocrinol (Lausanne) 2022; 13:781404. [PMID: 35340329 PMCID: PMC8948422 DOI: 10.3389/fendo.2022.781404] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/03/2022] [Indexed: 01/07/2023] Open
Abstract
Alkylating agents (AAs) that are commonly used for cancer therapy cause great damage to the ovary. Pyrroloquinoline-quinine (PQQ), which was initially identified as a redox cofactor for bacterial dehydrogenases, has been demonstrated to benefit the fertility of females. The aim of this study was to investigate whether PQQ dietary supplementation plays a protective role against alkylating agent-induced ovarian dysfunction. A single dose of busulphan (20 mg/kg) and cyclophosphamide (CTX, 120 mg/kg) were used to establish a mouse model of ovarian dysfunction. Feed containing PQQNa2 (5 mg/kg) was provided starting 1 week before the establishment of the mouse model until the date of sacrifice. One month later, estrous cycle period of mice were examined and recorded for consecutive 30 days. Three months later, some mice were mated with fertile male mice for fertility test. The remaining mice were sacrificed to collect serum samples and ovaries. One day before sacrifice, some mice received a single injection of BrdU to label proliferating cells. Serum samples were used for test hormonal levels. Ovaries were weighted and used to detect follicle counts, cell proliferation, cell apoptosis and cell senescence. In addition, the levels of inflammation, oxidative damage and Pgc1α expression were detected in ovaries. Results showed that PQQ treatment increased the ovarian weight and size, partially normalized the disrupted estrous cycle period and prevented the loss of follicles of mice treated with AAs. More importantly, we found that PQQ treatment significantly increased the pregnancy rate and litter size per delivery of mice treated with AAs. The protective effects of PQQ appeared to be directly mediated by promoting cell proliferation of granulosa, and inhibiting cell apoptosis of granulosa and cell senescence of ovarian stromal cells. The underlying mechanisms may attribute to the anti-oxidative stress, anti-inflammation and pro-mitochondria biogenesis effects of PQQ.Our study highlights the therapeutic potential of PQQ against ovarian dysfunction caused by alkylating agents.
Collapse
Affiliation(s)
- Xiuliang Dai
- Department of Reproductive Medicine Center, The Affiliated Changzhou Maternal and Child Health Care Hospital of Nanjing Medical University, Changzhou, China
| | - Xiangjiao Yi
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yufeng Wang
- Department of Reproductive Medicine Center, The Affiliated Changzhou Maternal and Child Health Care Hospital of Nanjing Medical University, Changzhou, China
| | - Wei Xia
- Department of Pathology, The Affiliated Changzhou Maternal and Child Health Care Hospital of Nanjing Medical University, Changzhou, China
| | - Jianguo Tao
- Disease & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jun Wu
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
- *Correspondence: Li Chen, ; Dengshun Miao, ; Jun Wu,
| | - Dengshun Miao
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
- *Correspondence: Li Chen, ; Dengshun Miao, ; Jun Wu,
| | - Li Chen
- Department of Reproductive Medicine Center, The Affiliated Changzhou Maternal and Child Health Care Hospital of Nanjing Medical University, Changzhou, China
- *Correspondence: Li Chen, ; Dengshun Miao, ; Jun Wu,
| |
Collapse
|
7
|
Chiaratti MR. Uncovering the important role of mitochondrial dynamics in oogenesis: impact on fertility and metabolic disorder transmission. Biophys Rev 2021; 13:967-981. [PMID: 35059021 PMCID: PMC8724343 DOI: 10.1007/s12551-021-00891-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Oocyte health is tightly tied to mitochondria given their role in energy production, metabolite supply, calcium (Ca2+) buffering, and cell death regulation, among others. In turn, mitochondrial function strongly relies on these organelle dynamics once cyclic events of fusion and fission (division) are required for mitochondrial turnover, positioning, content homogenization, metabolic flexibility, interaction with subcellular compartments, etc. Importantly, during oogenesis, mitochondria change their architecture from an "orthodox" elongated shape characterized by the presence of numerous transversely oriented cristae to a round-to-oval morphology containing arched and concentrically arranged cristae. This, along with evidence showing that mitochondrial function is kept quiescent during most part of oocyte development, suggests an important role of mitochondrial dynamics in oogenesis. To investigate this, recent works have downregulated/upregulated in oocytes the expression of key effectors of mitochondrial dynamics, including mitofusins 1 (MFN1) and 2 (MFN2) and the dynamin-related protein 1 (DRP1). As a result, both MFN1 and DRP1 were found to be essential to oogenesis and fertility, while MFN2 deletion led to offspring with increased weight gain and glucose intolerance. Curiously, neither MFN1/MFN2 deficiency nor DRP1 overexpression enhanced mitochondrial fragmentation, indicating that mitochondrial size is strictly regulated in oocytes. Therefore, the present work seeks to discuss the role of mitochondria in supporting oogenesis as well as recent findings connecting defective mitochondrial dynamics in oocytes with infertility and transmission of metabolic disorders.
Collapse
Affiliation(s)
- Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, 13565-905 Brazil
| |
Collapse
|
8
|
Li L, Ning N, Wei JA, Huang QL, Lu Y, Pang XF, Wu JJ, Zhou JB, Zhou JW, Luo GA, Han L. Metabonomics Study on the Infertility Treated With Zishen Yutai Pills Combined With In Vitro Fertilization-embryo Transfer. Front Pharmacol 2021; 12:686133. [PMID: 34349647 PMCID: PMC8327273 DOI: 10.3389/fphar.2021.686133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Zishen Yutai Pills (ZYP) is a safe and well quality-controlled TCM preparation with promising effects in many fields of reproduction, including prevention of miscarriage, increase of pregnancy rate during in vitro fertilization-embryo transfer (IVF-ET). The plasma of patients was collected from a clinical trial, namely, “Effect of Traditional Chinese Medicine vs placebo on live births among women undergoing in vitro fertilization, a multi-center randomized controlled trial.” Plasma samples were analyzed with metabonomics method. UPLC-MS technology was used to establish the plasma metabolic fingerprint. Multivariate statistical analysis was applied for comparing the differences of plasma metabolites between ZYP group and placebo group, 44 potential metabolites were screen out and identified. Pathway analysis was conducted with database mining. Compared with placebo, chemicals were found to be significantly down-regulated on HCG trigger day and 14 days after embryo transplantation, including trihexosylceramide (d18:1/26:1), glucosylceramide(d18:1/26:0), TG(22:6/15:0/22:6), TG(22:4/20:4/18:4). Compared with placebo, some chemicals were found to be significantly up-regulated on HCG trigger day and 14 days after embryo transplantation, i.e., PIP3(16:0/16:1), PIP2(18:1/18:1), tauroursodeoxycholic acid, L-asparagine, L-glutamic acid, kynurenic acid, 11-deoxycorticosterone, melatonin glucuronide, hydroxytyrosol. These metabolites were highly enriched in pathways including sphingolipid metabolism, alanine, aspartic acid and glutamic acid metabolism, aminoacyl tRNA biosynthesis, taurine and hypotaurine metabolism. This study revealed metabolic differences between subjects administered with ZYP and placebo. Relating metabolites were identified and pathways were enriched, providing basis on the exploration on the underlying mechanisms of ZYP combined with IVF-ET in the treatment of infertility.
Collapse
Affiliation(s)
- Li Li
- Molecular Biology and Systems Biology Team of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine (The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences), Guangzhou, China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, China
| | - Jian-An Wei
- Molecular Biology and Systems Biology Team of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine (The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences), Guangzhou, China
| | - Qiu-Ling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, China
| | - Yue Lu
- Molecular Biology and Systems Biology Team of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine (The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences), Guangzhou, China
| | - Xiu-Fei Pang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, China
| | - Jing-Jing Wu
- Molecular Biology and Systems Biology Team of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine (The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences), Guangzhou, China
| | - Jie-Bin Zhou
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, China
| | - Jie-Wen Zhou
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, China
| | - Guo-An Luo
- Molecular Biology and Systems Biology Team of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine (The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences), Guangzhou, China
| | - Ling Han
- Molecular Biology and Systems Biology Team of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine (The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences), Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China.,State key laboratory of Dampness Syndrome of Chinese Medicine, The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Rodríguez-Varela C, Herraiz S, Labarta E. Mitochondrial enrichment in infertile patients: a review of different mitochondrial replacement therapies. Ther Adv Reprod Health 2021; 15:26334941211023544. [PMID: 34263171 PMCID: PMC8243099 DOI: 10.1177/26334941211023544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/07/2021] [Indexed: 01/23/2023] Open
Abstract
Poor ovarian responders exhibit a quantitative reduction in their follicular
pool, and most cases are also associated with poor oocyte quality due to
patient’s age, which leads to impaired in vitro fertilisation
outcomes. In particular, poor oocyte quality has been related to mitochondrial
dysfunction and/or low mitochondrial count as these organelles are crucial in
many essential oocyte processes. Therefore, mitochondrial enrichment has been
proposed as a potential therapy option in infertile patients to improve oocyte
quality and subsequent in vitro fertilisation outcomes.
Nowadays, different options are available for mitochondrial enrichment
treatments that are encompassed in two main approaches: heterologous and
autologous. In the heterologous approach, mitochondria come from an external
source, which is an oocyte donor. These techniques include transferring either a
portion of the donor’s oocyte cytoplasm to the recipient oocyte or nuclear
material from the patient to the donor’s oocyte. In any case, this approach
entails many ethical and safety concerns that mainly arise from the uncertain
degree of mitochondrial heteroplasmy deriving from it. Thus the autologous
approach is considered a suitable potential tool to improve oocyte quality by
overcoming the heteroplasmy issue. Autologous mitochondrial transfer, however,
has not yielded as many beneficial outcomes as initially expected. Proposed
mitochondrial autologous sources include immature oocytes, granulosa cells,
germline stem cells, and adipose-derived stem cells. Presently, it would seem
that these autologous techniques do not improve clinical outcomes in human
infertile patients. However, further trials still need to be performed to
confirm these results. Besides these two main categories, new strategies have
arisen for oocyte rejuvenation by improving patient’s own mitochondrial function
and avoiding the unknown consequences of third-party genetic material. This is
the case of antioxidants, which may enhance mitochondrial activity by
counteracting and/or preventing oxidative stress damage. Among others,
coenzyme-Q10 and melatonin have shown promising results in low-prognosis
infertile patients, although further randomised clinical trials are still
necessary.
Collapse
Affiliation(s)
| | | | - Elena Labarta
- IVI Foundation – IIS La Fe, Valencia, Spain;
IVIRMA Valencia, Valencia, Spain
| |
Collapse
|
10
|
Jiao Z, Bukulmez O. Potential roles of experimental reproductive technologies in infertile women with diminished ovarian reserve. J Assist Reprod Genet 2021; 38:2507-2517. [PMID: 34100154 DOI: 10.1007/s10815-021-02246-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
In assisted reproductive technology treatment, diminished ovarian reserve (DOR) is a condition of utmost clinical and scientific relevance because of its negative influence on patient outcomes. The current methods of infertility treatment may be unsuitable for many women with DOR, which support the need for development of additional approaches to achieve fertility restoration. Various techniques have been tried to improve the quality and increase the quantity of oocytes in DOR patients, including mitochondrial transfer, activation of primordial follicles, in vitro culture of follicles, and regeneration of oocytes from various stem cells. Herein, we review the science behind these experimental reproductive technologies and their potential use to date in clinical studies for infertility treatment in women with DOR.
Collapse
Affiliation(s)
- Zexu Jiao
- Division of Reproductive Endocrinology and Infertility, Fertility and Advanced Reproductive Medicine Assisted Reproductive Technologies Program, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orhan Bukulmez
- Division of Reproductive Endocrinology and Infertility, Fertility and Advanced Reproductive Medicine Assisted Reproductive Technologies Program, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
11
|
Li CJ, Lin LT, Tsai HW, Chern CU, Wen ZH, Wang PH, Tsui KH. The Molecular Regulation in the Pathophysiology in Ovarian Aging. Aging Dis 2021; 12:934-949. [PMID: 34094652 PMCID: PMC8139203 DOI: 10.14336/ad.2020.1113] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022] Open
Abstract
The female reproductive system is of great significance to women’s health. Aging of the female reproductive system occurs approximately 10 years prior to the natural age-associated functional decline of other organ systems. With an increase in life expectancy worldwide, reproductive aging has gradually become a key health issue among women. Therefore, an adequate understanding of the causes and molecular mechanisms of ovarian aging is essential towards the inhibition of age-related diseases and the promotion of health and longevity in women. In general, women begin to experience a decline in ovarian function around the age of 35 years, which is mainly manifested as a decrease in the number of ovarian follicles and the quality of oocytes. Studies have revealed the occurrence of mitochondrial dysfunction, reduced DNA repair, epigenetic changes, and metabolic alterations in the cells within the ovaries as age increases. In the present work, we reviewed the possible factors of aging-induced ovarian insufficiency based on its clinical diagnosis and performed an in-depth investigation of the relevant molecular mechanisms and potential targets to provide novel approaches for the effective improvement of ovarian function in older women.
Collapse
Affiliation(s)
- Chia-Jung Li
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Li-Te Lin
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Hsiao-Wen Tsai
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chyi-Uei Chern
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- 4Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Peng-Hui Wang
- 3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,5Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan.,6Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,7Female Cancer Foundation, Taipei, Taiwan
| | - Kuan-Hao Tsui
- 1Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,2Institute of BioPharmaceutical sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,3Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei, Taiwan.,8Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| |
Collapse
|
12
|
Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, Chang X, Zhang Q. The Role of Oxidative Stress and Natural Antioxidants in Ovarian Aging. Front Pharmacol 2021; 11:617843. [PMID: 33569007 PMCID: PMC7869110 DOI: 10.3389/fphar.2020.617843] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
The ovarian system comprises vital organs in females and is of great significance for the maintenance of reproductive potential and endocrine stability. Although complex pathogenesis undoubtedly contributes to ovarian aging, increasing attention is being paid to the extensive influence of oxidative stress. However, the role of oxidative stress in ovarian aging is yet to be fully elucidated. Exploring oxidative stress-related processes might be a promising strategy against ovarian aging. In this review, compelling evidence is shown that oxidative stress plays a role in the etiology of ovarian aging and promotes the development of other ovarian aging-related etiologies, including telomere shortening, mitochondrial dysfunction, apoptosis, and inflammation. In addition, some natural antioxidants such as quercetin, resveratrol, and curcumin have a protective role in the ovaries through multiple mechanisms. These findings raise the prospect of oxidative stress modulator-natural antioxidants as therapeutic interventions for delaying ovarian aging.
Collapse
Affiliation(s)
- Liuqing Yang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Chen
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Liu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Xing
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chenyun Miao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qin Zhang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
13
|
Zhang L, Wang Z, Lu T, Meng L, Luo Y, Fu X, Hou Y. Mitochondrial Ca 2+ Overload Leads to Mitochondrial Oxidative Stress and Delayed Meiotic Resumption in Mouse Oocytes. Front Cell Dev Biol 2020; 8:580876. [PMID: 33384990 PMCID: PMC7770107 DOI: 10.3389/fcell.2020.580876] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Overweight or obese women seeking pregnancy is becoming increasingly common. Human maternal obesity gives rise to detrimental effects during reproduction. Emerging evidence has shown that these abnormities are likely attributed to oocyte quality. Oxidative stress induces poor oocyte conditions, but whether mitochondrial calcium homeostasis plays a key role in oocyte status remains unresolved. Here, we established a mitochondrial Ca2+ overload model in mouse oocytes. Knockdown gatekeepers of the mitochondrial Ca2+ uniporters Micu1 and Micu2 as well as the mitochondrial sodium calcium exchanger NCLX in oocytes both increased oocytes mitochondrial Ca2+ concentration. The overload of mitochondria Ca2+ in oocytes impaired mitochondrial function, leaded to oxidative stress, and changed protein kinase A (PKA) signaling associated gene expression as well as delayed meiotic resumption. Using this model, we aimed to determine the mechanism of delayed meiosis caused by mitochondrial Ca2+ overload, and whether oocyte-specific inhibition of mitochondrial Ca2+ influx could improve the reproductive abnormalities seen within obesity. Germinal vesicle breakdown stage (GVBD) and extrusion of first polar body (PB1) are two indicators of meiosis maturation. As expected, the percentage of oocytes that successfully progress to the germinal vesicle breakdown stage and extrude the first polar body during in vitro culture was increased significantly, and the expression of PKA signaling genes and mitochondrial function recovered after appropriate mitochondrial Ca2+ regulation. Additionally, some indicators of mitochondrial performance-such as adenosine triphosphate (ATP) and reactive oxygen species (ROS) levels and mitochondrial membrane potential-recovered to normal. These results suggest that the regulation of mitochondrial Ca2+ uptake in mouse oocytes has a significant role during oocyte maturation as well as PKA signaling and that proper mitochondrial Ca2+ reductions in obese oocytes can recover mitochondrial performance and improve obesity-associated oocyte quality.
Collapse
Affiliation(s)
- Luyao Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zichuan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tengfei Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Luo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Lightowlers RN, Chrzanowska-Lightowlers ZM, Russell OM. Mitochondrial transplantation-a possible therapeutic for mitochondrial dysfunction?: Mitochondrial transfer is a potential cure for many diseases but proof of efficacy and safety is still lacking. EMBO Rep 2020; 21:e50964. [PMID: 32852136 PMCID: PMC7507022 DOI: 10.15252/embr.202050964] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Robert N Lightowlers
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Oliver M Russell
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Lin PH, Lin LT, Li CJ, Kao PG, Tsai HW, Chen SN, Wen ZH, Wang PH, Tsui KH. Combining Bioinformatics and Experiments to Identify CREB1 as a Key Regulator in Senescent Granulosa Cells. Diagnostics (Basel) 2020; 10:295. [PMID: 32403258 PMCID: PMC7277907 DOI: 10.3390/diagnostics10050295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Aging of functional ovaries occurs many years before aging of other organs in the female body. In recent years, a greater number of women continue to postpone their pregnancies to later stages in their lives, raising concerns of the effect of ovarian aging. Mitochondria play an important role in the connection between the aging granulosa cells and oocytes. However, the underlying mechanisms of mitochondrial dysfunction in these cells remain poorly understood. Therefore, we evaluated the molecular mechanism of the aging granulosa cells, including aspects such as accumulation of mitochondrial reactive oxygen species, reduction of mtDNA, imbalance of mitochondrial dynamics, and diminished cell proliferation. Here, we applied bioinformatics approaches, and integrated publicly available resources, to investigate the role of CREB1 gene expression in reproduction. Senescence hallmark enrichment and pathway analysis suggested that the downregulation of bioenergetic-related genes in CREB1. Gene expression analyses showed alterations in genes related to energy metabolism and ROS production in ovary tissue. We also demonstrate that the biogenesis of aging granulosa cells is subject to CREB1 binding to the PRKAA1 and PRKAA2 upstream promoters. In addition, cofactors that regulate biogenesis significantly increase the levels of SIRT1 and PPARGC1A mRNA in the aging granulosa cells. These findings demonstrate that CREB1 elevates an oxidative stress-induced senescence in granulosa cells by reducing the mitochondrial function.
Collapse
Affiliation(s)
- Pei-Hsuan Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
- Daan Maternal and Children Hospital, Tainan 700, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Pei-Gang Kao
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
| | - Hsiao-Wen Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - San-Nung Chen
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Female Cancer Foundation, Taipei 104, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (P.-H.L.); (L.-T.L.); (C.-J.L.); (P.-G.K.); (H.-W.T.); (S.-N.C.)
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 907, Taiwan
| |
Collapse
|
16
|
Qi L, Liu B, Chen X, Liu Q, Li W, Lv B, Xu X, Wang L, Zeng Q, Xue J, Xue Z. Single-Cell Transcriptomic Analysis Reveals Mitochondrial Dynamics in Oocytes of Patients With Polycystic Ovary Syndrome. Front Genet 2020; 11:396. [PMID: 32425983 PMCID: PMC7203476 DOI: 10.3389/fgene.2020.00396] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/02/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), characterized by polycystic ovarian morphology, ovarian follicular maturation arrest, and hormonal disorders, affects numerous women in the reproductive age worldwide. A recent study has found that mitochondria are likely to play an essential role in oocyte quality. However, it is still unclear whether oocyte development failure is associated with mitochondria in patients with PCOS. We analyzed the single-cell RNA sequencing data from the previous study, including data from 14 oocytes from 7 healthy fertile women and 20 oocytes from 9 patients with PCOS at the germinal vesicle (GV) stage, metaphase I (MI) stage, and metaphase II (MII) stage. We revealed the transcriptomic dynamics by weighted gene co-expression network analysis (WGCNA) and investigated the differences between stages using PCA and Deseq2 analyses to identify the differential expression genes (DEGs). Gene ontology (GO) was performed using clusterProfiler R package and Metascape. Our results indicated that specific gene modules were related to different stages of oocyte development using WGCNA. Functional enrichment analysis and gene co-expression network analysis found significant enrichment of the mitochondrial regulation genes at the GV stage. PCA (principal component analysis) and differential gene expression analysis suggested that GV was significantly different from the MI and MII stages between the two groups. Further analysis demonstrated that the upregulated differentially expressed genes at the GV stage of patients with PCOS mainly related to mitochondrial function, such as COX6B1, COX8A, COX4l1, and NDUFB9. Meanwhile, these genes tended to be activated at the MII stage in healthy cells, suggesting that some mitochondrial functions may be prematurely activated at the GV stage of PCOS oocytes, whereas this process occurs at the MII stage in healthy oocytes. Collectively, our study showed that aberrant mitochondrial function at the GV stage may contribute to a decline in oocyte quality of PCOS patients.
Collapse
Affiliation(s)
- Lingbin Qi
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Boxuan Liu
- Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | - Xian Chen
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Qiwei Liu
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wanqiong Li
- Reproductive Medicine Center, Tongji Hospital, Tongji University, Shanghai, China
| | - Bo Lv
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyu Xu
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Lu Wang
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Qiao Zeng
- Center of Reproductive Medicine of Ji'an Maternal and Child Health Hospital, Ji'an, China
| | - Jinfeng Xue
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Zhigang Xue
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China.,Reproductive Medicine Center, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Costa-Borges N, Spath K, Miguel-Escalada I, Mestres E, Balmaseda R, Serafín A, Garcia-Jiménez M, Vanrell I, González J, Rink K, Wells D, Calderón G. Maternal spindle transfer overcomes embryo developmental arrest caused by ooplasmic defects in mice. eLife 2020; 9:48591. [PMID: 32347793 PMCID: PMC7259950 DOI: 10.7554/elife.48591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
The developmental potential of early embryos is mainly dictated by the quality of the oocyte. Here, we explore the utility of the maternal spindle transfer (MST) technique as a reproductive approach to enhance oocyte developmental competence. Our proof-of-concept experiments show that replacement of the entire cytoplasm of oocytes from a sensitive mouse strain overcomes massive embryo developmental arrest characteristic of non-manipulated oocytes. Genetic analysis confirmed minimal carryover of mtDNA following MST. Resulting mice showed low heteroplasmy levels in multiple organs at adult age, normal histology and fertility. Mice were followed for five generations (F5), revealing that heteroplasmy was reduced in F2 mice and was undetectable in the subsequent generations. This pre-clinical model demonstrates the high efficiency and potential of the MST technique, not only to prevent the transmission of mtDNA mutations, but also as a new potential treatment for patients with certain forms of infertility refractory to current clinical strategies.
Collapse
Affiliation(s)
| | - Katharina Spath
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.,Juno Genetics, Winchester House, Oxford Science Park, Oxford, United Kingdom
| | | | - Enric Mestres
- Embryotools, Parc Cientific de Barcelona, Barcelona, Spain
| | - Rosa Balmaseda
- PCB Animal Facility, Parc Cientific de Barcelona, Barcelona, Spain
| | - Anna Serafín
- PCB Animal Facility, Parc Cientific de Barcelona, Barcelona, Spain
| | | | - Ivette Vanrell
- Embryotools, Parc Cientific de Barcelona, Barcelona, Spain
| | - Jesús González
- PCB Animal Facility, Parc Cientific de Barcelona, Barcelona, Spain
| | - Klaus Rink
- Embryotools, Parc Cientific de Barcelona, Barcelona, Spain
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.,Juno Genetics, Winchester House, Oxford Science Park, Oxford, United Kingdom
| | | |
Collapse
|
18
|
Mobarak H, Heidarpour M, Tsai PSJ, Rezabakhsh A, Rahbarghazi R, Nouri M, Mahdipour M. Autologous mitochondrial microinjection; a strategy to improve the oocyte quality and subsequent reproductive outcome during aging. Cell Biosci 2019; 9:95. [PMID: 31798829 PMCID: PMC6884882 DOI: 10.1186/s13578-019-0360-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/21/2019] [Indexed: 01/13/2023] Open
Abstract
Along with the decline in oocyte quality, numerous defects such as mitochondrial insufficiency and the increase of mutation and deletion have been reported in oocyte mitochondrial DNA (mtDNA) following aging. Any impairments in oocyte mitochondrial function have negative effects on the reproduction and pregnancy outcome. It has been stated that infertility problems caused by poor quality oocytes in women with in vitro fertilization (IVF) and repeated pregnancy failures are associated with aging and could be overcome by transferring large amounts of healthy mitochondria. Hence, researches on biology, disease, and the therapeutic use of mitochondria continue to introduce some clinical approaches such as autologous mitochondrial transfer techniques. Following mitochondrial transfer, the amount of ATP required for aged-oocyte during fertilization, blastocyst formation, and subsequent embryonic development could be an alternative modality. These modulations improve the pregnancy outcome in women of high reproductive aging as well. In addition to overview the clinical studies using mitochondrial microinjection, this study provides a framework for future approaches to develop effective treatments and preventions of congenital transmission of mitochondrial DNA mutations/diseases to offspring. Mitochondrial transfer from ovarian cells and healthy oocytes could lead to improved fertility outcome in low-quality oocytes. The modulation of mitochondrial bioactivity seems to regulate basal metabolism inside target oocytes and thereby potentiate physiological activity of these cells while overcoming age-related infertility in female germ cells.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pei-Shiue Jason Tsai
- Center for Developmental Biology and Regenerative Medicine Research, National Taiwan University/NTU, Taipei, Taiwan
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University/NTU, Taipei, Taiwan
| | - Aysa Rezabakhsh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
von Wolff M, Andersen CY, Woodruff TK, Nawroth F. FertiPROTEKT, Oncofertility Consortium and the Danish Fertility-Preservation Networks - What Can We Learn From Their Experiences? CLINICAL MEDICINE INSIGHTS. REPRODUCTIVE HEALTH 2019; 13:1179558119845865. [PMID: 31068758 PMCID: PMC6495450 DOI: 10.1177/1179558119845865] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/27/2019] [Indexed: 01/18/2023]
Abstract
Fertility preservation is an increasingly important discipline. It requires close coordination between reproductive medicine specialists, reproductive biologists, and oncologists in various disciplines. In addition, it represents a particular health policy challenge, since fertility-protection measures are to be understood as a treatment for side effects of gonadotoxic treatments and would therefore normally have to be reimbursed by health insurance companies. Therefore, it is inevitable that fertility-preservation activities should organise themselves into a network structure both as a medical-logistic network and as a professional medical society. The necessary network structures can differ significantly at regional, national, and international level, as the size of the regions to be integrated and the local cultural and geographical conditions, as well as the political conditions are very different. To address these issues, the current review aims to point out the basic importance and the chances but also the difficulties of fertility-protection networks and give practical guidance for the development of such network structures. We will not only discuss network structures theoretically but also present them based on three established, different sized networks, such as the Danish Network (www.rigshospitalet.dk), representing a centralised network in a small country; the German-Austrian-Swiss network FertiPROTEKT® (www.fertiprotekt.com), representing a centralised as well as decentralised network in a large country; and the Oncofertility® Consortium (www.oncofertility.northwestern.edu), representing a decentralised, internationally oriented network, primarily serving the transfer of knowledge among its members.
Collapse
Affiliation(s)
- Michael von Wolff
- University Women’s Hospital, Division of Gynaecological Endocrinology and Reproductive Medicine, Inselspital, University Hospital, Bern, Switzerland
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Faculty of Health Science, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
| | - Frank Nawroth
- Centre for Infertility, Prenatal Medicine, Endocrinology and Osteology, Amedes group, Hamburg, Germany
| |
Collapse
|
20
|
Ubaldi FM, Cimadomo D, Vaiarelli A, Fabozzi G, Venturella R, Maggiulli R, Mazzilli R, Ferrero S, Palagiano A, Rienzi L. Advanced Maternal Age in IVF: Still a Challenge? The Present and the Future of Its Treatment. Front Endocrinol (Lausanne) 2019; 10:94. [PMID: 30842755 PMCID: PMC6391863 DOI: 10.3389/fendo.2019.00094] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced maternal age (AMA; >35 year) is associated with a decline in both ovarian reserve and oocyte competence. At present, no remedies are available to counteract the aging-related fertility decay, however different therapeutic approaches can be offered to women older than 35 year undergoing IVF. This review summarizes the main current strategies proposed for the treatment of AMA: (i) oocyte cryopreservation to conduct fertility preservation for medical reasons or "social freezing" for non-medical reasons, (ii) personalized controlled ovarian stimulation to maximize the exploitation of the ovarian reserve in each patient, (iii) enhancement of embryo selection via blastocyst-stage preimplantation genetic testing for aneuploidies and frozen single embryo transfer, or (iv) oocyte donation in case of minimal/null residual chance of pregnancy. Future strategies and tools are in the pipeline that might minimize the risks of AMA through non-invasive approaches for embryo selection (e.g., molecular analyses of leftover products of IVF, such as spent culture media). These are yet challenging but potentially ground-breaking perspectives promising a lower clinical workload with a higher cost-effectiveness. We also reviewed emerging experimental therapeutic approaches to attempt at restoring maternal reproductive potential, e.g., spindle-chromosomal complex, pronuclear or mitochondrial transfer, and chromosome therapy. In vitro generation of gametes is also an intriguing challenge for the future. Lastly, since infertility is a social issue, social campaigns, and education among future generations are desirable to promote the awareness of the impact of age and lifestyle habits upon fertility. This should be a duty of the clinical operators in this field.
Collapse
Affiliation(s)
- Filippo Maria Ubaldi
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
| | - Danilo Cimadomo
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
- *Correspondence: Danilo Cimadomo
| | - Alberto Vaiarelli
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
| | - Gemma Fabozzi
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
| | - Roberta Venturella
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Roberta Maggiulli
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
| | - Rossella Mazzilli
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
- Andrology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Susanna Ferrero
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
| | - Antonio Palagiano
- Department of Gynecological, Obstetrical and Reproductive Sciences, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, G.en.e.r.a. Centers for Reproductive Medicine, Rome, Italy
| |
Collapse
|
21
|
Yao X, Jiang H, Liang S, Shen X, Gao Q, Xu YN, Kim NH. Laminarin enhances the quality of aged pig oocytes by reducing oxidative stress. J Reprod Dev 2018; 64:489-494. [PMID: 30270255 PMCID: PMC6305855 DOI: 10.1262/jrd.2018-031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
Laminarin (LAM) is a β-glucan oligomer known to possess biological activities such as anticancer and antioxidant effects. This study explored the influence of LAM supplementation on in vitro aged porcine oocytes and the underlying mechanisms behind this influence. We found that LAM delayed the aging process and improved the quality of aged oocytes. LAM supplementation enhanced the subsequent developmental competence of aged oocytes during the in vitro aging process. The blastocyst formation rate was significantly increased in aged oocytes treated with 20 µg/ml LAM compared to non-treated aged oocytes (45.3% vs. 28.7%, P < 0.01). The mRNA levels of apoptosis-related genes, B cell lymphoma-2-associated X protein (Bax) and Caspase-3, were significantly lower in blastocysts derived from the LAM-treated aged oocytes during the in vitro aging process. Furthermore, the level of intracellular reactive oxygen species was significantly decreased and that of glutathione was significantly increased in aged oocytes following LAM treatment. Mitochondrial membrane potential was increased, and the activities of caspase-3 and cathepsin B were significantly reduced in the LAM-treated aged oocytes compared with the non-treated aged oocytes. Taken together, these results suggest that LAM is beneficial for delaying the aging process in porcine oocytes.
Collapse
Affiliation(s)
- Xuerui Yao
- College of Agriculture, Yanbian University, Yanji 133000, China
- Department of Animal Science, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Hao Jiang
- Department of Animal Science, Chungbuk National University, Chungbuk 361-763, Republic of Korea
- College of Animal Sciences, Jilin University, Jilin 130062, China
| | - Shuang Liang
- College of Animal Sciences, Jilin University, Jilin 130062, China
| | - Xinghui Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Qingshan Gao
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Yong Nan Xu
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| |
Collapse
|
22
|
Kristensen SG, Andersen CY. Cryopreservation of Ovarian Tissue: Opportunities Beyond Fertility Preservation and a Positive View Into the Future. Front Endocrinol (Lausanne) 2018; 9:347. [PMID: 30002647 PMCID: PMC6031740 DOI: 10.3389/fendo.2018.00347] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
In current years, ovarian tissue cryopreservation (OTC) and transplantation is gaining ground as a successful method of preserving fertility in young women with primarily cancer diseases, hereby giving them a chance of becoming biological mothers later on. However, OTC preserves more than just the reproductive potential; it restores the ovarian endocrine function and thus the entire female reproductive cycle with natural levels of essential hormones. In a female population with an increased prevalence in the loss of ovarian function due to induced primary ovarian insufficiency (POI) and aging, there is now, a need to develop new treatments and provide new opportunities to utilize the enormous surplus of follicles that most females are born with and overcome major health issues associated with the lack of ovarian hormones. Cell/tissue-based hormone replacement therapy (cHRT) by the use of stored ovarian tissue could be one such option comprising both induction of puberty in prepubertal POI girls, treatment of POI and premature menopause, and as primary prevention at the onset of menopause. In the current review, we explore known and entirely new applications for the potential utilization of OTC including cHRT, social freezing, culture of immature oocytes, and a modern ovarian resection for women with polycystic ovaries, and discuss the indications hereof.
Collapse
|