1
|
Romanov AV, Shakhparonov VV, Gerasimov KB, Korzun LP. Occipital-synarcual joint mobility in ratfishes (Chimaeridae) and its possible adaptive role. J Morphol 2024; 285:e21740. [PMID: 38858850 DOI: 10.1002/jmor.21740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
The neurocranial elevation generated by axial muscles is widespread among aquatic gnathostomes. The mechanism has two functions: first, it contributes to the orientation of the mouth gape, and second, it is involved in suction feeding. To provide such mobility, anatomical specialization of the anterior part of the vertebral column has evolved in many fish species. In modern chimaeras, the anterior part of the vertebral column develops into the synarcual. Possible biological roles of the occipital-synarcual joint have not been discussed before. Dissections of the head of two species of ratfishes (Chimaera monstrosa and Chimaera phantasma) confirmed the heterocoely of the articulation surface between the synarcual and the neurocranium, indicating the possibility of movements in the sagittal and frontal planes. Muscles capable of controlling the movements of the neurocranium were described. The m. epaxialis is capable of elevating the head, the m. coracomandibularis is capable of lowering it if the mandible is anchored by the adductor. Lateral flexion is performed by the m. lateroventralis, for which this function was proposed for the first time. The first description of the m. epaxialis profundus is given, its function is to be elucidated in the future. Manipulations with joint preparations revealed a pronounced amplitude of movement in the sagittal and frontal planes. Since chimaeras generate weak decrease in pressure in the oropharyngeal cavity when sucking in prey, we hypothesised the primary effect of neurocranial elevation, in addition to the evident lateral head mobility, is accurate prey targeting.
Collapse
Affiliation(s)
- Alexey V Romanov
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir V Shakhparonov
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Kyrill B Gerasimov
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid P Korzun
- Department of Vertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Jimenez YE, Parsons JW, Brainerd EL. Epaxial and hypaxial co-contraction: a mechanism for modulating strike pressure and accuracy during suction feeding in channel catfish. J Exp Biol 2023; 226:286795. [PMID: 36715010 DOI: 10.1242/jeb.244714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Most fish species use concentric epaxial and hypaxial contractions to suction feed, whereby both muscle groups produce cranial expansion and negative intraoral pressures. In contrast, channel catfish (Ictalurus punctatus) suction feed with little to no cranial elevation and epaxial shortening, generating suction power primarily with hypaxial shortening and pectoral girdle retraction. We hypothesized that channel catfish (1) actively anchor the head via isometric contraction of the epaxials and (2) vary feeding performance by modulating the absolute and relative outputs of the co-contracting muscles. We used a combination of electromyography, intraoral pressure recordings and specimen manipulation, and developed a new dual-lever model to explore this idea. We detected epaxial and hypaxial co-contraction prior to suction force development in all strikes. Our model revealed that the differential between the co-contracting muscles may be used to modulate suction pressure and strike accuracy.
Collapse
Affiliation(s)
- Yordano E Jimenez
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA.,Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Jake W Parsons
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Elizabeth L Brainerd
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Vanhaesebroucke O, Larouche O, Cloutier R. Whole-body variational modularity in the zebrafish: an inside-out story of a model species. Biol Lett 2023; 19:20220454. [PMID: 36974665 PMCID: PMC9943880 DOI: 10.1098/rsbl.2022.0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Actinopterygians are the most diversified clade of extant vertebrates. Their impressive morphological disparity bears witness to tremendous ecological diversity. Modularity, the organization of biological systems into quasi-independent anatomical/morphological units, is thought to increase evolvability of organisms and facilitate morphological diversification. Our study aims to quantify patterns of variational modularity in a model actinopterygian, the zebrafish (Danio rerio), using three-dimensional geometric morphometrics on osteological structures isolated from micro-CT scans. A total of 72 landmarks were digitized along cranial and postcranial ossified regions of 30 adult zebrafishes. Two methods were used to test modularity hypotheses, the covariance ratio and the distance matrix approach. We find strong support for two modules, one comprised paired fins and the other comprised median fins, that are best explained by functional properties of subcarangiform swimming. While the skull is tightly integrated with the rest of the body, its intrinsic integration is relatively weak supporting previous findings that the fish skull is a modular structure. Our results provide additional support for the recognition of similar hypotheses of modularity identified based on external morphology in various teleosts, and at least two variational modules are proposed. Thus, our results hint at the possibility that internal and external modularity patterns may be congruent.
Collapse
Affiliation(s)
- Olivia Vanhaesebroucke
- Laboratoire de Paléontologie et Biologie évolutive, Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| | - Olivier Larouche
- Laboratoire de Paléontologie et Biologie évolutive, Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Richard Cloutier
- Laboratoire de Paléontologie et Biologie évolutive, Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| |
Collapse
|
4
|
Muruga P, Bellwood DR, Mihalitsis M. Forensic odontology: Assessing bite wounds to determine the role of teeth in piscivorous fishes. Integr Org Biol 2022; 4:obac011. [PMID: 35505796 PMCID: PMC9053946 DOI: 10.1093/iob/obac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Teeth facilitate the acquisition and processing of food in most vertebrates. However, relatively little is known about the functions of the diverse tooth morphologies observed in fishes. Piscivorous fishes (fish-eating fish) are crucial in shaping community structure and rely on their oral teeth to capture and/or process prey. However, how teeth are utilized in capturing and/or processing prey remains unclear. Most studies have determined the function of teeth by assessing morphological traits. The behavior during feeding, however, is seldom quantified. Here, we describe the function of teeth within piscivorous fishes by considering how morphological and behavioral traits interact during prey capture and processing. This was achieved through aquarium-based performance experiments, where prey fish were fed to 12 species of piscivorous fishes. Building on techniques in forensic odontology, we incorporate a novel approach to quantify and categorize bite damage on prey fish that were extracted from the piscivore’s stomachs immediately after being ingested. We then assess the significance of morphological and behavioral traits in determining the extent and severity of damage inflicted on prey fish. Results show that engulfing piscivores capture their prey whole and head-first. Grabbing piscivores capture prey tail-first using their teeth, process them using multiple headshakes and bites, before spitting them out, and then re-capturing prey head-first for ingestion. Prey from engulfers sustained minimal damage, whereas prey from grabbers sustained significant damage to the epaxial musculature. Within grabbers, headshakes were significantly associated with more severe damage categories. Headshaking behavior damages the locomotive muscles of prey, presumably to prevent escape. Compared to non-pharyngognaths, pharyngognath piscivores inflict significantly greater damage to prey. Overall, when present, oral jaw teeth appear to be crucial for both prey capture and processing (immobilization) in piscivorous fishes.
Collapse
Affiliation(s)
- Pooventhran Muruga
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, QLD 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, QLD 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Michalis Mihalitsis
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, QLD 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
5
|
Camp AL, Brainerd EL. A new conceptual framework for the musculoskeletal biomechanics and physiology of ray-finned fishes. J Exp Biol 2022; 225:jeb243376. [PMID: 35258609 PMCID: PMC8987723 DOI: 10.1242/jeb.243376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suction feeding in ray-finned fishes requires substantial muscle power for fast and forceful prey capture. The axial musculature located immediately behind the head has been long known to contribute some power for suction feeding, but recent XROMM and fluoromicrometry studies found nearly all the axial musculature (over 80%) provides effectively all (90-99%) of the power for high-performance suction feeding. The dominance of axial power suggests a new framework for studying the musculoskeletal biomechanics of fishes: the form and function of axial muscles and bones should be analysed for power production in feeding (or at least as a compromise between swimming and feeding), and cranial muscles and bones should be analysed for their role in transmitting axial power and coordinating buccal expansion. This new framework is already yielding novel insights, as demonstrated in four species for which suction power has now been measured. Interspecific comparisons suggest high suction power can be achieved in different ways: increasing the magnitude of suction pressure or the rate of buccal volume change, or both (as observed in the most powerful of these species). Our framework suggests that mechanical and evolutionary interactions between the head and the body, and between the swimming and feeding roles of axial structures, may be fruitful areas for continued study.
Collapse
Affiliation(s)
- Ariel L. Camp
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Elizabeth L. Brainerd
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
6
|
A biomechanical paradox in fish: swimming and suction feeding produce orthogonal strain gradients in the axial musculature. Sci Rep 2021; 11:10334. [PMID: 33990621 PMCID: PMC8121803 DOI: 10.1038/s41598-021-88828-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
The axial musculature of fishes has historically been characterized as the powerhouse for explosive swimming behaviors. However, recent studies show that some fish also use their ‘swimming’ muscles to generate over 90% of the power for suction feeding. Can the axial musculature achieve high power output for these two mechanically distinct behaviors? Muscle power output is enhanced when all of the fibers within a muscle shorten at optimal velocity. Yet, axial locomotion produces a mediolateral gradient of muscle strain that should force some fibers to shorten too slowly and others too fast. This mechanical problem prompted research into the gearing of fish axial muscle and led to the discovery of helical fiber orientations that homogenize fiber velocities during swimming, but does such a strain gradient also exist and pose a problem for suction feeding? We measured muscle strain in bluegill sunfish, Lepomis macrochirus, and found that suction feeding produces a gradient of longitudinal strain that, unlike the mediolateral gradient for locomotion, occurs along the dorsoventral axis. A dorsoventral strain gradient within a muscle with fiber architecture shown to counteract a mediolateral gradient suggests that bluegill sunfish should not be able to generate high power outputs from the axial muscle during suction feeding—yet prior work shows that they do, up to 438 W kg−1. Solving this biomechanical paradox may be critical to understanding how many fishes have co-opted ‘swimming’ muscles into a suction feeding powerhouse.
Collapse
|
7
|
Camp AL, Olsen AM, Hernandez LP, Brainerd EL. Fishes can use axial muscles as anchors or motors for powerful suction feeding. ACTA ACUST UNITED AC 2020; 223:223/18/jeb225649. [PMID: 32948649 PMCID: PMC7520451 DOI: 10.1242/jeb.225649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022]
Abstract
Some fishes rely on large regions of the dorsal (epaxial) and ventral (hypaxial) body muscles to power suction feeding. Epaxial and hypaxial muscles are known to act as motors, powering rapid mouth expansion by shortening to elevate the neurocranium and retract the pectoral girdle, respectively. However, some species, like catfishes, use little cranial elevation. Are these fishes instead using the epaxial muscles to forcefully anchor the head, and if so, are they limited to lower-power strikes? We used X-ray imaging to measure epaxial and hypaxial length dynamics (fluoromicrometry) and associated skeletal motions (XROMM) during 24 suction feeding strikes from three channel catfish (Ictalurus punctatus). We also estimated the power required for suction feeding from oral pressure and dynamic endocast volume measurements. Cranial elevation relative to the body was small (<5 deg) and the epaxial muscles did not shorten during peak expansion power. In contrast, the hypaxial muscles consistently shortened by 4–8% to rotate the pectoral girdle 6–11 deg relative to the body. Despite only the hypaxial muscles generating power, catfish strikes were similar in power to those of other species, such as largemouth bass (Micropterus salmoides), that use epaxial and hypaxial muscles to power mouth expansion. These results show that the epaxial muscles are not used as motors in catfish, but suggest they position and stabilize the cranium while the hypaxial muscles power mouth expansion ventrally. Thus, axial muscles can serve fundamentally different mechanical roles in generating and controlling cranial motion during suction feeding in fishes. Highlighted Article: Channel catfish use their dorsal body muscles to stabilize the head during suction feeding, while the ventral body muscles power mouth expansion.
Collapse
Affiliation(s)
- Ariel L Camp
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK .,Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Aaron M Olsen
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - L Patricia Hernandez
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
8
|
Kryukova NV, Kuznetsov AN. Suboccipital muscle of sharpnose sevengill shark Heptranchias perlo and its possible role in prey dissection. J Morphol 2020; 281:842-861. [PMID: 32557707 DOI: 10.1002/jmor.21142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 11/11/2022]
Abstract
Skull and head muscles of Heptranchias perlo were studied. Its distinctive features include the suboccipital muscles, described for the first time, the absence of the palatoquadrate symphysis, a longitudinally extended mouth, and teeth unsuited for dissecting prey in typical method of modern sharks, which is cutting motions powered by head shaking from side to side. The palatoquadrate cartilages of H. perlo and closely related Hexanchidae articulate with the neurocranium via orbital and postorbital articulations, which together allow for lateral expansion of the jaws, but restrict retraction and protraction. We interpret these features as an adaptation to a different method of prey dissection, that is, ripping in a backward pull. It employs the specific postorbital articulation together with the suboccipital muscles as force-transmitting devices, and is powered by swimming muscles which produce a rearward thrust of the tail. During this type of dissection, the anterior part of the vertebral column should experience a tensile stress which explains the replacement of rigid vertebral bodies by a collagenous sheath around the notochord in H. perlo. The backward-ripping dissection could have been common among ancient Elasmobranchii based on the similarly developed postorbital articulation, a longitudinally extended mouth, and the absence of the palatoquadrate symphysis. A biomechanical comparison with the extinct Pucapampella indicates that ancient elasmobranchs could be also specialized in the backward-ripping prey dissection, but their mechanism was different from that inferred for H. perlo. We suggest that in the early evolution of sharks this mechanism was replaced by head-shaking dissection and then later was restored in H. perlo on a new morphological basis. A new position of the postorbital articulation below the vertebral axis is fraught with the braincase elevation when backward ripping the prey, and as a counter-mean, requires formation of suboccipital portions of the axial musculature unknown in other sharks. Homology and origin of these portions is considered.
Collapse
Affiliation(s)
- Nadezhda V Kryukova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
9
|
Farina SC, Kane EA, Hernandez LP. Multifunctional Structures and Multistructural Functions: Integration in the Evolution of Biomechanical Systems. Integr Comp Biol 2019; 59:338-345. [PMID: 31168594 DOI: 10.1093/icb/icz095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Integration is an essential feature of complex biomechanical systems, with coordination and covariation occurring among and within structural components at time scales that vary from microseconds to deep evolutionary time. Integration has been suggested to both promote and constrain morphological evolution, and the effects of integration on the evolution of structure likely vary by system, clade, historical contingency, and time scale. In this introduction to the 2019 symposium "Multifunctional Structures and Multistructural Functions," we discuss the role of integration among structures in the context of functional integration and multifunctionality. We highlight articles from this issue of Integrative and Comparative Biology that explore integration within and among kinematics, sensory and motor systems, physiological systems, developmental processes, morphometric dimensions, and biomechanical functions. From these myriad examples it is clear that integration can exist at multiple levels of organization that can interact with adjacent levels to result in complex patterns of structural and functional phenotypes. We conclude with a synthesis of major themes and potential future directions, particularly with respect to using multifunctionality, itself, as a trait in evolutionary analyses.
Collapse
Affiliation(s)
- S C Farina
- Department of Biology, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - E A Kane
- Department of Biology, Georgia Southern University, 1332 Southern Drive, Statesboro, GA 30458, USA
| | - L P Hernandez
- Department of Biological Sciences, The George Washington University, 800 22nd Street NW, Suite 6000, Washington, DC 20052, USA
| |
Collapse
|