1
|
Han D, Hu J, Liu H, Ren L, Tong Z. Active Adaptive Strategies of Mallard Feet in Response to Changes in Wetness and Compactness of the Sand Terrain. Integr Comp Biol 2024; 64:156-168. [PMID: 38714330 DOI: 10.1093/icb/icae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
Mallards (Anas platyrhynchos) exhibit exceptional locomotive abilities in diverse terrains, such as beaches, swamps, and tidal flats. This capability is primarily attributed to their unique webbed toe structure and cooperative locomotion posture of their feet. Therefore, this study aims to further delve into the active adaptive strategies of mallard feet in response to diverse external environmental conditions. Six adult male mallards were selected for this research. Their locomotion on sandy surfaces with differing wetness levels and varying degrees of compaction were captured using a high-speed camera, and analysis of instantaneous and continuous changes in the primary joint angles of the mallards' feet, including the toe-webbed opening and closing angles, the tarsometatarsal-phalangeal joint (TMTPJ), and the intertarsal joint (ITJ). It was found that on loose sandy surfaces, increasing wetness expanded the ground contact area of the mallards' feet. This led to greater flexion at the TMTPJ joint during mid-stance, accompanied by decreased flexion of the ITJ during touch-down and mid-stance. Conversely, on compacted sand, increasing wetness resulted in a reduced foot effect area and lessened ITJ flexion at both touch-down and mid-stance. Furthermore, on looser sand, the ground contact area of the mallards' feet decreased, with an increase in ITJ buckling at touch-down. During the swing phase, sand wetness and compactness effected minimally on the feet of the mallards. On dry and loose sand ground, mallards will contract their second and fourth toes with webbing upon ground contact, covering and compacting the sand beneath, while increasing ITJ flexion to mitigate sinking. This adaptation reduces the energy expended on sand and enhances body stability. In wet and compacted sand conditions, mallards expand their second and fourth toes upon ground contact and reduce ITJ flexion. Therefore, this coordinated foot and ITJ locomotion offers mallards a natural advantage when moving on various environmental media.
Collapse
Affiliation(s)
- Dianlei Han
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jinrui Hu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Hairui Liu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Lizhi Ren
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Zhiqian Tong
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
2
|
Han D, Ren L, Liu H, Hu J, Li G. Mallard hindlimbs locomotion system respond to changes in sandy ground hardness and slope. Sci Rep 2024; 14:15536. [PMID: 38969710 PMCID: PMC11226611 DOI: 10.1038/s41598-024-66181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Mallards inhabit soft grounds such as mudflats, marshes, and beaches, demonstrating remarkable proficiency in traversing these grounds. This adeptness is closely linked to the adjustments in the operation of their hindlimbs. This study employs high-speed videography to observe postural adjustments during locomotion across mudflats. Analysis of spatiotemporal parameters of the hindlimbs reveals transient and continuous changes in joints (tarsometatarso-phalangeal joint (TMTPJ), intertarsal joint (ITJ), knee, and hip) during movement on different ground hardness and slope (horizontal and uphill). The results indicate that as the stride length of the mallard increases, its speed also increases. Additionally, the stance phase duration decreases, leading to a decrease in the duty factor. Reduced ground hardness and increased slope lead to delayed adjustment of the TMTPJ, ITJ, and knee. Mallards adjust their stride length by augmenting ITJ flexion on steeper slopes, while reduced hardness prompts a decrease in TMTPJ flexion at touch-down. Additionally, the hip undergoes two brief extensions during the stance phase, indicating its crucial role in posture adjustment and propulsion on uphill grounds. Overall, the hindlimb joints of the mallard function as a whole musculoskeletal system, with each joint employing a distinct strategy for adjusting to adapt to various ground conditions.
Collapse
Affiliation(s)
- Dianlei Han
- School of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, Zhenjiang, 212013, China.
| | - Lizhi Ren
- School of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, Zhenjiang, 212013, China
| | - Hairui Liu
- School of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, Zhenjiang, 212013, China
| | - Jinrui Hu
- School of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, Zhenjiang, 212013, China
| | - Guoyu Li
- School of Mechanical Engineering, Shanghai Dianji University, Shanghai, 201306, China
| |
Collapse
|
3
|
Tingle JL, Sherman BM, Garland T. Locomotor kinematics on sand versus vinyl flooring in the sidewinder rattlesnake Crotalus cerastes. Biol Open 2023; 12:bio060146. [PMID: 37909760 PMCID: PMC10660788 DOI: 10.1242/bio.060146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
For terrestrial locomotion of animals and machines, physical characteristics of the substrate can strongly impact kinematics and performance. Snakes are an especially interesting system for studying substrate effects because their gait depends more on the environment than on their speed. We tested sidewinder rattlesnakes (Crotalus cerastes) on two surfaces: sand collected from their natural environment and vinyl tile flooring, an artificial surface often used to elicit sidewinding in laboratory settings. Of ten kinematic variables examined, two differed significantly between the substrates: the body's waveform had an average of ∼17% longer wavelength on vinyl flooring (measured in body lengths), and snakes lifted their bodies an average of ∼40% higher on sand (measured in body lengths). Sidewinding may also differ among substrates in ways we did not measure (e.g. ground reaction forces and energetics), leaving open clear directions for future study.
Collapse
Affiliation(s)
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside 92521, USA
| |
Collapse
|
4
|
Zhou H, Donatelli CM, Laneuville O, Standen EM. Skeletal anatomy of the pectoral fin in mudskipper species from terrestrial and aquatic habitats. J Morphol 2023; 284:e21612. [PMID: 37458082 DOI: 10.1002/jmor.21612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Mudskippers are a group of amphibious fishes in the family Oxudercidae, whose species inhabit a range of habitats from mostly aquatic to mostly terrestrial. Most of our understanding about habitat preference comes from natural history observations, particularly where they are collected (i.e., low intertidal vs. high intertidal regions). Mudskippers have undergone several morphological changes to accommodate a terrestrial life, including major changes to the pectoral and pelvic girdles. These changes result in a novel crutching gait, which mudskippers use to move over land. Though the appendicular morphology and crutching gait of mudskippers have been described in some species, few studies have compared skeletal structures across the family. In our study, we use microcomputed tomography (µCT) scans to compare the skeletal anatomy of 16 species of aquatic and terrestrial mudskippers. Linear discriminant analysis is used to analyze measurements obtained through geometric morphometrics (landmarks). We found bone structures of the pectoral region in the terrestrial group were significantly longer and wider than those in the aquatic group. Furthermore, a significant difference in anatomy is shown between terrestrial and aquatic genera with both axial and appendicular elements contributing to the separation between groups. This work describes the differences in skeletal morphology associated with terrestriality in mudskippers and provides valuable insights into specific anatomical characteristics contributing to their adaptation to novel environments.
Collapse
Affiliation(s)
- Haodong Zhou
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Odette Laneuville
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Emily M Standen
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Porter ME, Hernandez AV, Gervais CR, Rummer JL. Aquatic Walking and Swimming Kinematics of Neonate and Juvenile Epaulette Sharks. Integr Comp Biol 2022; 62:1710-1724. [PMID: 35896482 DOI: 10.1093/icb/icac127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 01/05/2023] Open
Abstract
The epaulette shark, Hemiscyllium ocellatum, is a small, reef-dwelling, benthic shark that-using its paired fins-can walk, both in and out of water. Within the reef flats, this species experiences short periods of elevated CO2 and hypoxia as well as fluctuating temperatures as reef flats become isolated with the outgoing tide. Past studies have shown that this species is robust (i.e., respiratory and metabolic performance, behavior) to climate change-relevant elevated CO2 levels as well as hypoxia and anoxia tolerant. However, epaulette shark embryos reared under ocean warming conditions hatch earlier and smaller, with altered patterns and coloration, and with higher metabolic costs than their current-day counterparts. Findings to date suggest that this species has adaptations to tolerate some, but perhaps not all, of the challenging conditions predicted for the 21st century. As such, the epaulette shark is emerging as a model system to understand vertebrate physiology in changing oceans. Yet, few studies have investigated the kinematics of walking and swimming, which may be vital to their biological fitness, considering their habitat and propensity for challenging environmental conditions. Given that neonates retain embryonic nutrition via an internalized yolk sac, resulting in a bulbous abdomen, while juveniles actively forage for worms, crustaceans, and small fishes, we hypothesized that difference in body shape over early ontogeny would affect locomotor performance. To test this, we examined neonate and juvenile locomotor kinematics during the three aquatic gaits they utilize-slow-to-medium walking, fast walking, and swimming-using 13 anatomical landmarks along the fins, girdles, and body midline. We found that differences in body shape did not alter kinematics between neonates and juveniles. Overall velocity, fin rotation, axial bending, and tail beat frequency and amplitude were consistent between early life stages. Data suggest that the locomotor kinematics are maintained between neonate and juvenile epaulette sharks, even as their feeding strategy changes. Studying epaulette shark locomotion allows us to understand this-and perhaps related-species' ability to move within and away from challenging conditions in their habitats. Such locomotor traits may not only be key to survival, in general, as a small, benthic mesopredator (i.e., movements required to maneuver into small reef crevices to avoid aerial and aquatic predators), but also be related to their sustained physiological performance under challenging environmental conditions, including those associated with climate change-a topic worthy of future investigation.
Collapse
Affiliation(s)
- Marianne E Porter
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Andrea V Hernandez
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Connor R Gervais
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
6
|
Quigley ZMG, Blob RW, Kawano SM. Kinematic comparisons between mudskipper fins and salamander limbs during terrestrial locomotion. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:612-625. [PMID: 35384382 DOI: 10.1002/jez.2594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/08/2022]
Abstract
Terrestrial and aquatic environments present drastically different challenges, yet amphibious behaviors evolved multiple times in vertebrates. Terrestrial salamanders are often used to model the locomotion of crownward stem tetrapods, but amphibious fishes may model earlier evolutionary stages as vertebrates became terrestrial. For instance, some early tetrapods may have moved on land with a mudskipper-like gait. Previously published kinetic data found that the ground reaction forces produced by the pectoral fins of mudskippers (Periophthalmus barbarus) were more medial than the limbs of tiger salamanders (Ambystoma tigrinum), which might elevate bending stresses in the fins. However, kinematic data are needed to explain these kinetic differences. Therefore, we quantified the three-dimensional kinematics of mudskipper pectoral fins and compared these to published data on tiger salamander limbs. We found that mudskipper pectoral fins generally remained more retracted, extended, and adducted compared to salamander limbs. Kinematic patterns in mudskipper pectoral fins were aligned with published kinetic data and shared a restricted range of motion found in early tetrapods. Our findings demonstrate that mudskipper pectoral fins provide weight support and propulsion but have lower mobility in the proximal versus distal elements, for which greater flexibility in the latter might compensate. Broadly, these data provide new insights into the biomechanics of using fins versus limbs for moving over land and factors that may favor the evolution of different terrestrial gaits.
Collapse
Affiliation(s)
- Zachary M G Quigley
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Sandy M Kawano
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Naylor ER, Kawano SM. Mudskippers modulate their locomotor kinematics when moving on deformable and inclined substrates. Integr Comp Biol 2022; 62:icac084. [PMID: 35679069 DOI: 10.1093/icb/icac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many ecological factors influence animal movement, including properties of the media that they move on or through. Animals moving in terrestrial environments encounter conditions that can be challenging for generating propulsion and maintaining stability, such as inclines and deformable substrates that can cause slipping and sinking. In response, tetrapods tend to adopt a more crouched posture and lower their center of mass on inclines and increase the surface area of contact on deformable substrates, such as sand. Many amphibious fishes encounter the same challenges when moving on land, but how these finned animals modulate their locomotion with respect to different environmental conditions and how these modifications compare with those seen within tetrapods is relatively understudied. Mudskippers (Gobiidae: Oxudercinae) are a particularly noteworthy group of amphibious fishes in this context given that they navigate a wide range of environmental conditions, from flat mud to inclined mangrove trees. They use a unique form of terrestrial locomotion called 'crutching', where their pectoral fins synchronously lift and vault the front half of the body forward before landing on their pelvic fins while the lower half of the body and tail are kept straight. However, recent work has shown that mudskippers modify some aspects of their locomotion when crutching on deformable surfaces, particularly those at an incline. For example, on inclined dry sand, mudskippers bent their bodies laterally and curled and extended their tails to potentially act as a secondary propulsor and/or anti-slip device. In order to gain a more comprehensive understanding of the functional diversity and context-dependency of mudskipper crutching, we compared their kinematics on different combinations of substrate types (solid, mud, dry sand) and inclines (0°, 10°, 20°). In addition to increasing lateral bending on deformable and inclined substrates, we found that mudskippers increased the relative contact time and contact area of their paired fins while becoming more crouched, responses comparable to those seen in tetrapods and other amphibious fishes. Mudskippers on these substrates also exhibited previously undocumented behaviors, such as extending and adpressing the distal portions of their pectoral fins more anteriorly, dorsoventrally bending their trunk, "belly-flopping" on sand, and "gripping" the mud substrate with their pectoral fin rays. Our study highlights potential compensatory mechanisms shared among vertebrates in terrestrial environments while also illustrating that locomotor flexibility and even novelty can emerge when animals are challenged with environmental variation.
Collapse
Affiliation(s)
- Emily R Naylor
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| | - Sandy M Kawano
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, U.S.A
| |
Collapse
|
8
|
Bressman NR. Terrestrial capabilities of invasive fishes and their management implications. Integr Comp Biol 2022; 62:icac023. [PMID: 35511196 DOI: 10.1093/icb/icac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Amphibious fishes have many adaptations that make them successful in a wide variety of conditions, including air-breathing, terrestrial locomotor capabilities, and extreme tolerance of poor water quality. However, the traits that make them highly adaptable may allow these fishes to successfully establish themselves outside of their native regions. In particular, the terrestrial capabilities of invasive amphibious fishes allow them to disperse overland, unlike fully aquatic invasive fishes, making their management more complicated. Despite numerous amphibious fish introductions around the world, ecological risk assessments and management plans often fail to adequately account for their terrestrial behaviors. In this review, I discuss the diversity of invasive amphibious fishes and what we currently know about why they emerge onto land, how they move around terrestrial environments, and how they orient while on land. In doing so, I use case studies of the performance and motivations of nonnative amphibious fishes in terrestrial environments to propose management solutions that factor in their complete natural history. Because of their terrestrial capabilities, we may need to manage amphibious fishes more like amphibians than fully aquatic fishes, but to do so, we need to learn more about how these species perform in a wide range of terrestrial environments and conditions.
Collapse
Affiliation(s)
- Noah R Bressman
- Salisbury University, Department of Biology, 1101 Camden Avenue, Salisbury, Maryland, USA, 21801
| |
Collapse
|
9
|
Naylor ER, Higham TE. High‐speed terrestrial substrate transitions: How a fleeing cursorial day gecko copes with compliance changes that are experienced in nature. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Emily R. Naylor
- Department of Evolution Ecology & Organismal Biology University of California Riverside CA USA
- Department of Biological Sciences The George Washington University Washington DC USA
| | - Timothy E. Higham
- Department of Evolution Ecology & Organismal Biology University of California Riverside CA USA
| |
Collapse
|
10
|
Bressman NR, Morrison CH, Ashley-Ross MA. Reffling: A Novel Locomotor Behavior Used by Neotropical Armored Catfishes (Loricariidae) in Terrestrial Environments. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/i2020084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|