1
|
Raharivololoniaina A, Busch R, Deppe F, Hitzler A, Plath E, Rischen T, Yilmazer M, Fischer K. Negative effects of nitrogen fertilization on herbivore fitness are exaggerated at warmer temperatures and in high-altitude populations. Oecologia 2025; 207:51. [PMID: 40064670 PMCID: PMC11893656 DOI: 10.1007/s00442-025-05690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Biodiversity is currently under strong pressure due to anthropogenic global change. Different drivers of global change may exert direct and indirect effects on biodiversity, and may furthermore interact with one another, but our respective knowledge is still very limited. We investigated indirect and interactive effects of two important drivers of global change, eutrophication and climate change, in replicated low- and high-altitude populations of an insect herbivore, the butterfly Lycaena tityrus, in a laboratory setting. We found local adaptation in developmental traits, with low-altitude populations being adapted to warmer temperatures and longer seasons. Lycaena tityrus responded negatively to agriculturally relevant levels of fertilization of its host plant, showing reduced body mass and prolonged development time. Negative effects were particularly pronounced at warmer temperatures and in high-altitude populations. Our study adds to the increasing knowledge that different drivers of global change may interact and thereby increase the overall level of threat to biodiversity. We suggest that populations inhabiting naturally nutrient-poor environments might be even more vulnerable to agricultural intensification than others, potentially applicable to many species. These findings may have important implications for protecting numerous vulnerable species in the face of rapid environmental change.
Collapse
Affiliation(s)
- Ange Raharivololoniaina
- Department of Biology, Institute for Integrated Natural Sciences, University of Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany
| | - Roland Busch
- Department of Biology, Institute for Integrated Natural Sciences, University of Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany
| | - Franziska Deppe
- Department of Biology, Institute for Integrated Natural Sciences, University of Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany
| | - Anna Hitzler
- Department of Biology, Institute for Integrated Natural Sciences, University of Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany
| | - Eva Plath
- Department of Biology, Institute for Integrated Natural Sciences, University of Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany
| | - Tamara Rischen
- Department of Biology, Institute for Integrated Natural Sciences, University of Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany
| | - Mine Yilmazer
- Department of Biology, Institute for Integrated Natural Sciences, University of Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany
| | - Klaus Fischer
- Department of Biology, Institute for Integrated Natural Sciences, University of Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany.
| |
Collapse
|
2
|
Coyle O, Vredenburg VT, Stillman JH. Interactive abiotic and biotic stressor impacts on a stream-dwelling amphibian. Ecol Evol 2024; 14:e11371. [PMID: 38711490 PMCID: PMC11070774 DOI: 10.1002/ece3.11371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Organisms within freshwater and marine environments are subject to a diverse range of often co-occurring abiotic and biotic stressors. Despite growing awareness of the complex multistress systems at play in aquatic ecosystems, many questions remain regarding how simultaneous stressors interact with one another and jointly impact aquatic species. We looked at multistress interactions in a protected stream ecosystem in Mendocino County, California. Specifically, we examined how diurnal temperature variation, turbidity, and predator cues altered the movement speed of larval Pacific giant salamanders (Dicamptodon tenebrosus). In a second experiment, we looked at how simulated low-flow summer conditions impact the expression of heat-shock proteins (HSPs) in the same species. Larvae moved almost one and a half times faster in the presence of chemical cues from trout and suspended sediment, and almost two times faster when both sediment and trout cues were present but were only marginally affected by temperature and visual cues from conspecifics. Interestingly, the order of stressor exposure also appeared to influence larval speed, where exposure to sediment and trout in earlier trials tended to lead to faster speeds in later trials. Additionally, larvae exposed to low-flow conditions had more variable, but not statistically significantly higher, expression of HSPs. Our findings highlight the potential interactive effects of an abiotic stressor, sedimentation, and a biotic stressor, and predator chemical cues on an ecologically important trait: movement speed. Our findings also demonstrate the likely role of HSPs in larval salamander survival in challenging summer conditions. Taken together, these findings show that larval D. tenebrosus responds behaviorally to biotic and abiotic stressors and suggests a possible pathway for physiological tolerance of environmental stress. Consideration of multistress systems and their effects is important for understanding the full effects of co-occurring stressors on aquatic organisms to guide appropriate conservation and management efforts based on ecologically relevant responses of organisms within an environment.
Collapse
Affiliation(s)
- Oliver Coyle
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
| | - Vance T. Vredenburg
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
- Museum of Vertebrate ZoologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Jonathon H. Stillman
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
- Department of Integrative BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
3
|
Xie J, Wang T, Zhang P, Zhang H, Wang H, Wang K, Zhang M, Xu J. Effects of multiple stressors on freshwater food webs: Evidence from a mesocosm experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123819. [PMID: 38508368 DOI: 10.1016/j.envpol.2024.123819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Natural and anthropogenic pressures exert influence on ecosystem structure and function by affecting the physiology and behavior of organisms, as well as the trophic interactions within assemblages. Therefore, understanding how multiple stressors affect aquatic ecosystems can improve our ability to manage and protect these ecosystems and contribute to understanding fundamental ecological principles. Here, we conducted a mesocosm experiment to ascertain the individual and combined effects of multiple stressors on trophic interactions within species in freshwater ecosystems. Furthermore, we investigated how species respond to such changes by adapting their food resources. To mimic a realistic food web, we selected fish and shrimp as top predators, gastropods, zooplankton and zoobenthos as intermediate consumers, with producers (macrophytes, periphyton and phytoplankton) and detritus as basal resources. Twelve different treatments included a control, nutrient loading only, herbicide exposure only, and a combination of nutrient loading and herbicide exposure, each replicated under ambient temperature, constant warming and multiple heat waves to simulate environmental stressors. Our results demonstrated that antagonistic interactions between environmental stressors were widespread in trophic interactions, with a more pronounced and less intense impact observed for the high trophic level species. The responses of freshwater communities to environmental stressors are complex, involving direct effects on individual species as well as indirect effects through species interactions. Moreover, our results confirmed that the combinations of stressors, but not individual stressors, led to a shift to herbivory in top predators, indicating that multiple stressors can be more detrimental to organisms than individual stressors alone. These findings elucidate how changes in the resource utilization of species induced by environmental stressors can potentially influence species interactions and the structural dynamics of food webs in freshwater ecosystems.
Collapse
Affiliation(s)
- Jiayi Xie
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Tao Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Peiyu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Huan Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Huan Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China.
| | - Kang Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Min Zhang
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.
| | - Jun Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
4
|
Comte L, Bertrand R, Diamond S, Lancaster LT, Pinsky ML, Scheffers BR, Baecher JA, Bandara RMWJ, Chen IC, Lawlor JA, Moore NA, Oliveira BF, Murienne J, Rolland J, Rubenstein MA, Sunday J, Thompson LM, Villalobos F, Weiskopf SR, Lenoir J. Bringing traits back into the equation: A roadmap to understand species redistribution. GLOBAL CHANGE BIOLOGY 2024; 30:e17271. [PMID: 38613240 DOI: 10.1111/gcb.17271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Ecological and evolutionary theories have proposed that species traits should be important in mediating species responses to contemporary climate change; yet, empirical evidence has so far provided mixed evidence for the role of behavioral, life history, or ecological characteristics in facilitating or hindering species range shifts. As such, the utility of trait-based approaches to predict species redistribution under climate change has been called into question. We develop the perspective, supported by evidence, that trait variation, if used carefully can have high potential utility, but that past analyses have in many cases failed to identify an explanatory value for traits by not fully embracing the complexity of species range shifts. First, we discuss the relevant theory linking species traits to range shift processes at the leading (expansion) and trailing (contraction) edges of species distributions and highlight the need to clarify the mechanistic basis of trait-based approaches. Second, we provide a brief overview of range shift-trait studies and identify new opportunities for trait integration that consider range-specific processes and intraspecific variability. Third, we explore the circumstances under which environmental and biotic context dependencies are likely to affect our ability to identify the contribution of species traits to range shift processes. Finally, we propose that revealing the role of traits in shaping species redistribution may likely require accounting for methodological variation arising from the range shift estimation process as well as addressing existing functional, geographical, and phylogenetic biases. We provide a series of considerations for more effectively integrating traits as well as extrinsic and methodological factors into species redistribution research. Together, these analytical approaches promise stronger mechanistic and predictive understanding that can help society mitigate and adapt to the effects of climate change on biodiversity.
Collapse
Affiliation(s)
- Lise Comte
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
- Conservation Science Partners, Inc., Truckee, California, USA
| | - Romain Bertrand
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE UMR5300), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Sarah Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Brett R Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - J Alex Baecher
- School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA
| | - R M W J Bandara
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jake A Lawlor
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Nikki A Moore
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Brunno F Oliveira
- Fondation pour la Recherche sur la Biodiversité (FRB), Centre de Synthèse et d'Analyse sur la Biodiversité (CESAB), Montpellier, France
| | - Jerome Murienne
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE UMR5300), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Jonathan Rolland
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE UMR5300), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 Paul Sabatier (UT3), Toulouse, France
| | - Madeleine A Rubenstein
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, Virginia, USA
| | - Jennifer Sunday
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Laura M Thompson
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, Virginia, USA
- School of Natural Resources, University of Tennessee, Knoxville, Tennessee, USA
| | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología A.C. - INECOL, Veracruz, Mexico
| | - Sarah R Weiskopf
- U.S. Geological Survey National Climate Adaptation Science Center, Reston, Virginia, USA
| | - Jonathan Lenoir
- UMR CNRS 7058, Ecologie et Dynamique Des Systèmes Anthropisés (EDYSAN), Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
5
|
Jiang LQ, Kozyr A, Relph JM, Ronje EI, Kamb L, Burger E, Myer J, Nguyen L, Arzayus KM, Boyer T, Cross S, Garcia H, Hogan P, Larsen K, Parsons AR. The Ocean Carbon and Acidification Data System. Sci Data 2023; 10:136. [PMID: 36922515 PMCID: PMC10017681 DOI: 10.1038/s41597-023-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
The Ocean Carbon and Acidification Data System (OCADS) is a data management system at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI). It manages a wide range of ocean carbon and acidification data, including chemical, physical, and biological observations collected from research vessels, ships of opportunity, and uncrewed platforms, as well as laboratory experiment results, and model outputs. Additionally, OCADS serves as a repository for related Global Ocean Observing System (GOOS) biogeochemistry Essential Ocean Variables (EOVs), e.g., oxygen, nutrients, transient tracers, and stable isotopes. OCADS endeavors to be one of the world's leading providers of ocean carbon and acidification data, information, products, and services. To provide the best data management services to the ocean carbon and acidification research community, OCADS prioritizes adopting a customer-centric approach and gathering knowledge and expertise from the research community to improve its data management practices. OCADS aims to make all ocean carbon and acidification data accessible via a single portal, and welcomes submissions from around the world: https://www.ncei.noaa.gov/products/ocean-carbon-acidification-data-system/.
Collapse
Affiliation(s)
- Li-Qing Jiang
- Cooperative Institute for Satellite Earth System Studies, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, 20740, USA.
- NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA.
| | - Alex Kozyr
- Cooperative Institute for Satellite Earth System Studies, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, 20740, USA
- NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA
| | - John M Relph
- NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA
| | - Errol I Ronje
- NOAA/NESDIS National Centers for Environmental Information, Stennis Space Center, Mississippi, 39529, USA
| | - Linus Kamb
- NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington, 98115, USA
| | - Eugene Burger
- NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington, 98115, USA
| | - Jonathan Myer
- NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina, 28801, USA
| | - Liem Nguyen
- Department of Computer Science, University of Maryland, College Park, Maryland, 20740, USA
| | - Krisa M Arzayus
- NOAA/NOS Integrated Ocean Observing System, Silver Spring, Maryland, 20910, USA
| | - Tim Boyer
- NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA
| | - Scott Cross
- NOAA/NESDIS National Centers for Environmental Information, Charleston, South Carolina, 29412, USA
| | - Hernan Garcia
- NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA
| | - Patrick Hogan
- NOAA/NESDIS National Centers for Environmental Information, Stennis Space Center, Mississippi, 39529, USA
| | - Kirsten Larsen
- NOAA/NESDIS National Centers for Environmental Information, Stennis Space Center, Mississippi, 39529, USA
| | - A Rost Parsons
- NOAA/NESDIS National Centers for Environmental Information, Stennis Space Center, Mississippi, 39529, USA
| |
Collapse
|
6
|
Petrick B, Reuning L, Auer G, Zhang Y, Pfeiffer M, Schwark L. Warm, not cold temperatures contributed to a Late Miocene reef decline in the Coral Sea. Sci Rep 2023; 13:4015. [PMID: 36899047 PMCID: PMC10006184 DOI: 10.1038/s41598-023-31034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Evidence shows that in the modern ocean, coral reefs are disappearing, and these losses are tied to climate change. However, research also shows that coral reefs can adapt rapidly to changing conditions leading some researchers to suggest that some reef systems will survive future climate change through adaptation. It is known that there were changes in the area covered by coral reefs in the past. Therefore, it is important to investigate the long-term response of coral reefs to environmental changes and high sea-surface temperatures (SSTs). However, because of diagenetic issues with SST proxies in neritic, metastable carbonate-rich environments, there is an incomplete and sometimes even incorrect understanding of how changes in SSTs affect carbonate reef systems. A good example is the Queensland Plateau offshore northeast Australia next to the threatened Great Barrier Reef. In the Late Miocene, between 11 and 7 Ma, a partial drowning caused the reef area on the Queensland Plateau to decline by ~ 50% leading to a Late Miocene change in platform geometry from a reef rimmed platform to a carbonate ramp. This reef decline was interpreted to be the result of SSTs at the lower limit of the modern reef growth window (20-18 °C). This article presents a new Late Miocene-ased SST record from the Coral Sea based on the TEX86H molecular paleothermometer, challenging this long held view. Our new record indicates warm tropical SSTs (27-32 °C) at the upper end of the modern reef growth window. We suggest that the observed temperatures potentially exceeded the optimal calcification temperatures of corals. In combination with a low aragonite supersaturation in the ocean, this could have reduced coral growth rates and ultimately lowered the aggradation potential of the reef system. These sub-optimal growth rates could have made the coral reefs more susceptible to other stressors, such as relative sea-level rise and/or changes in currents leading to reef drowning. Given that these changes affected coral reefs that were likely adapted to high temperature/low aragonite saturation conditions suggests that reefs that have adapted to non-ideal conditions may still be susceptible to future climate changes due to the interaction of multiple stressors associated with climate change.
Collapse
Affiliation(s)
- Benjamin Petrick
- Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Straße 10, 24118, Kiel, Germany.
| | - Lars Reuning
- Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Straße 10, 24118, Kiel, Germany
| | - Gerald Auer
- Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, Heinrichstrasse 26, 8010, Graz, Austria
| | - Yige Zhang
- Department of Oceanography, Texas A&M University, College Station, TX, 77843, USA
| | - Miriam Pfeiffer
- Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Straße 10, 24118, Kiel, Germany
| | - Lorenz Schwark
- Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Straße 10, 24118, Kiel, Germany
| |
Collapse
|
7
|
Saltwater intrusion indirectly intensifies Phragmites australis invasion via alteration of soil microbes. Sci Rep 2022; 12:16582. [PMID: 36195654 PMCID: PMC9532423 DOI: 10.1038/s41598-022-20555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Although global change clearly influences species invasion, the exact mechanisms by which global change either intensifies or limits invasive spread remain elusive. Global change can affect invasion directly by altering abiotic conditions, as well as indirectly by altering the abundance and composition of interacting species. Here we examine the relative impacts of direct effects of saltwater intrusion and indirect effects via microbial interactions on the expansion of a model invasive plant species, Phragmites australis, in freshwater marshes of coastal Louisiana. Using a mesocosm experiment, we found that overall salinity strongly increases invasion, but the direction and magnitude of direct and indirect effects were context dependent. Indirect effects of salinity, via alterations in soil microbial composition, increased invasive performance when grown in monoculture and decreased native performance in native-only communities. However, when P. australis and natives were grown together, microbial indirect effects were not important; rather the salinity treatment increased P. australis invasion through reduction of native plant growth. Results suggest that salinity-induced alteration of soil microbes will increase susceptibility of native communities to invasion and promote P. australis monoculture expansion in later stages of invasion; whereas non-microbial effects of salinity are more important in early stages of invasion when P. australis is competing with native species. More broadly, these results underscore the importance of considering microbially-mediated indirect effects of global change in investigating the long-term outcomes of plant species interactions.
Collapse
|
8
|
D'Amelio PB, Ferreira AC, Fortuna R, Paquet M, Silva LR, Theron F, Doutrelant C, Covas R. Disentangling climatic and nest predator impact on reproductive output reveals adverse high-temperature effects regardless of helper number in an arid-region cooperative bird. Ecol Lett 2021; 25:151-162. [PMID: 34787354 PMCID: PMC9299450 DOI: 10.1111/ele.13913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023]
Abstract
Climate exerts a major influence on reproductive processes, and an understanding of the mechanisms involved and which factors might mitigate adverse weather is fundamental under the ongoing climate change. Here, we study how weather and nest predation influence reproductive output in a social species, and examine whether larger group sizes can mitigate the adverse effects of these factors. We used a 7‐year nest predator‐exclusion experiment on an arid‐region cooperatively breeding bird, the sociable weaver. We found that dry and, especially, hot weather were major drivers of nestling mortality through their influence on nest predation. However, when we experimentally excluded nest predators, these conditions were still strongly associated with nestling mortality. Group size was unimportant against nest predation and, although positively associated with reproductive success, it did not mitigate the effects of adverse weather. Hence, cooperative breeding might have a limited capacity to mitigate extreme weather effects.
Collapse
Affiliation(s)
- Pietro B D'Amelio
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa.,Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, 34293, France
| | - André C Ferreira
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, 34293, France.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Rita Fortuna
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
| | - Matthieu Paquet
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Liliana R Silva
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Franck Theron
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, 34293, France.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Claire Doutrelant
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa.,Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, 34293, France
| | - Rita Covas
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| |
Collapse
|
9
|
Schlenger AJ, Beas-Luna R, Ambrose RF. Forecasting ocean acidification impacts on kelp forest ecosystems. PLoS One 2021; 16:e0236218. [PMID: 33886569 PMCID: PMC8061940 DOI: 10.1371/journal.pone.0236218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/28/2021] [Indexed: 11/19/2022] Open
Abstract
Ocean acidification is one the biggest threats to marine ecosystems worldwide, but its ecosystem wide responses are still poorly understood. This study integrates field and experimental data into a mass balance food web model of a temperate coastal ecosystem to determine the impacts of specific OA forcing mechanisms as well as how they interact with one another. Specifically, we forced a food web model of a kelp forest ecosystem near its southern distribution limit in the California large marine ecosystem to a 0.5 pH drop over the course of 50 years. This study utilizes a modeling approach to determine the impacts of specific OA forcing mechanisms as well as how they interact. Isolating OA impacts on growth (Production), mortality (Other Mortality), and predation interactions (Vulnerability) or combining all three mechanisms together leads to a variety of ecosystem responses, with some taxa increasing in abundance and other decreasing. Results suggest that carbonate mineralizing groups such as coralline algae, abalone, snails, and lobsters display the largest decreases in biomass while macroalgae, urchins, and some larger fish species display the largest increases. Low trophic level groups such as giant kelp and brown algae increase in biomass by 16% and 71%, respectively. Due to the diverse way in which OA stress manifests at both individual and population levels, ecosystem-level effects can vary and display nonlinear patterns. Combined OA forcing leads to initial increases in ecosystem and commercial biomasses followed by a decrease in commercial biomass below initial values over time, while ecosystem biomass remains high. Both biodiversity and average trophic level decrease over time. These projections indicate that the kelp forest community would maintain high productivity with a 0.5 drop in pH, but with a substantially different community structure characterized by lower biodiversity and relatively greater dominance by lower trophic level organisms.
Collapse
Affiliation(s)
- Adam J. Schlenger
- Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rodrigo Beas-Luna
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada B.C. Mexico
| | - Richard F. Ambrose
- Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Hammond TT, Ortiz-Jimenez CA, Smith JE. Anthropogenic Change Alters Ecological Relationships via Interactive Changes in Stress Physiology and Behavior within and among Organisms. Integr Comp Biol 2020; 60:57-69. [PMID: 31960928 DOI: 10.1093/icb/icaa001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic change has well-documented impacts on stress physiology and behavior across diverse taxonomic groups. Within individual organisms, physiological and behavioral traits often covary at proximate and ultimate timescales. In the context of global change, this means that impacts on physiology can have downstream impacts on behavior, and vice versa. Because all organisms interact with members of their own species and other species within their communities, the effects of humans on one organism can impose indirect effects on one or more other organisms, resulting in cascading effects across interaction networks. Human-induced changes in the stress physiology of one species and the downstream impacts on behavior can therefore interact with the physiological and behavioral responses of other organisms to alter emergent ecological phenomena. Here, we highlight three scenarios in which the stress physiology and behavior of individuals on different sides of an ecological relationship are interactively impacted by anthropogenic change. We discuss host-parasite/pathogen dynamics, predator-prey relationships, and beneficial partnerships (mutualisms and cooperation) in this framework, considering cases in which the effect of stressors on each type of network may be attenuated or enhanced by interactive changes in behavior and physiology. These examples shed light on the ways that stressors imposed at the level of one individual can impact ecological relationships to trigger downstream consequences for behavioral and ecological dynamics. Ultimately, changes in stress physiology on one or both sides of an ecological interaction can mediate higher-level population and community changes due in part to their cascading impacts on behavior. This framework may prove useful for anticipating and potentially mitigating previously underappreciated ecological responses to anthropogenic perturbations in a rapidly changing world.
Collapse
Affiliation(s)
- Talisin T Hammond
- San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA
| | - Chelsea A Ortiz-Jimenez
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
11
|
Lannoo MJ, Stiles RM. Uncovering Shifting Amphibian Ecological Relationships in a World of Environmental Change1. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael J. Lannoo
- Indiana University School of Medicine-TH, Terre Haute, IN 47809, USA
| | | |
Collapse
|
12
|
da Silva CRB, van den Berg CP, Condon ND, Riginos C, Wilson RS, Cheney KL. Intertidal gobies acclimate rate of luminance change for background matching with shifts in seasonal temperature. J Anim Ecol 2020; 89:1735-1746. [PMID: 32227334 DOI: 10.1111/1365-2656.13226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/10/2020] [Indexed: 11/29/2022]
Abstract
Rate of colour change and background matching capacity are important functional traits for avoiding predation and hiding from prey. Acute changes in environmental temperature are known to impact the rate at which animals change colour, and therefore may affect their survival. Many ectotherms have the ability to acclimate performance traits such as locomotion, metabolic rate and growth rate with changes in seasonal temperature. However, it remains unclear how other functional traits that are directly linked to behaviour and survival respond to long-term changes in temperature (within an individual's lifetime). We assessed whether the rate of colour change is altered by long-term changes in temperature (seasonal variation) and if rate of colour change can acclimate to seasonal thermal conditions. We used an intertidal rock-pool goby Bathygobius cocosensis, to test this and exposed individuals to representative seasonal mean temperatures (16 or 31°C, herein referred to cold- and warm-exposed fish respectively) for 9 weeks and then tested their rate of luminance change when placed on white and black backgrounds at acute test temperatures 16 and 31°C. We modelled rate of luminance change using the visual sensitives of a coral trout Plectropmus leopardus to determine how well gobies matched their backgrounds in terms of luminance contrast to a potential predator. After exposure to long-term seasonal conditions, the warm-exposed fish had faster rates of luminance change and matched their background more closely when tested at 31 than at 16°C. Similarly, the cold-exposed fish had faster rates of luminance change and matched their backgrounds more closely at 16°C than at 31°C. This demonstrates that rate of luminance change can be adjusted to compensate for long-term changes in seasonal temperature. This is the first study to show that animals can acclimate rate of colour change for background matching to seasonal thermal conditions. We also show that rapid changes in acute temperature reduce background matching capabilities. Stochastic changes in climate are likely to affect the frequency of predator-prey interactions which may have substantial knock-on effects throughout ecosystems.
Collapse
Affiliation(s)
- Carmen R B da Silva
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia.,School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Cedric P van den Berg
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Nicholas D Condon
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Cynthia Riginos
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Robbie S Wilson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
13
|
Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain. Sci Rep 2020; 10:5103. [PMID: 32198395 PMCID: PMC7083920 DOI: 10.1038/s41598-020-61753-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/02/2020] [Indexed: 01/26/2023] Open
Abstract
Despite the wide knowledge about prevalent effects of ocean acidification on single species, the consequences on species interactions that may promote or prevent habitat shifts are still poorly understood. Using natural CO2 vents, we investigated changes in a key tri-trophic chain embedded within all its natural complexity in seagrass systems. We found that seagrass habitats remain stable at vents despite the changes in their tri-trophic components. Under high pCO2, the feeding of a key herbivore (sea urchin) on a less palatable seagrass and its associated epiphytes decreased, whereas the feeding on higher-palatable green algae increased. We also observed a doubled density of a predatory wrasse under acidified conditions. Bottom-up CO2 effects interact with top-down control by predators to maintain the abundance of sea urchin populations under ambient and acidified conditions. The weakened urchin herbivory on a seagrass that was subjected to an intense fish herbivory at vents compensates the overall herbivory pressure on the habitat-forming seagrass. Overall plasticity of the studied system components may contribute to prevent habitat loss and to stabilize the system under acidified conditions. Thus, preserving the network of species interactions in seagrass ecosystems may help to minimize the impacts of ocean acidification in near-future oceans.
Collapse
|
14
|
Chen L, Wang Y, Mi X, Liu X, Ren H, Chen J, Ma K, Kraft NJB. Neighborhood effects explain increasing asynchronous seedling survival in a subtropical forest. Ecology 2019; 100:e02821. [PMID: 31310665 DOI: 10.1002/ecy.2821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/07/2019] [Accepted: 06/13/2019] [Indexed: 01/30/2023]
Abstract
Biotic interactions play a critical role in mediating community responses to temporal environmental variation, but the importance of these effects relative to the direct effects of environmental change remains poorly understood, particularly in diverse forest communities. Here we combine a neighborhood modeling approach with insights from coexistence theory to assess the effects of temporal variation in species interactions and environmental conditions (e.g., precipitation, temperature, and understory light availability) on seedling survival over nine census years in a subtropical forest. We find significant temporal shifts in the magnitude of neighborhood effects on both community-wide and species-level seedling survival (statistically significant random effects of neighborhood × year and neighborhood × species × year interactions). These results are consistent with the idea that environmental change will play a fundamental role on forest regeneration dynamics by altering biotic interactions at the neighborhood scale. Moreover, differences among species in response to neighbors over time contribute to a pattern of temporal decoupling of seedling survival between species, which can help to promote diversity in certain contexts. In separate analyses of multiple regression on distance matrices (MRM), altered interactions with neighbors are much stronger predictors of asynchronous seedling survival among species than the pure effects of climate and plant functional traits, explaining twice as much variation (43.9% vs. 22.2%). In sum, these results reveal that divergent species responses to interannual environmental variability detected are driven primarily by indirect effects mediated by changing biotic environments. This highlights the importance of including indirect effects from local biotic (neighborhood) interactions in forecasts of forest community responses to global change.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| | - Yunquan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,Key Laboratory for Biodiversity Science and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haibao Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jianhua Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, 90095, USA
| |
Collapse
|
15
|
Decker LE, de Roode JC, Hunter MD. Elevated atmospheric concentrations of carbon dioxide reduce monarch tolerance and increase parasite virulence by altering the medicinal properties of milkweeds. Ecol Lett 2018; 21:1353-1363. [PMID: 30134036 DOI: 10.1111/ele.13101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/28/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
Abstract
Hosts combat their parasites using mechanisms of resistance and tolerance, which together determine parasite virulence. Environmental factors, including diet, mediate the impact of parasites on hosts, with diet providing nutritional and medicinal properties. Here, we present the first evidence that ongoing environmental change decreases host tolerance and increases parasite virulence through a loss of dietary medicinal quality. Monarch butterflies use dietary toxins (cardenolides) to reduce the deleterious impacts of a protozoan parasite. We fed monarch larvae foliage from four milkweed species grown under either elevated or ambient CO2 , and measured changes in resistance, tolerance, and virulence. The most high-cardenolide milkweed species lost its medicinal properties under elevated CO2 ; monarch tolerance to infection decreased, and parasite virulence increased. Declines in medicinal quality were associated with declines in foliar concentrations of lipophilic cardenolides. Our results emphasize that global environmental change may influence parasite-host interactions through changes in the medicinal properties of plants.
Collapse
Affiliation(s)
- Leslie E Decker
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| | - Jacobus C de Roode
- Biology Department, Rollins 1113 O. Wayne Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
16
|
Abstract
SYNOPSIS Predicting the effects of climate change on species and communities remains a pre-eminent challenge for biologists. Critical among this is understanding the indirect effects of climate change, which arise when the direct, physiological effects of climate on one species change the outcome of its interaction with a second species, altering the success of the second species. A diverse array of approaches to predicting indirect effects exists from mechanistic models, which attempt to build-up from physiological changes to ecological consequences, to ecological models that focus solely on the ecological scale. Here I review studies of the indirect effects of temperature on two predator-prey systems in rocky intertidal habitats. Laboratory and field studies have shown that temperature can indirectly affect interactions through both physiological and behavioral changes in predator and prey, but no model yet captures the full range of these effects. The three main categories of changes are metabolic rate effects, stress effects, and behavioral avoidance. Mechanistic models best capture the first two of these three dynamics, while ecological models have focused mainly on the last two. The challenge remains to correctly identify a species' vulnerability to climate change, which differs from its physiological sensitivity. The best approach may be to use detailed physiological-scale studies of indirect effect in a few systems to ground truth simpler models that can be applied more broadly. Model development and testing is also hampered by the small number of field studies of indirect effects in natural systems, particularly studies that examine natural temporal or spatial variation in climate.
Collapse
Affiliation(s)
- Sarah E Gilman
- The W.M. Keck Science Department, Claremont McKenna, Scripps and Pitzer Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA
| |
Collapse
|