1
|
Xu D, Zhou H, Jiang X, Li S, Zhang Q, Baker JS, Gu Y. New Insights for the Design of Bionic Robots: Adaptive Motion Adjustment Strategies During Feline Landings. Front Vet Sci 2022; 9:836043. [PMID: 35529841 PMCID: PMC9070819 DOI: 10.3389/fvets.2022.836043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/09/2022] [Indexed: 01/17/2023] Open
Abstract
Felines have significant advantages in terms of sports energy efficiency and flexibility compared with other animals, especially in terms of jumping and landing. The biomechanical characteristics of a feline (cat) landing from different heights can provide new insights into bionic robot design based on research results and the needs of bionic engineering. The purpose of this work was to investigate the adaptive motion adjustment strategy of the cat landing using a machine learning algorithm and finite element analysis (FEA). In a bionic robot, there are considerations in the design of the mechanical legs. (1) The coordination mechanism of each joint should be adjusted intelligently according to the force at the bottom of each mechanical leg. Specifically, with the increase in force at the bottom of the mechanical leg, the main joint bearing the impact load gradually shifts from the distal joint to the proximal joint; (2) the hardness of the materials located around the center of each joint of the bionic mechanical leg should be strengthened to increase service life; (3) the center of gravity of the robot should be lowered and the robot posture should be kept forward as far as possible to reduce machine wear and improve robot operational accuracy.
Collapse
Affiliation(s)
- Datao Xu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Huiyu Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, China.,School of Health and Life Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Xinyan Jiang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Shudong Li
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Qiaolin Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Julien S Baker
- Department of Sport and Physical Education, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Wang M, Song Y, Valentin S, Baker JS, Gu Y. Kinetic analysis of felines landing from different heights. PeerJ 2019; 7:e8007. [PMID: 31737447 PMCID: PMC6857581 DOI: 10.7717/peerj.8007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/07/2019] [Indexed: 11/20/2022] Open
Abstract
Background Kinetic motion analysis has been used in canines and equines as a fundamental objective evaluation measurement. Cats are very capable jumpers, and this ability has biomimetic applications. It is essential to understand movement patterns and physical adaptations of this species, as cats are popular pets for humans. Further to this, motion analysis of a cat's movement patterns may provide potentially valuable information in relation to limb disease and injury. Therefore, the aim of this study was to investigate kinetic differences in cats when landing from varying preselected controlled heights. Methods The peak vertical force (PVF) and paw contact area (CA) of both the forelimbs and hindlimbs were collected from seven healthy Chinese domesticated cats while landing from heights of 30 cm, 50 cm, 70 cm and 90 cm respectively. The falling motivation for the cats was facilitated with the use of a flip board. This device provided the basis for the cats to land passively. Results The results indicated that the PVF of all examined limbs (fore right, fore left, hind right, hind left) significantly increased as the height increased. When the PVF from the hindlimbs and forelimbs were compared, the forelimbs recorded significantly greater values for all heights examined (P < 0.001). The PVF of the hindlimbs was symmetrical at all heights, but forelimb symmetry only occurred at the lower heights. The hindlimbs demonstrated larger CA than the forelimbs measured from all heights on landing (P < 0.001). Moreover, the paw CA on the left and right limbs were symmetrical. Discussion The paw CA of cats may be an effective parameter to evaluate abnormalities or diseases in the limbs of cats. Additionally, these findings highlight how cats land from varying heights, which may also provide reference values for the bionic design of artificial limbs for felines and treatment for limb diseases in this species.
Collapse
Affiliation(s)
- Meizi Wang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yang Song
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Stephanie Valentin
- Institute of Clinical Exercise and Health Science, University of the West of Scotland, Hamilton, UK
| | - Julien S Baker
- Department of Sport and Physical Education, Hong Kong Baptist University, Hong Kong, China
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Galbusera F, Bassani T. The Spine: A Strong, Stable, and Flexible Structure with Biomimetics Potential. Biomimetics (Basel) 2019; 4:E60. [PMID: 31480241 PMCID: PMC6784295 DOI: 10.3390/biomimetics4030060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
From its first appearance in early vertebrates, the spine evolved the function of protecting the spinal cord, avoiding excessive straining during body motion. Its stiffness and strength provided the basis for the development of the axial skeleton as the mechanical support of later animals, especially those which moved to the terrestrial environment where gravity loads are not alleviated by the buoyant force of water. In tetrapods, the functions of the spine can be summarized as follows: protecting the spinal cord; supporting the weight of the body, transmitting it to the ground through the limbs; allowing the motion of the trunk, through to its flexibility; providing robust origins and insertions to the muscles of trunk and limbs. This narrative review provides a brief perspective on the development of the spine in vertebrates, first from an evolutionary, and then from an embryological point of view. The paper describes functions and the shape of the spine throughout the whole evolution of vertebrates and vertebrate embryos, from primordial jawless fish to extant animals such as birds and humans, highlighting its fundamental features such as strength, stability, and flexibility, which gives it huge potential as a basis for bio-inspired technologies.
Collapse
Affiliation(s)
- Fabio Galbusera
- Laboratory of Biological Structures Mechanics, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy.
| | - Tito Bassani
- Laboratory of Biological Structures Mechanics, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy
| |
Collapse
|
4
|
Lim J, Winegard T. Diverse anguilliform swimming kinematics in Pacific hagfish (Eptatretus stoutii) and Atlantic hagfish (Myxine glutinosa). CAN J ZOOL 2015. [DOI: 10.1139/cjz-2014-0260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anguilliform mode swimmers pass waves of lateral bending down their elongate bodies to propel forward. Hagfishes (Myxinidae) are classified as anguilliform swimmers, but their unique habits and reduced morphology—including a flexible body lacking a vertebral column—have the potential to translate into unique swimming behaviour within this broad classification. Their roles as active scavengers and hunters can require considerable bouts of swimming, yet quantitative data on hagfish locomotion are limited. Here, we aim to provide a more complete mechanistic understanding of hagfish swimming by quantifying whole-body kinematics of steady swimming in Pacific hagfish (Eptatretus stoutii (Lockington, 1878)) and Atlantic hagfish (Myxine glutinosa L., 1758), species from the two main lineages of Myxinidae. We analyzed high-speed video of hagfishes swimming at voluntary swim speeds and found that both species swim using high-amplitude undulatory waves. Swim speed is generally frequency-modulated, but patterns in wave speed, wavelength, and amplitude along the body and across swim speeds are variable, implying versatile mechanisms for the control of swim speed in these highly flexible fishes. We propose mechanistic explanations for this kinematic variability and compare hagfish with other elongate swimmers, demonstrating that the hagfish’s rich locomotory repertoire adds variety to the already diverse set of locomotory kinematics found in anguilliform swimmers.
Collapse
Affiliation(s)
- J.L. Lim
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - T.M. Winegard
- Department of Integrative Biology, University of Guelph, 488 Gordon Street, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Schilling N, Hackert R. Sagittal spine movements of small therian mammals during asymmetrical gaits. ACTA ACUST UNITED AC 2006; 209:3925-39. [PMID: 16985208 DOI: 10.1242/jeb.02400] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian locomotion is characterized by the use of asymmetrical gaits associated with extensive flexions and extensions of the body axis. Although the impact of sagittal spine movements on locomotion is well known, little information is available on the kinematics of spinal motion. Intervertebral joint movements were studied in two metatherian and three eutherian species during the gallop and halfbound using high-speed cineradiography. Fast-Fourier transformation was used to filter out high frequency digitizing errors and keep the lower frequency sinusoid oscillations that characterize the intervertebral angular movements. Independent of their regional classification as thoracic or lumbar vertebrae, 7+/-1 presacral intervertebral joints were involved in sagittal bending movements. In only one species, no more than five intervertebral joints contributed to the resulting 'pelvic movement'. In general, the trunk region involved in sagittal bending during locomotion did not correspond to the traditional subdivisions of the vertebral column (e.g. as thoracic and lumbar or pre- and postdiaphragmatic region). Therefore, these classifications do not predict the regions involved in spinal oscillations during locomotion. Independent of the gait, maximum flexion of the spine was observed in the interval between the last third of the swing phase and touch-down. This results in a retraction of the pelvis and hindlimbs before touch-down and, we hypothesize, enhances the stability of the system. Maximum extension occurred during the first third of the swing phase (i.e. after lift-off) in all species. In general, the observed timing of dorsoventral oscillations of the spine are in accordance with that observed in other mammals and with activity data of respiratory and epaxial back muscles. Although no strict craniocaudal pattern was observable, the more cranial intervertebral joints tend to flex and extend earlier than the more caudal ones. This is in accordance with the organization and the activation of the paravertebral musculature in mammals. The amplitude of intervertebral joint movements increased caudally, reaching its highest values in the presacral joint. The more intense sagittal bending movements in the caudal intervertebral joints are reflected by the muscle fiber type composition of the back muscles involved. Despite the highly similar amplitude of 'pelvic motion', touch-down and lift-off positions of the pelvis were clearly different between the species with a long, external tail and those with no external tail.
Collapse
Affiliation(s)
- Nadja Schilling
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University, Erbertstrasse 1, 07743 Jena, Germany.
| | | |
Collapse
|
6
|
Long JH, Koob TJ, Irving K, Combie K, Engel V, Livingston N, Lammert A, Schumacher J. Biomimetic evolutionary analysis: testing the adaptive value of vertebrate tail stiffness in autonomous swimming robots. J Exp Biol 2006; 209:4732-46. [PMID: 17114406 DOI: 10.1242/jeb.02559] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
For early vertebrates, a long-standing hypothesis is that vertebrae evolved as a locomotor adaptation, stiffening the body axis and enhancing swimming performance. While supported by biomechanical data, this hypothesis has not been tested using an evolutionary approach. We did so by extending biomimetic evolutionary analysis (BEA), which builds physical simulations of extinct systems, to include use of autonomous robots as proxies of early vertebrates competing in a forage navigation task. Modeled after free-swimming larvae of sea squirts (Chordata, Urochordata), three robotic tadpoles (`Tadros'), each with a propulsive tail bearing a biomimetic notochord of variable spring stiffness, k (N m-1), searched for, oriented to, and orbited in two dimensions around a light source. Within each of ten generations, we selected for increased swimming speed, U (m s-1) and decreased time to the light source, t (s),average distance from the source, R (m) and wobble maneuvering, W (rad s-2). In software simulation, we coded two quantitative trait loci (QTL) that determine k: bending modulus, E (Nm-2) and length, L (m). Both QTL were mutated during replication, independently assorted during meiosis and, as haploid gametes, entered into the gene pool in proportion to parental fitness. After random mating created three new diploid genotypes, we fabricated three new offspring tails. In the presence of both selection and chance events(mutation, genetic drift), the phenotypic means of this small population evolved. The classic hypothesis was supported in that k was positively correlated (r2=0.40) with navigational prowess, NP, the dimensionless ratio of U to the product of R, t and W. However, the plausible adaptive scenario, even in this simplified system, is more complex, since the remaining variance in NP was correlated with the residuals of R and U taken with respect to k, suggesting that changes in k alone are insufficient to explain the evolution of NP.
Collapse
Affiliation(s)
- J H Long
- Department of Biology, Program in Cognitive Science, and the Interdisciplinary Robotics Research Laboratory, Vassar College, Poughkeepsie, NY 12604, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Long JH, Koob-Emunds M, Sinwell B, Koob TJ. The notochord of hagfishMyxine glutinosa: visco-elastic properties and mechanical functions during steady swimming. J Exp Biol 2002; 205:3819-31. [PMID: 12432006 DOI: 10.1242/jeb.205.24.3819] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYTo determine the possible locomotor functions of the hagfish notochord, we measured its flexural stiffness EI (N m-2) and flexural damping C (kg m3 s-1), under in vitroconditions that mimicked the body curvature and bending frequency measured during steady undulatory swimming. To assess the notochord's contribution to the mechanical behavior of the whole body, we also measured EI and C of the whole body, the body with skin removed, and the notochord with the outer fibrous sheath removed. When subjected to dynamic bending at angular frequencies from π to 6π rad s-1 and midline curvatures from 11 to 40 m-1, 1 cm in situ body segments(N=4), located at an axial position of 37% of the body length, showed significant changes in EI, C, the Young's modulus or material stiffness (E, MPa), the net work to bend the body over a cycle(W, J) and resilience (R, % energy return). When skin,muscles and the outer fibrous sheath of the notochord were removed sequentially, each structural reduction yielded significant changes in mechanical properties: C decreased when the skin was removed, E increased when the muscles were removed, and EI and R decreased when the outer fibrous sheath was removed. Although occupying only a small portion of the cross-sectional area, the notochord provides the body with 75% of its total EI and 80% of total C, by virtue of its high E, ranging from 4 to 8 MPa, which is an order of magnitude greater than that of the whole body. Thus, as the body's primary source of EI and C, the notochord determines the passive (i.e. internal, non-muscular) mechanical behavior of the swimming hagfish. EI and C covary inversely and non-linearly such that as C increases, EI decreases. However, the bending moments M (Nm) produced by each property increase proportionally, and the ratio of stiffness to damping moments, also known as the amplification ratio at resonance, is nearly invariant (approximately 7) with changes in driving frequency. If the body operates in life at or near resonance, the variables EI and C interact over a range of swimming speeds to produce passive mechanical stability.
Collapse
Affiliation(s)
- John H Long
- Mount Desert Island Biological Laboratory, Salsbury Cove, Maine 04672, USA.
| | | | | | | |
Collapse
|