1
|
Soetisna TW, Thamrin AMH, Permadijana D, Ramadhani ANE, Santoso A, Mansyur M. Intramyocardial Stem Cell Transplantation during Coronary Artery Bypass Surgery Safely Improves Cardiac Function: Meta-Analysis of 20 Randomized Clinical Trials. J Clin Med 2023; 12:4430. [PMID: 37445467 DOI: 10.3390/jcm12134430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
IMSC transplantation during CABG is considered one of the most promising methods to effectively deliver stem cells and has been widely studied in many trials. But the results of outcomes and safety of this modality still vary widely. We conducted this meta-analysis of randomized controlled trials (RCTs) to evaluate not only the outcome but also the safety of this promising method. A meta-analysis was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A comprehensive literature search was undertaken using the PubMed, Scopus, and Cochrane databases. Articles were thoroughly evaluated and analyzed. Twenty publications about IMSC during CABG were included. Primary outcomes were measured using LVEF, LVESV, LVESVI, LVESD, LVEDV, LVEDVI, LVEDD, WMSI, and 6-MWT. Safety measures were depicted by total deaths, MACE, CRD, CVA, myocardial infarction, ventricular arrhythmia, and cardiac-related readmission. IMSC transplantation during CABG significantly improved LVEF (MD = 3.89%; 95% CI = 1.31% to 6.46%; p = 0.003) and WMSI (MD = 0.28; 95% CI = 0.01-0.56; p = 0.04). Most of the other outcomes showed favorable results for the IMSC group but were not statistically significant. The safety analysis also showed no significant risk difference for IMSC transplantation compared to CABG alone. IMSC during CABG can safely improve cardiac function and tend to improve cardiac volumes and dimensions. The analysis and application of influencing factors that increase patients' responses to IMSC transplantation are important to achieve long-term improvement.
Collapse
Affiliation(s)
- Tri Wisesa Soetisna
- Adult Cardiac Surgery Division, Department of Thoracic and Cardiovascular Surgery, Harapan Kita National Cardiovascular Center Hospital, Jakarta 11420, Indonesia
- Department of Thoracic and Cardiovascular Surgery, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| | - Ahmad Muslim Hidayat Thamrin
- Adult Cardiac Surgery Division, Department of Thoracic and Cardiovascular Surgery, Harapan Kita National Cardiovascular Center Hospital, Jakarta 11420, Indonesia
- Faculty of Medicine, Syarif Hidayatullah State Islamic University, Haji Hospital, Jakarta 13560, Indonesia
| | - Diajeng Permadijana
- Adult Cardiac Surgery Division, Department of Thoracic and Cardiovascular Surgery, Harapan Kita National Cardiovascular Center Hospital, Jakarta 11420, Indonesia
| | - Andi Nurul Erisya Ramadhani
- Adult Cardiac Surgery Division, Department of Thoracic and Cardiovascular Surgery, Harapan Kita National Cardiovascular Center Hospital, Jakarta 11420, Indonesia
| | - Anwar Santoso
- Department of Cardiology and Vascular Medicine, Harapan Kita National Cardiovascular Center Hospital, Jakarta 11420, Indonesia
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| | - Muchtaruddin Mansyur
- Department of Community Medicine, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
2
|
Mahmud S, Alam S, Emon NU, Boby UH, Kamruzzaman, Ahmed F, Monjur-Al-Hossain ASM, Tahamina A, Rudra S, Ajrin M. Opportunities and challenges in stem cell therapy in cardiovascular diseases: Position standing in 2022. Saudi Pharm J 2022; 30:1360-1371. [PMID: 36249945 PMCID: PMC9563042 DOI: 10.1016/j.jsps.2022.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/17/2022] [Indexed: 10/29/2022] Open
Abstract
This study intends to evaluate the development, importance, pre-clinical and clinical study evaluation of stem cell therapy for the treatment of cardiovascular disease. Cardiovascular disease is one of the main causes of fatality in the whole world. Though there are great progressions in the pharmacological and other interventional treatment options, heart diseases remain a common disorder that causes long-term warnings. Recent accession promotes the symptoms and slows down the adverse effects regarding cardiac remodelling. But they cannot locate the problems of immutable loss of cardiac tissues. In this case, stem cell treatment holds a promising challenge. Stem cells are the cells that are capable of differentiating into many cells according to their needs. So, it is assumed that these cells can distinguish into many cells and if these cells can be individualized into cardiac cells then they can be used to replace the damaged tissues of the heart. There is some abridgment in this therapy, none the less stem cell therapy remains a hopeful destination in the treatment of heart disease.
Collapse
Affiliation(s)
- Shabnur Mahmud
- School of Health and Life Sciences, Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Safaet Alam
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Umme Habiba Boby
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Kamruzzaman
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1205, Bangladesh
| | - A S M Monjur-Al-Hossain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1205, Bangladesh
| | - Afroza Tahamina
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sajib Rudra
- Department of Botany, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Marzina Ajrin
- Department of Pharmacy, University of Science and Technology Chittagong, Chittagong 4202, Bangladesh
| |
Collapse
|
3
|
Xu Z, Neuber S, Nazari-Shafti T, Liu Z, Dong F, Stamm C. Impact of procedural variability and study design quality on the efficacy of cell-based therapies for heart failure - a meta-analysis. PLoS One 2022; 17:e0261462. [PMID: 34986181 PMCID: PMC8730409 DOI: 10.1371/journal.pone.0261462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Cell-based therapy has long been considered a promising strategy for the treatment of heart failure (HF). However, its effectiveness in the clinical setting is now doubted. Because previous meta-analyses provided conflicting results, we sought to review all available data focusing on cell type and trial design. METHODS AND FINDINGS The electronic databases PubMed, Cochrane library, ClinicalTrials.gov, and EudraCT were searched for randomized controlled trials (RCTs) utilizing cell therapy for HF patients from January 1, 2000 to December 31, 2020. Forty-three RCTs with 2855 participants were identified. The quality of the reported study design was assessed by evaluating the risk-of-bias (ROB). Primary outcomes were defined as mortality rate and left ventricular ejection fraction (LVEF) change from baseline. Secondary outcomes included both heart function data and clinical symptoms/events. Between-study heterogeneity was assessed using the I2 index. Subgroup analysis was performed based on HF type, cell source, cell origin, cell type, cell processing, type of surgical intervention, cell delivery routes, cell dose, and follow-up duration. Only 10 of the 43 studies had a low ROB for all method- and outcome parameters. A higher ROB was associated with a greater increase in LVEF. Overall, there was no impact on mortality for up to 12 months follow-up, and a clinically irrelevant average LVEF increase by LVEF (2.4%, 95% CI = 0.75-4.05, p = 0.004). Freshly isolated, primary cells tended to produce better outcomes than cultured cell products, but there was no clear impact of the cell source tissue, bone marrow cell phenotype or cell chricdose (raw or normalized for CD34+ cells). A meaningful increase in LVEF was only observed when cell therapy was combined with myocardial revascularization. CONCLUSIONS The published results suggest a small increase in LVEF following cell therapy for heart failure, but publication bias and methodologic shortcomings need to be taken into account. Given that cardiac cell therapy has now been pursued for 20 years without real progress, further efforts should not be made. STUDY REGISTRY NUMBER This meta-analysis is registered at the international prospective register of systematic reviews, number CRD42019118872.
Collapse
Affiliation(s)
- Zhiyi Xu
- Berlin Institute of Health Center for Regenerative Therapies, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Neuber
- Berlin Institute of Health Center for Regenerative Therapies, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Timo Nazari-Shafti
- Berlin Institute of Health Center for Regenerative Therapies, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Zihou Liu
- Berlin Institute of Health Center for Regenerative Therapies, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Fengquan Dong
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Christof Stamm
- Berlin Institute of Health Center for Regenerative Therapies, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Helmholtz Zentrum Geesthacht, Institut für Aktive Polymere, Teltow, Germany
| |
Collapse
|
4
|
Rheault-Henry M, White I, Grover D, Atoui R. Stem cell therapy for heart failure: Medical breakthrough, or dead end? World J Stem Cells 2021; 13:236-259. [PMID: 33959217 PMCID: PMC8080540 DOI: 10.4252/wjsc.v13.i4.236] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure continues to be one of the leading causes of morbidity and mortality worldwide. Myocardial infarction is the primary causative agent of chronic heart failure resulting in cardiomyocyte necrosis and the subsequent formation of fibrotic scar tissue. Current pharmacological and non-pharmacological therapies focus on managing symptoms of heart failure yet remain unable to reverse the underlying pathology. Heart transplantation usually cannot be relied on, as there is a major discrepancy between the availability of donors and recipients. As a result, heart failure carries a poor prognosis and high mortality rate. As the heart lacks significant endogenous regeneration potential, novel therapeutic approaches have incorporated the use of stem cells as a vehicle to treat heart failure as they possess the ability to self-renew and differentiate into multiple cell lineages and tissues. This review will discuss past, present, and future clinical trials, factors that influence stem cell therapy outcomes as well as ethical and safety considerations. Preclinical and clinical studies have shown a wide spectrum of outcomes when applying stem cells to improve cardiac function. This may reflect the infancy of clinical trials and the limited knowledge on the optimal cell type, dosing, route of administration, patient parameters and other important variables that contribute to successful stem cell therapy. Nonetheless, the field of stem cell therapeutics continues to advance at an unprecedented pace. We remain cautiously optimistic that stem cells will play a role in heart failure management in years to come.
Collapse
Affiliation(s)
| | - Ian White
- Northern Ontario School of Medicine, Sudbury P3E 2C6, Ontario, Canada
| | - Diya Grover
- Ross University School of Medicine, St. Michael BB11093, Barbados
| | - Rony Atoui
- Division of Cardiac Surgery, Health Sciences North, Northern Ontario School of Medicine, Sudbury P3E 3Y9, Ontario, Canada
| |
Collapse
|
5
|
Cheung MM, Jahan N. Can Stem Cells Improve Left Ventricular Ejection Fraction in Heart Failure? A Literature Review of Skeletal Myoblasts and Bone Marrow-Derived Cells. Cureus 2020; 12:e11598. [PMID: 33364119 PMCID: PMC7752736 DOI: 10.7759/cureus.11598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/20/2020] [Indexed: 01/05/2023] Open
Abstract
Heart failure is a life-threatening condition that affects millions worldwide and is only expected to get worse with an ageing population. Current treatment regimens rely on medical therapy and heart transplantation as a last resort. Stem cells have been undergoing clinical trials worldwide as a hope for a new and safe clinical treatment. Skeletal myoblasts and bone marrow-derived stem cells are two types of stem cells being tested. The objective is to evaluate the efficacy of these two types of stem cells for heart failure therapy. Data were searched in PubMed using both regular and Medical Subject Heading (MeSH) keywords (stem cells, therapy, heart failure) and then filtered using inclusion/exclusion criteria (language, species, publication date, and age). In total, 31 research articles were reviewed (14 clinical trials, four randomized control trials, nine review articles, one case report, one comparative study, one systematic review, and one categorized as a systematic review and meta-analysis). Both skeletal myoblasts and bone marrow-derived stem cells showed mixed results in improving left ventricular ejection fraction in heart failure patients in the majority of studies. Larger studies need to be done to further investigate the efficacy of stem cells as a therapy for heart failure.
Collapse
Affiliation(s)
- Meghan M Cheung
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nusrat Jahan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
6
|
Selvakumar D, Clayton ZE, Chong JJH. Robust Cardiac Regeneration: Fulfilling the Promise of Cardiac Cell Therapy. Clin Ther 2020; 42:1857-1879. [PMID: 32943195 DOI: 10.1016/j.clinthera.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE We review the history of cardiac cell therapy, highlighting lessons learned from initial adult stem cell (ASC) clinical trials. We present pluripotent stem cell-derived cardiomyocytes (PSC-CMs) as a leading candidate for robust regeneration of infarcted myocardium but identify several issues that must be addressed before successful clinical translation. METHODS We conducted an unstructured literature review of PubMed-listed articles, selecting the most comprehensive and relevant research articles, review articles, clinical trials, and basic or translation articles in the field of cardiac cell therapy. Articles were identified using the search terms adult stem cells, pluripotent stem cells, cardiac stem cell, and cardiac regeneration or from references of relevant articles, Articles were prioritized and selected based on their impact, originality, or potential clinical applicability. FINDINGS Since its inception, the ASC therapy field has been troubled by conflicting preclinical data, academic controversies, and inconsistent trial designs. These issues have damaged perceptions of cardiac cell therapy among investors, the academic community, health care professionals, and, importantly, patients. In hindsight, the key issue underpinning these problems was the inability of these cell types to differentiate directly into genuine cardiomyocytes, rendering them unable to replace damaged myocardium. Despite this, beneficial effects through indirect paracrine or immunomodulatory effects remain possible and continue to be investigated. However, in preclinical models, PSC-CMs have robustly remuscularized infarcted myocardium with functional, force-generating cardiomyocytes. Hence, PSC-CMs have now emerged as a leading candidate for cardiac regeneration, and unpublished reports of first-in-human delivery of these cells have recently surfaced. However, the cardiac cell therapy field's history should serve as a cautionary tale, and we identify several translational hurdles that still remain. Preclinical solutions to issues such as arrhythmogenicity, immunogenicity, and poor engraftment rates are needed, and next-generation clinical trials must draw on robust knowledge of mechanistic principles of the therapy. IMPLICATIONS The clinical transplantation of functional stem cell-derived heart tissue with seamless integration into native myocardium is a lofty goal. However, considerable advances have been made during the past 2 decades. Currently, PSC-CMs appear to be the best prospect to reach this goal, but several hurdles remain. The history of adult stem cell trials has taught us that shortcuts cannot be taken without dire consequences, and it is essential that progress not be hurried and that a worldwide, cross-disciplinary approach be used to ensure safe and effective clinical translation.
Collapse
Affiliation(s)
- Dinesh Selvakumar
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Zoe E Clayton
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - James J H Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
7
|
Maslovaric M, Fatic N, Delević E. State of the art of stem cell therapy for ischaemic cardiomyopathy. Part 2. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2020; 25:7-26. [PMID: 31855197 DOI: 10.33529/angio2019414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ischemic cardiomyopathy is becoming a leading cause of morbidity and mortality in the whole world. Stem cell-based therapy is emerging as a promising option for treatment of ischemic cardiomyopathy. Several stem cell types, including cardiac-derived stem cells, bone marrow-derived stem cells, mesenchymal stem cells, skeletal myoblasts, CD34+ and CD133+ stem cells have been used in clinical trials. Clinical effects mostly depend on transdifferentiation and paracrine factors. One important issue is that a low survival and residential rate of transferred stem cells blocks the effective advances in cardiac improvement. Many other factors associated with the efficacy of cell replacement therapy for ischemic cardiomyopathy mainly including the route of delivery, the type and number of stem cell infusion, the timing of injection, patient's physical conditions, the particular microenvironment onto which the cells are delivered, and clinical conditions remain to be addressed. Here we provide an overview of modern methods of stem cell delivery, types of stem cells and discuss the current state of their therapeutic potential.
Collapse
Affiliation(s)
- Milica Maslovaric
- Prona-Montenegrin Science Promotion Foundation, Podgorica, Montenegro
| | - Nikola Fatic
- Department of Vascular Surgery, Clinical Centre of Montenegro, Podgorica, Montenegro
| | - Emilija Delević
- Medical Faculty in Podgorica, University of Montenegro, Podgorica, Montenegro
| |
Collapse
|
8
|
Samak M, Hinkel R. Stem Cells in Cardiovascular Medicine: Historical Overview and Future Prospects. Cells 2019; 8:cells8121530. [PMID: 31783680 PMCID: PMC6952821 DOI: 10.3390/cells8121530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases remain the leading cause of death in the developed world, accounting for more than 30% of all deaths. In a large proportion of these patients, acute myocardial infarction is usually the first manifestation, which might further progress to heart failure. In addition, the human heart displays a low regenerative capacity, leading to a loss of cardiomyocytes and persistent tissue scaring, which entails a morbid pathologic sequela. Novel therapeutic approaches are urgently needed. Stem cells, such as induced pluripotent stem cells or embryonic stem cells, exhibit great potential for cell-replacement therapy and an excellent tool for disease modeling, as well as pharmaceutical screening of novel drugs and their cardiac side effects. This review article covers not only the origin of stem cells but tries to summarize their translational potential, as well as potential risks and clinical translation.
Collapse
Affiliation(s)
- Mostafa Samak
- Department of Laboratory Animal Science, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Rabea Hinkel
- Department of Laboratory Animal Science, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
9
|
Parrotta EI, Scalise S, Scaramuzzino L, Cuda G. Stem Cells: The Game Changers of Human Cardiac Disease Modelling and Regenerative Medicine. Int J Mol Sci 2019; 20:E5760. [PMID: 31744081 PMCID: PMC6888119 DOI: 10.3390/ijms20225760] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
A comprehensive understanding of the molecular basis and mechanisms underlying cardiac diseases is mandatory for the development of new and effective therapeutic strategies. The lack of appropriate in vitro cell models that faithfully mirror the human disease phenotypes has hampered the understanding of molecular insights responsible of heart injury and disease development. Over the past decade, important scientific advances have revolutionized the field of stem cell biology through the remarkable discovery of reprogramming somatic cells into induced pluripotent stem cells (iPSCs). These advances allowed to achieve the long-standing ambition of modelling human disease in a dish and, more interestingly, paved the way for unprecedented opportunities to translate bench discoveries into new therapies and to come closer to a real and effective stem cell-based medicine. The possibility to generate patient-specific iPSCs, together with the new advances in stem cell differentiation procedures and the availability of novel gene editing approaches and tissue engineering, has proven to be a powerful combination for the generation of phenotypically complex, pluripotent stem cell-based cellular disease models with potential use for early diagnosis, drug screening, and personalized therapy. This review will focus on recent progress and future outcome of iPSCs technology toward a customized medicine and new therapeutic options.
Collapse
Affiliation(s)
- Elvira Immacolata Parrotta
- Department of Experimental and Clinical Medicine, Research Center for Advanced Biochemistry and Molecular Biology, University “Magna Graecia” of Catanzaro, 88100 Loc., Germaneto, Catanzaro, Italy; (S.S.); (L.S.); (G.C.)
| | | | | | | |
Collapse
|
10
|
Stem cell therapy in heart failure: Where do we stand today? Biochim Biophys Acta Mol Basis Dis 2019; 1866:165489. [PMID: 31199998 DOI: 10.1016/j.bbadis.2019.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023]
Abstract
Heart failure is a global epidemic that drastically cuts short longevity and compromises quality of life. Approximately 6 million Americans ≥20 years of age carry a diagnosis of heart failure. Worldwide, about 40 million adults are affected. The treatment of HF depends on the etiology. If left untreated it rapidly progresses and compromises quality of life. One of the newer technologies still in its infancy is stem cell therapy for heart failure. This review attempts to highlight the clinical studies done in ischemic cardiomyopathy, dilated cardiomyopathy and restrictive cardiomyopathy. A combined approach of simultaneous revascularization and stem cell therapy appears to produce maximum benefit in ischemic cardiomyopathy. Treatment of dilated cardiomyopathy with stem cells also holds promise but needs more definition with regards to timing, route of cell delivery and type of cell used to achieve reproducible results. The variability noted in response to stem cell therapy in patients could also be secondary to their co-morbidities. Abnormalities of glucose metabolism and diabetes in particular impair stem cell and angiogenic cell mobilization. This opens up a whole new area of investigation into exploring the biochemical microenvironment which could influence the efficacy of stem cell therapy. This article is part of a Special Issue entitled: Stem Cells and Their Applications to Human Diseases edited by Hemachandra Reddy.
Collapse
|
11
|
Garbern JC, Daly KP. Into the hearts of babes: Stem cell therapy for pediatric heart failure. J Heart Lung Transplant 2017; 36:830-832. [PMID: 28365176 DOI: 10.1016/j.healun.2017.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jessica C Garbern
- Transplant Research Program, Boston Children's Hospital, Boston, Massachusetts; Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Kevin P Daly
- Transplant Research Program, Boston Children's Hospital, Boston, Massachusetts; Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
12
|
Pincott ES, Ridout D, Brocklesby M, McEwan A, Muthurangu V, Burch M. A randomized study of autologous bone marrow-derived stem cells in pediatric cardiomyopathy. J Heart Lung Transplant 2017; 36:837-844. [PMID: 28162930 DOI: 10.1016/j.healun.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bone marrow mononuclear cell fraction has been used as therapy for dilated cardiomyopathy in adults. Although case series are reported, there are no randomized controlled studies in children. METHODS We designed a randomized, crossover, controlled pilot study to determine safety and feasibility of intracoronary stem cell therapy in children. The primary safety end-point was freedom from death and transplantation or any complication that could be considered related to bone marrow injection or anesthesia (e.g., infection, malignancy, anaphylaxis, renal deterioration). Other end-points were magnetic resonance imaging measurements and N-terminal prohormone brain natriuretic peptide. Participants included 10 children (mean age 7.2 years; range, 2.2-14.1 years; 6 boys) with cardiomyopathy (New York Heart Association/Ross Classification II-IV). Patients were crossed over at 6 months. RESULTS The original protocol was completed by 9 patients. The safety end-point was achieved in all. Ratio of the geometric means for treatment effect adjusting for baseline was assessed for end-diastolic and end-systolic volumes (EDV, ESV): 0.93 for EDV (95% confidence interval 0.88-0.99, p = 0.01), indicating EDV was on average 7% lower in patients after stem cell treatment, and 0.90 for ESV (95% confidence interval 0.82-1.00, p = 0.05), indicating ESV was on average 10% lower after stem cell treatment compared with placebo. The primary efficacy end-point ejection fraction was not met. CONCLUSIONS Bone marrow mononuclear cell therapy for cardiomyopathy is feasible and safe in children. Left ventricular volumes were significantly reduced 6 months after stem cell injection compared with placebo, which may reflect reverse remodeling.
Collapse
Affiliation(s)
- E Sian Pincott
- Department of Cardiology, Great Ormond Street Hospital, London, United Kingdom
| | - Deborah Ridout
- Population Policy and Practice Programme, UCL Institute of Child Health, London, United Kingdom
| | - Margaret Brocklesby
- Bone Marrow Laboratory, Great Ormond Street Hospital, London, United Kingdom
| | - Angus McEwan
- Department of Cardiology, Great Ormond Street Hospital, London, United Kingdom
| | - Vivek Muthurangu
- Department of Cardiology, Great Ormond Street Hospital, London, United Kingdom
| | - Michael Burch
- Department of Cardiology, Great Ormond Street Hospital, London, United Kingdom.
| |
Collapse
|
13
|
Trindade F, Leite-Moreira A, Ferreira-Martins J, Ferreira R, Falcão-Pires I, Vitorino R. Towards the standardization of stem cell therapy studies for ischemic heart diseases: Bridging the gap between animal models and the clinical setting. Int J Cardiol 2016; 228:465-480. [PMID: 27870978 DOI: 10.1016/j.ijcard.2016.11.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Abstract
Today there is an increasing demand for heart transplantations for patients diagnosed with heart failure. Though, shortage of donors as well as the large number of ineligible patients hurdle such treatment option. This, in addition to the considerable number of transplant rejections, has driven the clinical research towards the field of regenerative medicine. Nonetheless, to date, several stem cell therapies tested in animal models fall by the wayside and when they meet the criteria to clinical trials, subjects often exhibit modest improvements. A main issue slowing down the admission of such therapies in the domain of human trials is the lack of protocol standardization between research groups, which hampers comparison between different approaches as well as the lack of thought regarding the clinical translation. In this sense, given the large amount of reports on stem cell therapy studies in animal models reported in the last 3years, we sought to evaluate their advantages and limitations towards the clinical setting and provide some suggestions for the forthcoming investigations. We expect, with this review, to start a new paradigm on regenerative medicine, by evoking the debate on how to plan novel stem cell therapy studies with animal models in order to achieve more consistent scientific production and accelerate the admission of stem cell therapies in the clinical setting.
Collapse
Affiliation(s)
- Fábio Trindade
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal.
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | | | - Rita Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal
| | - Rui Vitorino
- iBiMED, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Portugal.
| |
Collapse
|
14
|
Human myoblast transplantation in mice infarcted heart alters the expression profile of cardiac genes associated with left ventricle remodeling. Int J Cardiol 2016; 202:710-21. [DOI: 10.1016/j.ijcard.2015.09.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/24/2015] [Accepted: 09/27/2015] [Indexed: 01/17/2023]
|
15
|
The Clinical Status of Stem Cell Therapy for Ischemic Cardiomyopathy. Stem Cells Int 2015; 2015:135023. [PMID: 26101528 PMCID: PMC4460238 DOI: 10.1155/2015/135023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/06/2015] [Indexed: 12/14/2022] Open
Abstract
Ischemic cardiomyopathy (ICM) is becoming a leading cause of morbidity and mortality in the whole world. Stem cell-based therapy is emerging as a promising option for treatment of ICM. Several stem cell types including cardiac-derived stem cells (CSCs), bone marrow-derived stem cells, mesenchymal stem cells (MSCs), skeletal myoblasts (SMs), and CD34(+) and CD 133(+) stem cells have been applied in clinical researches. The clinical effect produced by stem cell administration in ICM mainly depends on the transdifferentiation and paracrine effect. One important issue is that low survival and residential rate of transferred stem cells in the infracted myocardium blocks the effective advances in cardiac improvement. Many other factors associated with the efficacy of cell replacement therapy for ICM mainly including the route of delivery, the type and number of stem cell infusion, the timing of injection, patient's physical condition, the particular microenvironment onto which the cells are delivered, and clinical condition remain to be addressed. Here we provide an overview of the pros and cons of these transferred cells and discuss the current state of their therapeutic potential. We believe that stem cell translation will be an ideal option for patients following ischemic heart disease in the future.
Collapse
|
16
|
Csöbönyeiová M, Polák Š, Danišovič L. Perspectives of induced pluripotent stem cells for cardiovascular system regeneration. Exp Biol Med (Maywood) 2015; 240:549-556. [PMID: 25595188 PMCID: PMC4935267 DOI: 10.1177/1535370214565976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 11/06/2014] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise for basic research and regenerative medicine. They offer the same advantages as embryonic stem cells (ESCs) and moreover new perspectives for personalized medicine. iPSCs can be generated from adult somatic tissues by over-expression of a few defined transcription factors, including Oct4, Sox2, Klf4, and c-myc. For regenerative medicine in particular, the technology provides great hope for patients with incurable diseases or potentially fatal disorders such as heart failure. The endogenous regenerative potentials of adult hearts are extremely limited and insufficient to compensate for myocardial loss occurring after myocardial infarction. Recent discoveries have demonstrated that iPSCs have the potential to significantly advance future cardiovascular regenerative therapies. Moreover, iPSCs can be generated from somatic cells of patients with genetic basis for their disease. This human iPSC derivates offer tremendous potential for new disease models. This paper reviews current applications of iPSCs in cardiovascular regenerative medicine and discusses progress in modeling cardiovascular diseases using iPSCs-derived cardiac cells.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- Institute of Histology and Embryology, Comenius University in Bratislava, 81108 Bratislava, Slovak Republic
| | - Štefan Polák
- Institute of Histology and Embryology, Comenius University in Bratislava, 81108 Bratislava, Slovak Republic
| | - L'uboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics Faculty of Medicine, Comenius University in Bratislava, 81108 Bratislava, Slovak Republic
| |
Collapse
|
17
|
Fisher SA, Doree C, Mathur A, Martin-Rendon E. Meta-Analysis of Cell Therapy Trials for Patients With Heart Failure. Circ Res 2015; 116:1361-77. [DOI: 10.1161/circresaha.116.304386] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Sheila A Fisher
- From the Systematic Review Group, R&D Department, NHS Blood and Transplant, Oxford, UK (S.A.F., C.D.); Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK (S.A.F., C.D., E.M.-R.); Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK (A.M.); and Stem Cell Research Laboratory, R&D Department, NHS Blood and Transplant, Oxford, UK (E.M.-R.)
| | - Carolyn Doree
- From the Systematic Review Group, R&D Department, NHS Blood and Transplant, Oxford, UK (S.A.F., C.D.); Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK (S.A.F., C.D., E.M.-R.); Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK (A.M.); and Stem Cell Research Laboratory, R&D Department, NHS Blood and Transplant, Oxford, UK (E.M.-R.)
| | - Anthony Mathur
- From the Systematic Review Group, R&D Department, NHS Blood and Transplant, Oxford, UK (S.A.F., C.D.); Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK (S.A.F., C.D., E.M.-R.); Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK (A.M.); and Stem Cell Research Laboratory, R&D Department, NHS Blood and Transplant, Oxford, UK (E.M.-R.)
| | - Enca Martin-Rendon
- From the Systematic Review Group, R&D Department, NHS Blood and Transplant, Oxford, UK (S.A.F., C.D.); Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK (S.A.F., C.D., E.M.-R.); Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK (A.M.); and Stem Cell Research Laboratory, R&D Department, NHS Blood and Transplant, Oxford, UK (E.M.-R.)
| |
Collapse
|
18
|
Angelini G, Caputo M, Madeddu P. Extending flaps lifts an infarcted heart toward repair. Mol Ther 2015; 23:223-5. [PMID: 25633173 DOI: 10.1038/mt.2014.252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Gianni Angelini
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Massimo Caputo
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom
| |
Collapse
|
19
|
Antanavičiūtė I, Ereminienė E, Vysockas V, Račkauskas M, Skipskis V, Rysevaitė K, Treinys R, Benetis R, Jurevičius J, Skeberdis VA. Exogenous connexin43-expressing autologous skeletal myoblasts ameliorate mechanical function and electrical activity of the rabbit heart after experimental infarction. Int J Exp Pathol 2014; 96:42-53. [PMID: 25529770 DOI: 10.1111/iep.12109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/26/2014] [Indexed: 12/19/2022] Open
Abstract
Acute myocardial infarction is one of the major causes of mortality worldwide. For regeneration of the rabbit heart after experimentally induced infarction we used autologous skeletal myoblasts (SMs) due to their high proliferative potential, resistance to ischaemia and absence of immunological and ethical concerns. The cells were characterized with muscle-specific and myogenic markers. Cell transplantation was performed by injection of cell suspension (0.5 ml) containing approximately 6 million myoblasts into the infarction zone. The animals were divided into four groups: (i) no injection; (ii) sham injected; (iii) injected with wild-type SMs; and (iv) injected with SMs expressing connexin43 fused with green fluorescent protein (Cx43EGFP). Left ventricular ejection fraction (LVEF) was evaluated by 2D echocardiography in vivo before infarction, when myocardium has stabilized after infarction, and 3 months after infarction. Electrical activity in the healthy and infarction zones of the heart was examined ex vivo in Langendorff-perfused hearts by optical mapping using di-4-ANEPPS, a potential sensitive fluorescent dye. We demonstrate that SMs in the coculture can couple electrically not only to abutted but also to remote acutely isolated allogenic cardiac myocytes through membranous tunnelling tubes. The beneficial effect of cellular therapy on LVEF and electrical activity was observed in the group of animals injected with Cx43EGFP-expressing SMs. L-type Ca(2+) current amplitude was approximately fivefold smaller in the isolated SMs compared to healthy myocytes suggesting that limited recovery of LVEF may be related to inadequate expression or function of L-type Ca(2+) channels in transplanted differentiating SMs.
Collapse
Affiliation(s)
- Ieva Antanavičiūtė
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Madonna R, Ferdinandy P, De Caterina R, Willerson JT, Marian AJ. Recent developments in cardiovascular stem cells. Circ Res 2014; 115:e71-8. [PMID: 25477490 DOI: 10.1161/circresaha.114.305567] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rosalinda Madonna
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - Peter Ferdinandy
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - Raffaele De Caterina
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - James T Willerson
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.)
| | - Ali J Marian
- From the Center of Excellence on Aging, Institute of Cardiology, Department of Neuroscience and Imaging, "G. d'Annunzio" University, Chieti, Italy (R.M., R.D.C.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Texas Heart Institute, Houston (R.M., J.T.W.); Division of Cardiology, Department of Internal Medicine (R.M., J.T.W., A.J.M.), and Institute of Molecular Medicine, The University of Texas Health Science Center, Houston (A.J.M.).
| |
Collapse
|