1
|
Zhao Q, Zhang C, Chen J, Zhang M, Yuan J, Zhao L, Zhang J, Huang C, He G. Hydrodynamic pressure sensing for a biomimetic robotic fish caudal fin integrated with a resistive pressure sensor. BIOINSPIRATION & BIOMIMETICS 2024; 19:056018. [PMID: 39116911 DOI: 10.1088/1748-3190/ad6d21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Micro-sensors, such as pressure and flow sensors, are usually adopted to attain actual fluid information around swimming biomimetic robotic fish for hydrodynamic analysis and control. However, most of the reported micro-sensors are mounted discretely on body surfaces of robotic fish and it is impossible to analyzed the hydrodynamics between the caudal fin and the fluid. In this work, a biomimetic caudal fin integrated with a resistive pressure sensor is designed and fabricated by laser machined conductive carbon fibre composites. To analyze the pressure exerted on the caudal fin during underwater oscillation, the pressure on the caudal fin is measured under different oscillating frequencies and angles. Then a model developed from Bernoulli equation indicates that the maximum pressure difference is linear to the quadratic power of the oscillating frequency and the maximum oscillating angle. The fluid disturbance generated by caudal fin oscillating increases with an increase of oscillating frequency, resulting in the decrease of the efficiency of converting the kinetic energy of the caudal fin oscillation into the pressure difference on both sides of the caudal fin. However, perhaps due to the longer stability time of the disturbed fluid, this conversion efficiency increases with the increase of the maximum oscillating angle. Additionally, the pressure variation of the caudal fin oscillating with continuous different oscillating angles is also demonstrated to be detected effectively. It is suggested that the caudal fin integrated with the pressure sensor could be used for sensing thein situflow field in real time and analyzing the hydrodynamics of biomimetic robotic fish.
Collapse
Affiliation(s)
- Quanliang Zhao
- Department of Mechanical and Materials Engineering, North China University of Technology, Beijing, People's Republic of China
| | - Chao Zhang
- Department of Mechanical and Materials Engineering, North China University of Technology, Beijing, People's Republic of China
| | - Jinghao Chen
- Department of Mechanical and Materials Engineering, North China University of Technology, Beijing, People's Republic of China
| | - Mengying Zhang
- Department of Mechanical and Materials Engineering, North China University of Technology, Beijing, People's Republic of China
| | - Junjie Yuan
- Department of Mechanical and Materials Engineering, North China University of Technology, Beijing, People's Republic of China
| | - Lei Zhao
- Department of Mechanical and Materials Engineering, North China University of Technology, Beijing, People's Republic of China
| | - Jie Zhang
- Department of Mechanical and Materials Engineering, North China University of Technology, Beijing, People's Republic of China
| | - Can Huang
- Department of Mechanical and Materials Engineering, North China University of Technology, Beijing, People's Republic of China
| | - Guangping He
- Department of Mechanical and Materials Engineering, North China University of Technology, Beijing, People's Republic of China
| |
Collapse
|
2
|
Gibbs BJ, Akanyeti O, Liao JC. Kinematics and muscle activity of pectoral fins in rainbow trout (Oncorhynchus mykiss) station holding in turbulent flow. J Exp Biol 2024; 227:jeb246275. [PMID: 38390692 PMCID: PMC10984278 DOI: 10.1242/jeb.246275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Pectoral fins play a crucial role in fish locomotion. Despite fishes living in complex fluid environments that exist in rivers and tidal flows, the role of the pectoral fins in navigating turbulent flows is not well understood. This study investigated the kinematics and muscle activity of pectoral fins in rainbow trout as they held station in the unsteady flows behind a D-section cylinder. We observed two distinct pectoral fin behaviors, one during braking and the other during Kármán gaiting. These behaviors were correlated to whole-body movements in response to the hydrodynamic conditions of specific regions in the cylinder wake. Sustained fin extensions during braking, where the fin was held out to maintain its position away from the body and against the flow, were associated with the cessation of forward body velocity, where the fish avoided the suction region directly downstream of the cylinder. Transient fin extensions and retractions during Kármán gaiting controlled body movements in the cross-stream direction. These two fin behaviors had different patterns of muscle activity. All braking events required recruitment from both the abductor and adductor musculature to actively extend a pectoral fin. In contrast, over 50% of fin extension movements during Kármán gaiting proceed in the absence of muscle activity. We reveal that in unsteady fluid environments, pectoral fin movements are the result of a complex combination of passive and active mechanisms that deviate substantially from canonical labriform locomotion, the implications of which await further work on the integration of sensory and motor systems.
Collapse
Affiliation(s)
- Brendan J. Gibbs
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Otar Akanyeti
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DB, UK
| | - James C. Liao
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| |
Collapse
|
3
|
Panta K, Deng H, Zhang Z, Huang D, Panah A, Cheng B. Touchless underwater wall-distance sensing via active proprioception of a robotic flapper. BIOINSPIRATION & BIOMIMETICS 2024; 19:026009. [PMID: 38252966 DOI: 10.1088/1748-3190/ad2114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
In this work, we explored a bioinspired method for underwater object sensing based on active proprioception. We investigated whether the fluid flows generated by a robotic flapper, while interacting with an underwater wall, can encode the distance information between the wall and the flapper, and how to decode this information using the proprioception within the flapper. Such touchless wall-distance sensing is enabled by the active motion of a flapping plate, which injects self-generated flow to the fluid environment, thus representing a form of active sensing. Specifically, we trained a long short-term memory (LSTM) neural network to predict the wall distance based on the force and torque measured at the base of the flapping plate. In addition, we varied the Rossby number (Ro, or the aspect ratio of the plate) and the dimensionless flapping amplitude (A∗) to investigate how the rotational effects and unsteadiness of self-generated flow respectively affect the accuracy of the wall-distance prediction. Our results show that the median prediction error is within 5% of the plate length for all the wall-distances investigated (up to 40 cm or approximately 2-3 plate lengths depending on theRo); therefore, confirming that the self-generated flow can enable underwater perception. In addition, we show that stronger rotational effects at lowerRolead to higher prediction accuracy, while flow unsteadiness (A∗) only has moderate effects. Lastly, analysis based on SHapley Additive exPlanations (SHAP) indicate that temporal features that are most prominent at stroke reversals likely promotes the wall-distance prediction.
Collapse
Affiliation(s)
- Kundan Panta
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Hankun Deng
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Zhiyu Zhang
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Daning Huang
- Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Azar Panah
- Division of Engineering, Business & Computing (Berks), The Pennsylvania State University, Reading, PA 19610, United States of America
| | - Bo Cheng
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
4
|
Williams HJ, Sridhar VH, Hurme E, Gall GE, Borrego N, Finerty GE, Couzin ID, Galizia CG, Dominy NJ, Rowland HM, Hauber ME, Higham JP, Strandburg-Peshkin A, Melin AD. Sensory collectives in natural systems. eLife 2023; 12:e88028. [PMID: 38019274 PMCID: PMC10686622 DOI: 10.7554/elife.88028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a 'sensory collective'; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify 'sensescapes'. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.
Collapse
Affiliation(s)
- Hannah J Williams
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Vivek H Sridhar
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Edward Hurme
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Gabriella E Gall
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | | | | | - Iain D Couzin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - C Giovanni Galizia
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | - Nathaniel J Dominy
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, Dartmouth CollegeHanoverUnited States
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical EcologyJenaGermany
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-ChampaignUrbana-ChampaignUnited States
| | - James P Higham
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, New York UniversityNew YorkUnited States
| | - Ariana Strandburg-Peshkin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Amanda D Melin
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology and Archaeology, University of CalgaryCalgaryCanada
- Alberta Children’s Hospital Research Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
5
|
Skandalis DA, Lunsford ET, Liao JC. Corollary discharge enables proprioception from lateral line sensory feedback. PLoS Biol 2021; 19:e3001420. [PMID: 34634044 PMCID: PMC8530527 DOI: 10.1371/journal.pbio.3001420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/21/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022] Open
Abstract
Animals modulate sensory processing in concert with motor actions. Parallel copies of motor signals, called corollary discharge (CD), prepare the nervous system to process the mixture of externally and self-generated (reafferent) feedback that arises during locomotion. Commonly, CD in the peripheral nervous system cancels reafference to protect sensors and the central nervous system from being fatigued and overwhelmed by self-generated feedback. However, cancellation also limits the feedback that contributes to an animal's awareness of its body position and motion within the environment, the sense of proprioception. We propose that, rather than cancellation, CD to the fish lateral line organ restructures reafference to maximize proprioceptive information content. Fishes' undulatory body motions induce reafferent feedback that can encode the body's instantaneous configuration with respect to fluid flows. We combined experimental and computational analyses of swimming biomechanics and hair cell physiology to develop a neuromechanical model of how fish can track peak body curvature, a key signature of axial undulatory locomotion. Without CD, this computation would be challenged by sensory adaptation, typified by decaying sensitivity and phase distortions with respect to an input stimulus. We find that CD interacts synergistically with sensor polarization to sharpen sensitivity along sensors' preferred axes. The sharpening of sensitivity regulates spiking to a narrow interval coinciding with peak reafferent stimulation, which prevents adaptation and homogenizes the otherwise variable sensor output. Our integrative model reveals a vital role of CD for ensuring precise proprioceptive feedback during undulatory locomotion, which we term external proprioception.
Collapse
Affiliation(s)
- Dimitri A. Skandalis
- Department of Biology & Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elias T. Lunsford
- Department of Biology & Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
| | - James C. Liao
- Department of Biology & Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
| |
Collapse
|
6
|
Li L, Liu D, Deng J, Lutz MJ, Xie G. Fish can save energy via proprioceptive sensing. BIOINSPIRATION & BIOMIMETICS 2021; 16:056013. [PMID: 34284360 DOI: 10.1088/1748-3190/ac165e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Fish have evolved diverse and robust locomotive strategies to swim efficiently in complex fluid environments. However, we know little, if anything, about how these strategies can be achieved. Although most studies suggest that fish rely on the lateral line system to sense local flow and optimise body undulation, recent work has shown that fish are still able to gain benefits from the local flow even with the lateral line impaired. In this paper, we hypothesise that fish can save energy by extracting vortices shed from their neighbours using only simple proprioceptive sensing with the caudal fin. We tested this hypothesis on both computational and robotic fish by synthesising a central pattern generator (CPG) with feedback, proprioceptive sensing, and reinforcement learning. The CPG controller adjusts the body undulation after receiving feedback from the proprioceptive sensing signal, decoded via reinforcement learning. In our study, we consider potential proprioceptive sensing inputs to consist of low-dimensional signals (e.g. perceived forces) detected from the flow. With simulations on a computational robot and experiments on a robotic fish swimming in unknown dynamic flows, we show that the simple proprioceptive sensing is sufficient to optimise the body undulation to save energy, without any input from the lateral line. Our results reveal a new sensory-motor mechanism in schooling fish and shed new light on the strategy of control for robotic fish swimming in complex flows with high efficiency.
Collapse
Affiliation(s)
- Liang Li
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee 78315, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Danshi Liu
- Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jian Deng
- Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Matthew J Lutz
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee 78315, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Guangming Xie
- State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, People's Republic of China
- Institute of Ocean Research, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
7
|
Aguzzi J, Costa C, Calisti M, Funari V, Stefanni S, Danovaro R, Gomes HI, Vecchi F, Dartnell LR, Weiss P, Nowak K, Chatzievangelou D, Marini S. Research Trends and Future Perspectives in Marine Biomimicking Robotics. SENSORS (BASEL, SWITZERLAND) 2021; 21:3778. [PMID: 34072452 PMCID: PMC8198061 DOI: 10.3390/s21113778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Mechatronic and soft robotics are taking inspiration from the animal kingdom to create new high-performance robots. Here, we focused on marine biomimetic research and used innovative bibliographic statistics tools, to highlight established and emerging knowledge domains. A total of 6980 scientific publications retrieved from the Scopus database (1950-2020), evidencing a sharp research increase in 2003-2004. Clustering analysis of countries collaborations showed two major Asian-North America and European clusters. Three significant areas appeared: (i) energy provision, whose advancement mainly relies on microbial fuel cells, (ii) biomaterials for not yet fully operational soft-robotic solutions; and finally (iii), design and control, chiefly oriented to locomotor designs. In this scenario, marine biomimicking robotics still lacks solutions for the long-lasting energy provision, which presently hinders operation autonomy. In the research environment, identifying natural processes by which living organisms obtain energy is thus urgent to sustain energy-demanding tasks while, at the same time, the natural designs must increasingly inform to optimize energy consumption.
Collapse
Affiliation(s)
- Jacopo Aguzzi
- Department of Renewable Marine Resources, Instituto de Ciencias del Mar (ICM-CSIC), 08003 Barcelona, Spain
- Stazione Zoologica Anton Dohrn (SZN), 80122 Naples, Italy; (V.F.); (S.S.); (R.D.); (F.V.)
| | - Corrado Costa
- Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), 00015 Rome, Italy
| | - Marcello Calisti
- The BioRobotics Institute, Scuola Superiore Sant’Anna (SSAA), 56127 Pisa, Italy;
- Lincoln Institute for Agri-food Technology (LIAT), University of Lincoln, Lincoln LN6 7TS, UK
| | - Valerio Funari
- Stazione Zoologica Anton Dohrn (SZN), 80122 Naples, Italy; (V.F.); (S.S.); (R.D.); (F.V.)
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR), 40129 Bologna, Italy
| | - Sergio Stefanni
- Stazione Zoologica Anton Dohrn (SZN), 80122 Naples, Italy; (V.F.); (S.S.); (R.D.); (F.V.)
| | - Roberto Danovaro
- Stazione Zoologica Anton Dohrn (SZN), 80122 Naples, Italy; (V.F.); (S.S.); (R.D.); (F.V.)
- Department of Life and Environmental Science, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Helena I. Gomes
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Fabrizio Vecchi
- Stazione Zoologica Anton Dohrn (SZN), 80122 Naples, Italy; (V.F.); (S.S.); (R.D.); (F.V.)
| | - Lewis R. Dartnell
- School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | | | - Kathrin Nowak
- Compagnie Maritime d’Expertises (COMEX), 13275 Marseille, France;
| | | | - Simone Marini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze Marine (ISMAR), 19032 La Spezia, Italy;
| |
Collapse
|
8
|
Pollard B, Tallapragada P. Learning hydrodynamic signatures through proprioceptive sensing by bioinspired swimmers. BIOINSPIRATION & BIOMIMETICS 2021; 16:026014. [PMID: 33271521 DOI: 10.1088/1748-3190/abd044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Objects moving in water or stationary objects in streams create a vortex wake. Such vortex wakes encode information about the objects and the flow conditions. Underwater robots that often function with constrained sensing capabilities can benefit from extracting this information from vortex wakes. Many species of fish do exactly this, by sensing flow features using their lateral lines as part of their multimodal sensing. To replicate such capabilities in robots, significant research has been devoted to developing artificial lateral line sensors that can be placed on the surface of a robot to detect pressure and velocity gradients. We advance an alternative view of embodied sensing in this paper; the kinematics of a swimmer's body in response to the hydrodynamic forcing by the vortex wake can encode information about the vortex wake. Here we show that using artificial neural networks that take the angular velocity of the body as input, fish-like swimmers can be trained to label vortex wakes which are hydrodynamic signatures of other moving bodies and thus acquire a capability to 'blindly' identify them.
Collapse
Affiliation(s)
- Beau Pollard
- 200 EIB, Clemson University, Clemson, S.C., 29607, United States of America
| | | |
Collapse
|
9
|
Vortex phase matching as a strategy for schooling in robots and in fish. Nat Commun 2020; 11:5408. [PMID: 33106484 PMCID: PMC7588453 DOI: 10.1038/s41467-020-19086-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 09/10/2020] [Indexed: 01/30/2023] Open
Abstract
It has long been proposed that flying and swimming animals could exploit neighbour-induced flows. Despite this it is still not clear whether, and if so how, schooling fish coordinate their movement to benefit from the vortices shed by others. To address this we developed bio-mimetic fish-like robots which allow us to measure directly the energy consumption associated with swimming together in pairs (the most common natural configuration in schooling fish). We find that followers, in any relative position to a near-neighbour, could obtain hydrodynamic benefits if they exhibit a tailbeat phase difference that varies linearly with front-back distance, a strategy we term ‘vortex phase matching’. Experiments with pairs of freely-swimming fish reveal that followers exhibit this strategy, and that doing so requires neither a functioning visual nor lateral line system. Our results are consistent with the hypothesis that fish typically, but not exclusively, use vortex phase matching to save energy. Whether and how fish might benefit from swimming in schools is an ongoing intriguing debate. Li et al. conduct experiments with biomimetic robots and also with real fish to reveal a new behavioural strategy by which followers can exploit the vortices shed by a near neighbour.
Collapse
|
10
|
Aiello BR, Olsen AM, Mathis CE, Westneat MW, Hale ME. Pectoral fin kinematics and motor patterns are shaped by fin ray mechanosensation during steady swimming in Scarus quoyi. ACTA ACUST UNITED AC 2020; 223:jeb.211466. [PMID: 31862848 DOI: 10.1242/jeb.211466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023]
Abstract
For many fish species, rhythmic movement of the pectoral fins, or forelimbs, drives locomotion. In terrestrial vertebrates, normal limb-based rhythmic gaits require ongoing modulation with limb mechanosensors. Given the complexity of the fluid environment and dexterity of fish swimming through it, we hypothesize that mechanosensory modulation is also critical to normal fin-based swimming. Here, we examined the role of sensory feedback from the pectoral fin rays and membrane on the neuromuscular control and kinematics of pectoral fin-based locomotion. Pectoral fin kinematics and electromyograms of the six major fin muscles of the parrotfish, Scarus quoyi, a high-performance pectoral fin swimmer, were recorded during steady swimming before and after bilateral transection of the sensory nerves extending into the rays and surrounding membrane. Alternating activity of antagonistic muscles was observed and drove the fin in a figure-of-eight fin stroke trajectory before and after nerve transection. After bilateral transections, pectoral fin rhythmicity remained the same or increased. Differences in fin kinematics with the loss of sensory feedback also included fin kinematics with a significantly more inclined stroke plane angle, an increased angular velocity and fin beat frequency, and a transition to the body-caudal fin gait at lower speeds. After transection, muscles were active over a larger proportion of the fin stroke, with overlapping activation of antagonistic muscles rarely observed in the trials of intact fish. The increased overlap of antagonistic muscle activity might stiffen the fin system in order to enhance control and stability in the absence of sensory feedback from the fin rays. These results indicate that fin ray sensation is not necessary to generate the underlying rhythm of fin movement, but contributes to the specification of pectoral fin motor pattern and movement during rhythmic swimming.
Collapse
Affiliation(s)
- Brett R Aiello
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Aaron M Olsen
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Chris E Mathis
- The College, University of Chicago, Chicago, IL 60637, USA
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.,The College, University of Chicago, Chicago, IL 60637, USA
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA .,The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|