1
|
Xue Q, Xu H, Zhu M, Qian B, Gao L, Gou L, Hintiryan H, Shih JC, Dong HW. Early Postnatal Pharmacological Intervention Rescues the Disruption of Developmental Connectivity in MAO-A KO Mice. Neurosci Bull 2025; 41:339-343. [PMID: 39446241 PMCID: PMC11794938 DOI: 10.1007/s12264-024-01304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Qian Xue
- Department of Pharmacology and Pharmaceuticals Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hanpeng Xu
- Department of Neurobiology, David Geffen School of Medicine, University California Los Angeles, Los Angeles, CA, 90089, USA
| | - Muye Zhu
- Department of Neurobiology, David Geffen School of Medicine, University California Los Angeles, Los Angeles, CA, 90089, USA
| | - Bin Qian
- Department of Pharmacology and Pharmaceuticals Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Lei Gao
- Department of Neurobiology, David Geffen School of Medicine, University California Los Angeles, Los Angeles, CA, 90089, USA
| | - Lin Gou
- Department of Neurobiology, David Geffen School of Medicine, University California Los Angeles, Los Angeles, CA, 90089, USA
| | - Houri Hintiryan
- Department of Neurobiology, David Geffen School of Medicine, University California Los Angeles, Los Angeles, CA, 90089, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceuticals Sciences, Mann School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA.
- of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA.
| | - Hong-Wei Dong
- Department of Neurobiology, David Geffen School of Medicine, University California Los Angeles, Los Angeles, CA, 90089, USA.
| |
Collapse
|
2
|
Tsybko A, Eremin D, Ilchibaeva T, Khotskin N, Naumenko V. CDNF Exerts Anxiolytic, Antidepressant-like, and Procognitive Effects and Modulates Serotonin Turnover and Neuroplasticity-Related Genes. Int J Mol Sci 2024; 25:10343. [PMID: 39408672 PMCID: PMC11482483 DOI: 10.3390/ijms251910343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor because it does not bind to a known specific receptor on the plasma membrane and functions primarily as an unfolded protein response (UPR) regulator in the endoplasmic reticulum. Data on the effects of CDNF on nonmotor behavior and monoamine metabolism are limited. Here, we performed the intracerebroventricular injection of a recombinant CDNF protein at doses of 3, 10, and 30 μg in C57BL/6 mice. No adverse effects of the CDNF injection on feed and water consumption or locomotor activity were observed for 3 days afterwards. Decreases in body weight and sleep duration were transient. CDNF-treated animals demonstrated improved performance on the operant learning task and a substantial decrease in anxiety and behavioral despair. CDNF in all the doses enhanced serotonin (5-HT) turnover in the murine frontal cortex, hippocampus, and midbrain. This alteration was accompanied by changes in the mRNA levels of the 5-HT1A and 5-HT7 receptors and in monoamine oxidase A mRNA and protein levels. We found that CDNF dramatically increased c-Fos mRNA levels in all investigated brain areas but elevated the phosphorylated-c-Fos level only in the midbrain. Similarly, enhanced CREB phosphorylation was found in the midbrain in experimental animals. Additionally, the upregulation of a spliced transcript of XBP1 (UPR regulator) was detected in the midbrain and frontal cortex. Thus, we can hypothesize that exogenous CDNF modulates the UPR pathway and overall neuronal activation and enhances 5-HT turnover, thereby affecting learning and emotion-related behavior.
Collapse
Affiliation(s)
- Anton Tsybko
- The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (D.E.); (T.I.); (N.K.); (V.N.)
| | | | | | | | | |
Collapse
|
3
|
Handschuh PA, Reed MB, Murgaš M, Vraka C, Kaufmann U, Nics L, Klöbl M, Ozenil M, Konadu ME, Patronas EM, Spurny-Dworak B, Hahn A, Hacker M, Spies M, Baldinger-Melich P, Kranz GS, Lanzenberger R. Effects of gender-affirming hormone therapy on gray matter density, microstructure and monoamine oxidase A levels in transgender subjects. Neuroimage 2024; 297:120716. [PMID: 38955254 DOI: 10.1016/j.neuroimage.2024.120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024] Open
Abstract
MAO-A catalyzes the oxidative degradation of monoamines and is thus implicated in sex-specific neuroplastic processes that influence gray matter (GM) density (GMD) and microstructure (GMM). Given the exact monitoring of plasma hormone levels and sex steroid intake, transgender individuals undergoing gender-affirming hormone therapy (GHT) represent a valuable cohort to potentially investigate sex steroid-induced changes of GM and concomitant MAO-A density. Here, we investigated the effects of GHT over a median time period of 4.5 months on GMD and GMM as well as MAO-A distribution volume. To this end, 20 cisgender women, 11 cisgender men, 20 transgender women and 10 transgender men underwent two MRI scans in a longitudinal design. PET scans using [11C]harmine were performed before each MRI session in a subset of 35 individuals. GM changes determined by diffusion weighted imaging (DWI) metrics for GMM and voxel based morphometry (VBM) for GMD were estimated using repeated measures ANOVA. Regions showing significant changes of both GMM and GMD were used for the subsequent analysis of MAO-A density. These involved the fusiform gyrus, rolandic operculum, inferior occipital cortex, middle and anterior cingulum, bilateral insula, cerebellum and the lingual gyrus (post-hoc tests: pFWE+Bonferroni < 0.025). In terms of MAO-A distribution volume, no significant effects were found. Additionally, the sexual desire inventory (SDI) was applied to assess GHT-induced changes in sexual desire, showing an increase of SDI scores among transgender men. Changes in the GMD of the bilateral insula showed a moderate correlation to SDI scores (rho = - 0.62, pBonferroni = 0.047). The present results are indicative of a reliable influence of gender-affirming hormone therapy on 1) GMD and GMM following an interregional pattern and 2) sexual desire specifically among transgender men.
Collapse
Affiliation(s)
- P A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - C Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - U Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Austria
| | - L Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Ozenil
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M E Konadu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - E M Patronas
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - B Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - A Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - P Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
4
|
Anderson CJ, Cadeddu R, Anderson DN, Huxford JA, VanLuik ER, Odeh K, Pittenger C, Pulst SM, Bortolato M. A novel naïve Bayes approach to identifying grooming behaviors in the force-plate actometric platform. J Neurosci Methods 2024; 403:110026. [PMID: 38029972 DOI: 10.1016/j.jneumeth.2023.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Self-grooming behavior in rodents serves as a valuable behavioral index for investigating stereotyped and perseverative responses. Most current grooming analyses rely on video observation, which lacks standardization, efficiency, and quantitative information about force. To address these limitations, we developed an automated paradigm to analyze grooming using a force-plate actometer. NEW METHOD Grooming behavior is quantified by calculating ratios of relevant movement power spectral bands. These ratios are input into a naïve Bayes classifier, trained with manual video observations. The effectiveness of this method was tested using CIN-d mice, an animal model developed through early-life depletion of striatal cholinergic interneurons (CIN-d) and featuring prolonged grooming responses to acute stressors. Behavioral monitoring was simultaneously conducted on the force-place actometer and by video recording. RESULTS The naïve Bayes approach achieved 93.7% accurate classification and an area under the receiver operating characteristic curve of 0.894. We confirmed that male CIN-d mice displayed significantly longer grooming durations than controls. However, this elevation was not correlated with increases in grooming force. Notably, the dopaminergic antagonist haloperidol reduced grooming force and duration. COMPARISON WITH EXISTING METHODS In contrast to observation-based approaches, our method affords rapid, unbiased, and automated assessment of grooming duration, frequency, and force. CONCLUSIONS Our novel approach enables fast and accurate automated detection of grooming behaviors. This method holds promise for high-throughput assessments of grooming stereotypies in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Collin J Anderson
- School of Medical Sciences, University of Sydney, Camperdown, Australia; School of Biomedical Engineering, University of Sydney, Camperdown, Australia; Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA.
| | - Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Daria Nesterovich Anderson
- School of Biomedical Engineering, University of Sydney, Camperdown, Australia; Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA; Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Job A Huxford
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Easton R VanLuik
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Karen Odeh
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Christopher Pittenger
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA; Department of Psychology, School of Arts and Sciences, Yale University, New Haven, CT, USA; Child Study Center, School of Medicine, Yale University, New Haven, CT, USA; Center for Brain and Mind Health, School of Medicine, Yale University, New Haven, CT, USA
| | - Stefan M Pulst
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Anderson CJ, Cadeddu R, Anderson DN, Huxford JA, VanLuik ER, Odeh K, Pittenger C, Pulst SM, Bortolato M. A novel naïve Bayes approach to identifying grooming behaviors in the force-plate actometric platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.08.548198. [PMID: 37503098 PMCID: PMC10369919 DOI: 10.1101/2023.07.08.548198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Self-grooming behavior in rodents serves as a valuable model for investigating stereotyped and perseverative responses. Most current grooming analyses primarily rely on video observation, which lacks standardization, efficiency, and quantitative information about force. To address these limitations, we developed an automated paradigm to analyze grooming using a force-plate actometer. New Method Grooming behavior is quantified by calculating ratios of relevant movement power spectral bands. These ratios are then input into a naïve Bayes classifier, trained with manual video observations. To validate the effectiveness of this method, we applied it to the behavioral analysis of the early-life striatal cholinergic interneuron depletion (CIN-d) mouse, a model of tic pathophysiology recently developed in our laboratory, which exhibits prolonged grooming responses to acute stressors. Behavioral monitoring was simultaneously conducted on the force-place actometer and by video recording. Results The naïve Bayes approach achieved 93.7% accurate classification and an area under the receiver operating characteristic curve of 0.894. We confirmed that male CIN-d mice displayed significantly longer grooming durations compared to controls. However, this elevation was not correlated with increases in grooming force. Notably, haloperidol, a benchmark therapy for tic disorders, reduced both grooming force and duration. Comparison with Existing Methods In contrast to observation-based approaches, our method affords rapid, unbiased, and automated assessment of grooming duration, frequency, and force. Conclusions Our novel approach enables fast and accurate automated detection of grooming behaviors. This method holds promise for high-throughput assessments of grooming stereotypies in animal models of tic disorders and other psychiatric conditions.
Collapse
Affiliation(s)
- Collin J Anderson
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- School of Medical Sciences, University of Sydney, Camperdown, Australia
- School of Biomedical Engineering, University of Sydney, Camperdown, Australia
| | - Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Daria Nesterovich Anderson
- School of Medical Sciences, University of Sydney, Camperdown, Australia
- School of Biomedical Engineering, University of Sydney, Camperdown, Australia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Job A Huxford
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Easton R VanLuik
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Karen Odeh
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Christopher Pittenger
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
- Department of Psychology, School of Arts and Sciences, Yale University, New Haven, CT, USA
- Child Study Center, School of Medicine, Yale University, New Haven, CT, USA
- Center for Brain and Mind Health, School of Medicine, Yale University, New Haven, CT, USA
| | - Stefan M Pulst
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Xu Z, Hu SW, Zhou Y, Guo Q, Wang D, Gao YH, Zhao WN, Tang HM, Yang JX, Yu X, Ding HL, Cao JL. Corticotropin-releasing factor neurones in the paraventricular nucleus of the hypothalamus modulate isoflurane anaesthesia and its responses to acute stress in mice. Br J Anaesth 2023; 130:446-458. [PMID: 36737387 DOI: 10.1016/j.bja.2022.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) neurones in the paraventricular nucleus (PVN) of the hypothalamus (PVNCRF neurones) can promote wakefulness and are activated under anaesthesia. However, whether these neurones contribute to anaesthetic effects is unknown. METHODS With a combination of chemogenetic and molecular approaches, we examined the roles of PVNCRF neurones in isoflurane anaesthesia in mice and further explored the underlying cellular and molecular mechanisms. RESULTS PVN neurones exhibited increased Fos expression during isoflurane anaesthesia (mean [standard deviation], 218 [69.3] vs 21.3 [7.3]; P<0.001), and ∼75% were PVNCRF neurones. Chemogenetic inhibition of PVNCRF neurones facilitated emergence from isoflurane anaesthesia (11.7 [1.1] vs 13.9 [1.2] min; P=0.001), whereas chemogenetic activation of these neurones delayed emergence from isoflurane anaesthesia (16.9 [1.2] vs 13.9 [1.3] min; P=0.002). Isoflurane exposure increased CRF protein expression in PVN (4.0 [0.1] vs 2.2 [0.3], respectively; P<0.001). Knockdown of CRF in PVNCRF neurones mimicked the effects of chemogenetic inhibition of PVNCRF neurones in facilitating emergence (9.6 [1.1] vs 13.0 [1.4] min; P=0.003) and also abolished the effects of chemogenetic activation of PVNCRF neurones on delaying emergence from isoflurane anaesthesia (10.3 [1.3] vs 16.0 [2.6] min; P<0.001). Acute, but not chronic, stress delayed emergence from isoflurane anaesthesia (15.5 [1.5] vs 13.0 [1.4] min; P=0.004). This effect was reversed by chemogenetic inhibition of PVNCRF neurones (11.7 [1.6] vs 14.7 [1.4] min; P=0.001) or knockdown of CRF in PVNCRF neurones (12.3 [1.5] vs 15.3 [1.6] min; P=0.002). CONCLUSIONS CRF neurones in the PVN of the hypothalamus neurones modulate isoflurane anaesthesia and acute stress effects on anaesthesia through CRF signalling.
Collapse
Affiliation(s)
- Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qingchen Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yi-Hong Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hui-Mei Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiaolu Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
7
|
Sun D, Rakesh G, Clarke-Rubright EK, Haswell CC, Logue MW, O'Leary EN, Cotton AS, Xie H, Dennis EL, Jahanshad N, Salminen LE, Thomopoulos SI, Rashid FM, Ching CRK, Koch SBJ, Frijling JL, Nawijn L, van Zuiden M, Zhu X, Suarez-Jimenez B, Sierk A, Walter H, Manthey A, Stevens JS, Fani N, van Rooij SJH, Stein MB, Bomyea J, Koerte I, Choi K, van der Werff SJA, Vermeiren RRJM, Herzog JI, Lebois LAM, Baker JT, Ressler KJ, Olson EA, Straube T, Korgaonkar MS, Andrew E, Zhu Y, Li G, Ipser J, Hudson AR, Peverill M, Sambrook K, Gordon E, Baugh LA, Forster G, Simons RM, Simons JS, Magnotta VA, Maron-Katz A, du Plessis S, Disner SG, Davenport ND, Grupe D, Nitschke JB, deRoon-Cassini TA, Fitzgerald J, Krystal JH, Levy I, Olff M, Veltman DJ, Wang L, Neria Y, De Bellis MD, Jovanovic T, Daniels JK, Shenton ME, van de Wee NJA, Schmahl C, Kaufman ML, Rosso IM, Sponheim SR, Hofmann DB, Bryant RA, Fercho KA, Stein DJ, Mueller SC, Phan KL, McLaughlin KA, Davidson RJ, Larson C, May G, Nelson SM, Abdallah CG, Gomaa H, Etkin A, Seedat S, Harpaz-Rotem I, Liberzon I, Wang X, Thompson PM, Morey RA. Remodeling of the Cortical Structural Connectome in Posttraumatic Stress Disorder: Results From the ENIGMA-PGC Posttraumatic Stress Disorder Consortium. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:935-948. [PMID: 35307575 PMCID: PMC9835553 DOI: 10.1016/j.bpsc.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is accompanied by disrupted cortical neuroanatomy. We investigated alteration in covariance of structural networks associated with PTSD in regions that demonstrate the case-control differences in cortical thickness (CT) and surface area (SA). METHODS Neuroimaging and clinical data were aggregated from 29 research sites in >1300 PTSD cases and >2000 trauma-exposed control subjects (ages 6.2-85.2 years) by the ENIGMA-PGC (Enhancing Neuro Imaging Genetics through Meta Analysis-Psychiatric Genomics Consortium) PTSD working group. Cortical regions in the network were rank ordered by the effect size of PTSD-related cortical differences in CT and SA. The top-n (n = 2-148) regions with the largest effect size for PTSD > non-PTSD formed hypertrophic networks, the largest effect size for PTSD < non-PTSD formed atrophic networks, and the smallest effect size of between-group differences formed stable networks. The mean structural covariance (SC) of a given n-region network was the average of all positive pairwise correlations and was compared with the mean SC of 5000 randomly generated n-region networks. RESULTS Patients with PTSD, relative to non-PTSD control subjects, exhibited lower mean SC in CT-based and SA-based atrophic networks. Comorbid depression, sex, and age modulated covariance differences of PTSD-related structural networks. CONCLUSIONS Covariance of structural networks based on CT and cortical SA are affected by PTSD and further modulated by comorbid depression, sex, and age. The SC networks that are perturbed in PTSD comport with converging evidence from resting-state functional connectivity networks and networks affected by inflammatory processes and stress hormones in PTSD.
Collapse
Affiliation(s)
- Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina; Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, North Carolina
| | - Gopalkumar Rakesh
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina; Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, North Carolina
| | - Emily K Clarke-Rubright
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina; Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, North Carolina
| | - Courtney C Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina; Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, North Carolina
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts; Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Erin N O'Leary
- Department of Psychiatry, University of Toledo, Toledo, Ohio
| | - Andrew S Cotton
- Department of Psychiatry, University of Toledo, Toledo, Ohio
| | - Hong Xie
- Department of Psychiatry, University of Toledo, Toledo, Ohio
| | - Emily L Dennis
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, Massachusetts; Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California; Stanford Neurodevelopment, Affect, and Psychopathology Laboratory, Stanford, California; Department of Neurology, University of Utah, Salt Lake City, Utah
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Faisal M Rashid
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Christopher R K Ching
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Saskia B J Koch
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Jessie L Frijling
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Laura Nawijn
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, VU University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Benjamin Suarez-Jimenez
- Department of Psychiatry, Columbia University Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York; University of Rochester Medical Center, Rochester, New York
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Jessica Bomyea
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Inga Koerte
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, Massachusetts; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kyle Choi
- Health Services Research Center, University of California San Diego, San Diego, California
| | - Steven J A van der Werff
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | | | - Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety Disorders, McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Justin T Baker
- Institute for Technology in Psychiatry, McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety Disorders, McLean Hospital, Harvard University, Belmont, Massachusetts; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Elizabeth A Olson
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute of Medical Research, Westmead, New South Wales, Australia
| | - Elpiniki Andrew
- Department of Psychology, University of Sydney, Westmead, New South Wales, Australia
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jonathan Ipser
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, Washington
| | - Kelly Sambrook
- Department of Radiology, University of Washington, Seattle, Washington
| | - Evan Gordon
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, Texas; Department of Psychology and Neuroscience, Baylor University, Waco, Texas; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas; Washington University School of Medicine, St. Louis, Missouri
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Vermillion, South Dakota; Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota; Sioux Falls VA Health Care System, Sioux Falls, South Dakota
| | - Gina Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Vermillion, South Dakota; Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota; Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota; Department of Psychology, University of South Dakota, Vermillion, South Dakota
| | - Jeffrey S Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota; Department of Psychology, University of South Dakota, Vermillion, South Dakota
| | - Vincent A Magnotta
- Department of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Seth G Disner
- Minneapolis VA Health Care System, University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Dan Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - John H Krystal
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Ifat Levy
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Miranda Olff
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; ARQ National Psychotrauma Centre, Diemen, the Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Michael D De Bellis
- Healthy Childhood Brain Development Developmental Traumatology Research Program, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia; Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan
| | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, the Netherlands
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, Massachusetts; VA Boston Healthcare System, Brockton Division, Brockton, Massachusetts
| | - Nic J A van de Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Women's Mental Health, McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Isabelle M Rosso
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Scott R Sponheim
- Minneapolis VA Health Care System, University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - David Bernd Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Vermillion, South Dakota; Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota; Sioux Falls VA Health Care System, Sioux Falls, South Dakota; Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, Oklahoma
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; Department of Personality, Psychological Assessment and Treatment, University of Deusto, Bilbao, Spain
| | - K Luan Phan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Mental Health Service Line, Jesse Brown VA Chicago Health Care System, Chicago, Illinois
| | | | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisconsin; Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Christine Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, Texas; Department of Psychology and Neuroscience, Baylor University, Waco, Texas; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas; Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, Texas
| | - Steven M Nelson
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, Texas; Department of Psychology and Neuroscience, Baylor University, Waco, Texas; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas; Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, Texas
| | - Chadi G Abdallah
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Hassaan Gomaa
- Department of Psychiatry, Pennsylvania State University, State College, Pennsylvania
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; VA Palo Alto Health Care System, Palo Alto, California
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Ilan Harpaz-Rotem
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Israel Liberzon
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, Ohio
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Rajendra A Morey
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina; Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, North Carolina.
| |
Collapse
|
8
|
Abstract
Stressor exposure causes dendritic remodeling on excitatory neurons in multiple regions of the brain, including the orbitofrontal cortex (OFC). Additionally, stressor and exogenous stress hormone exposure impair cognitive functions that are dependent on the OFC. For this Special Issue on the OFC, we summarize current literature regarding how stress-prenatal, postnatal, and even inter-generational-affects OFC neuron structure in rodents. We discuss dendrite structure, dendritic spines, and gene expression. We aim to provide a focused resource for those interested in how stressors impact this heterogeneous brain region. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Michelle K. Sequeira
- Graduate Training Program in Neuroscience, Emory University, Yerkes National Primate Research Center, Emory University, Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Children’s Healthcare of Atlanta, 954 Gatewood Rd. NE, Atlanta GA 30329
| | - Shannon L. Gourley
- Graduate Training Program in Neuroscience, Emory University, Yerkes National Primate Research Center, Emory University, Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Children’s Healthcare of Atlanta, 954 Gatewood Rd. NE, Atlanta GA 30329
| |
Collapse
|
9
|
Barfield ET, Sequeira MK, Parsons RG, Gourley SL. Morphological Responses of Excitatory Prelimbic and Orbitofrontal Cortical Neurons to Excess Corticosterone in Adolescence and Acute Stress in Adulthood. Front Neuroanat 2020; 14:45. [PMID: 33013327 PMCID: PMC7506158 DOI: 10.3389/fnana.2020.00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/03/2020] [Indexed: 12/23/2022] Open
Abstract
Considerable evidence indicates that chronic stress and excess glucocorticoids induce neuronal remodeling in prefrontal cortical (PFC) regions. Adolescence is also characterized by a structural reorganization of PFC neurons, yet interactions between stress- and age-related structural plasticity are still being determined. We quantified dendritic spine densities on apical dendrites of excitatory neurons in the medial prefrontal cortex, prelimbic subregion (PL). Densities decreased across adolescent development, as expected, and spine volume increased. Unexpectedly, exposure to excess corticosterone (CORT) throughout adolescence did not cause additional dendritic spine loss detectable in adulthood. As a positive control dendrite population expected to be sensitive to CORT, we imaged neurons in the orbitofrontal cortex (OFC), confirming CORT-induced dendritic spine attrition on basal arbors of layer V neurons. We next assessed the effects of acute, mild stress in adulthood: On PL neurons, an acute stressor increased the density of mature, mushroom-shaped spines. Meanwhile, on OFC neurons, dendritic spine volumes and lengths were lower in mice exposed to both CORT and an acute stressor (also referred to as a "double hit"). In sum, prolonged exposure to excess glucocorticoids during adolescence can have morphological and also metaplastic consequences, but they are not global. Anatomical considerations are discussed.
Collapse
Affiliation(s)
- Elizabeth T. Barfield
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Michelle K. Sequeira
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Graduate Training Programs in Neuroscience, Emory University, Atlanta, GA, United States
| | - Ryan G. Parsons
- Graduate Program in Integrative Neuroscience, Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Shannon L. Gourley
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Graduate Training Programs in Neuroscience, Emory University, Atlanta, GA, United States
| |
Collapse
|
10
|
The Relationship between DNA Methylation and Antidepressant Medications: A Systematic Review. Int J Mol Sci 2020; 21:ijms21030826. [PMID: 32012861 PMCID: PMC7037192 DOI: 10.3390/ijms21030826] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 01/31/2023] Open
Abstract
Major depressive disorder (MDD) is the leading cause of disability worldwide and is associated with high rates of suicide and medical comorbidities. Current antidepressant medications are suboptimal, as most MDD patients fail to achieve complete remission from symptoms. At present, clinicians are unable to predict which antidepressant is most effective for a particular patient, exposing patients to multiple medication trials and side effects. Since MDD’s etiology includes interactions between genes and environment, the epigenome is of interest for predictive utility and treatment monitoring. Epigenetic mechanisms of antidepressant medications are incompletely understood. Differences in epigenetic profiles may impact treatment response. A systematic literature search yielded 24 studies reporting the interaction between antidepressants and eight genes (BDNF, MAOA, SLC6A2, SLC6A4, HTR1A, HTR1B, IL6, IL11) and whole genome methylation. Methylation of certain sites within BDNF, SLC6A4, HTR1A, HTR1B, IL11, and the whole genome was predictive of antidepressant response. Comparing DNA methylation in patients during depressive episodes, during treatment, in remission, and after antidepressant cessation would help clarify the influence of antidepressant medications on DNA methylation. Individuals’ unique methylation profiles may be used clinically for personalization of antidepressant choice in the future.
Collapse
|
11
|
Effects of stress on the structure and function of the medial prefrontal cortex: Insights from animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 150:129-153. [PMID: 32204829 DOI: 10.1016/bs.irn.2019.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress alters both cognitive and emotional function, and increases risk for a variety of psychological disorders, such as depression and posttraumatic stress disorder. The prefrontal cortex is critical for executive function and emotion regulation, is a target for stress hormones, and is implicated in many stress-influenced psychological disorders. Therefore, understanding how stress-induced changes in the structure and function of the prefrontal cortex are related to stress-induced changes in behavior may elucidate some of the mechanisms contributing to stress-sensitive disorders. This review focuses on data from rodent models to describe the effects of chronic stress on behaviors mediated by the medial prefrontal cortex, the effects of chronic stress on the morphology and physiology of the medial prefrontal cortex, mechanisms that may mediate these effects, and evidence for sex differences in the effects of stress on the prefrontal cortex. Understanding how stress influences prefrontal cortex and behaviors mediated by it, as well as sex differences in this effect, will elucidate potential avenues for novel interventions for stress-sensitive disorders characterized by deficits in executive function and emotion regulation.
Collapse
|
12
|
Tabor J, Collins R, Debert CT, Shultz SR, Mychasiuk R. Neuroendocrine Whiplash: Slamming the Breaks on Anabolic-Androgenic Steroids Following Repetitive Mild Traumatic Brain Injury in Rats May Worsen Outcomes. Front Neurol 2019; 10:481. [PMID: 31133974 PMCID: PMC6517549 DOI: 10.3389/fneur.2019.00481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Sport-related concussion is an increasingly common injury among adolescents, with repetitive mild traumatic brain injuries (RmTBI) being a significant risk factor for long-term neurobiological and psychological consequences. It is not uncommon for younger professional athletes to consume anabolic-androgenic steroids (AAS) in an attempt to enhance their performance, subjecting their hormonally sensitive brains to potential impairment during neurodevelopment. Furthermore, RmTBI produces acute neuroendocrine dysfunction, specifically in the anterior pituitary, disrupting the hypothalamic-pituitary adrenal axis, lowering cortisol secretion that is needed to appropriately respond to injury. Some AAS users exhibit worse symptoms post-RmTBI if they quit their steroid regime. We sought to examine the pathophysiological outcomes associated with the abrupt cessation of the commonly abused AAS, Metandienone (Met) on RmTBI outcomes in rats. Prior to injury, adolescent male rats received either Met or placebo, and exercise. Rats were then administered RmTBIs or sham injuries, followed by steroid and exercise cessation (SEC) or continued treatment. A behavioral battery was conducted to measure outcomes consistent with clinical representations of post-concussion syndrome and chronic AAS exposure, followed by analysis of serum hormone levels, and qRT-PCR for mRNA expression and telomere length. RmTBI increased loss of consciousness and anxiety-like behavior, while also impairing balance and short-term working memory. SEC induced hyperactivity while Met treatment alone increased depressive-like behavior. There were cumulative effects whereby RmTBI and SEC exacerbated anxiety and short-term memory outcomes. mRNA expression in the prefrontal cortex, amygdala, hippocampus, and pituitary were modified in response to Met and SEC. Analysis of telomere length revealed the negative impact of SEC while Met and SEC produced changes in serum levels of testosterone and corticosterone. We identified robust changes in mRNA to serotonergic circuitry, neuroinflammation, and an enhanced stress response. Interestingly, Met treatment promoted glucocorticoid secretion after injury, suggesting that maintained AAS may be more beneficial than abstaining after mTBI.
Collapse
Affiliation(s)
- Jason Tabor
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Reid Collins
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Chantel T Debert
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Wellman CL, Moench KM. Preclinical studies of stress, extinction, and prefrontal cortex: intriguing leads and pressing questions. Psychopharmacology (Berl) 2019; 236:59-72. [PMID: 30225660 PMCID: PMC6374178 DOI: 10.1007/s00213-018-5023-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Stress is associated with cognitive and emotional dysfunction, and increases risk for a variety of psychological disorders, including depression and posttraumatic stress disorder. Prefrontal cortex is critical for executive function and emotion regulation, is a target for stress hormones, and is implicated in many stress-influenced psychological disorders. Extinction of conditioned fear provides an excellent model system for examining how stress-induced changes in corticolimbic structure and function are related to stress-induced changes in neural function and behavior, as the neural circuitry underlying this behavior is well characterized. OBJECTIVES This review examines how acute and chronic stress influences extinction and describes how stress alters the structure and function of the medial prefrontal cortex, a potential neural substrate for these effects. In addition, we identify important unanswered questions about how stress-induced change in prefrontal cortex may mediate extinction deficits and avenues for future research. KEY FINDINGS A substantial body of work demonstrates deficits in extinction after either acute or chronic stress. A separate and substantial literature demonstrates stress-induced neuronal remodeling in medial prefrontal cortex, along with several key neurohormonal contributors to this remodeling, and there is substantial overlap in prefrontal mechanisms underlying extinction and the mechanisms implicated in stress-induced dysfunction of-and neuronal remodeling in-medial prefrontal cortex. However, data directly examining the contribution of changes in prefrontal structure and function to stress-induced extinction deficits is currently lacking. CONCLUSIONS Understanding how stress influences extinction and its neural substrates as well as individual differences in this effect will elucidate potential avenues for novel interventions for stress-sensitive disorders characterized by deficits in extinction.
Collapse
Affiliation(s)
- Cara L. Wellman
- Department of Psychological & Brain Sciences, Indiana University,Department of Psychological, Center for the Integrative Study of Animal Behavior, Indiana University,Department of Psychological, Program in Neuroscience, Indiana University
| | - Kelly M. Moench
- Department of Psychological & Brain Sciences, Indiana University,Department of Psychological, Center for the Integrative Study of Animal Behavior, Indiana University,Department of Psychological, Program in Neuroscience, Indiana University
| |
Collapse
|
14
|
Bortolato M, Floris G, Shih JC. From aggression to autism: new perspectives on the behavioral sequelae of monoamine oxidase deficiency. J Neural Transm (Vienna) 2018; 125:1589-1599. [PMID: 29748850 DOI: 10.1007/s00702-018-1888-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/29/2018] [Indexed: 11/28/2022]
Abstract
The two monoamine oxidase (MAO) enzymes, A and B, catalyze the metabolism of monoamine neurotransmitters, such as serotonin, norepinephrine, and dopamine. The phenotypic outcomes of MAO congenital deficiency have been studied in humans and animal models, to explore the role of these enzymes in behavioral regulation. The clinical condition caused by MAOA deficiency, Brunner syndrome, was first described as a disorder characterized by overt antisocial and aggressive conduct. Building on this discovery, subsequent studies were focused on the characterization of the role of MAOA in the neurobiology of antisocial conduct. MAO A knockout mice were found to display high levels of intermale aggression; however, further analyses of these mutants unveiled additional behavioral abnormalities mimicking the core symptoms of autism-spectrum disorder. These findings were strikingly confirmed in newly reported cases of Brunner syndrome. The role of MAOB in behavioral regulation remains less well-understood, even though Maob-deficient mice have been found to exhibit greater behavioral disinhibition and risk-taking responses, supporting previous clinical studies showing associations between low MAO B activity and impulsivity. Furthermore, lack of MAOB was found to exacerbate the severity of psychopathological deficits induced by concurrent MAOA deficiency. Here, we summarize how the convergence of clinical reports and behavioral phenotyping in mutant mice has helped frame a complex picture of psychopathological features in MAO-deficient individuals, which encompass a broad spectrum of neurodevelopmental problems. This emerging knowledge poses novel conceptual challenges towards the identification of the endophenotypes shared by autism-spectrum disorder, antisocial behavior and impulse-control problems, as well as their monoaminergic underpinnings.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, L.S. Skaggs Hall, 30 S 2000 E, Salt Lake City, UT, 84112, USA.
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, L.S. Skaggs Hall, 30 S 2000 E, Salt Lake City, UT, 84112, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.,Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Mosher LJ, Godar SC, Morissette M, McFarlin KM, Scheggi S, Gambarana C, Fowler SC, Di Paolo T, Bortolato M. Steroid 5α-reductase 2 deficiency leads to reduced dominance-related and impulse-control behaviors. Psychoneuroendocrinology 2018; 91:95-104. [PMID: 29544191 PMCID: PMC5901899 DOI: 10.1016/j.psyneuen.2018.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/10/2023]
Abstract
The enzyme steroid 5α-reductase 2 (5αR2) catalyzes the conversion of testosterone into the potent androgen 5α-dihydrotestosterone. Previous investigations showed that 5αR2 is expressed in key brain areas for emotional and socio-affective reactivity, yet the role of this enzyme in behavioral regulation remains mostly unknown. Here, we profiled the behavioral characteristics of 5αR2 heterozygous (HZ) and knockout (KO) mice, as compared with their wild-type (WT) littermates. While male 5αR2 KO mice displayed no overt alterations in motoric, sensory, information-processing and anxiety-related behaviors, they exhibited deficits in neurobehavioral correlates of dominance (including aggression against intruders, mating, and tube dominance) as well as novelty-seeking and risk-taking responses. Furthermore, male 5αR2 KO mice exhibited reduced D2-like dopamine receptor binding in the shell of the nucleus accumbens - a well-recognized molecular signature of social dominance. Collectively, these results suggest that 5αR2 is involved in the establishment of social dominance and its behavioral manifestations. Further studies are warranted to understand how the metabolic actions of 5αR2 on steroid profile may be implicated in social ranking, impulse control, and the modulation of dopamine receptor expression in the nucleus accumbens.
Collapse
Affiliation(s)
- Laura J Mosher
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States; Dept of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Sean C Godar
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Quebec, Canada
| | - Kenneth M McFarlin
- Dept of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States.
| | - Simona Scheggi
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States; Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Stephen C Fowler
- Dept of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Quebec, Canada; Faculty of Pharmacy, Laval University, Quebec City, Quebec, Canada
| | - Marco Bortolato
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
16
|
Higuchi Y, Soga T, Parhar IS. Regulatory Pathways of Monoamine Oxidase A during Social Stress. Front Neurosci 2017; 11:604. [PMID: 29163009 PMCID: PMC5671571 DOI: 10.3389/fnins.2017.00604] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Social stress has a high impact on many biological systems in the brain, including serotonergic (5-HT) system-a major drug target in the current treatment for depression. Hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis and monoamine oxidase A (MAO-A) are well-known stress responses, which are involved in the central 5-HT system. Although, many MAO-A inhibitors have been developed and used in the therapeutics of depression, effective management of depression by modulating the activity of MAO-A has not been achieved. Identifying the molecular pathways that regulate the activity of MAO-A in the brain is crucial for developing new drug targets for precise control of MAO-A activity. Over the last few decades, several regulatory pathways of MAO-A consisting of Kruppel like factor 11 (KLF11), Sirtuin1, Ring finger protein in neural stem cells (RINES), and Cell division cycle associated 7-like protein (R1) have been identified, and the influence of social stress on these regulatory factors evaluated. This review explores various aspects of these pathways to expand our understanding of the roles of the HPA axis and MAO-A regulatory pathways during social stress. The first part of this review introduces some components of the HPA axis, explains how stress affects them and how they interact with the 5-HT system in the brain. The second part summarizes the novel regulatory pathways of MAO-A, which have high potential as novel therapeutic targets for depression.
Collapse
Affiliation(s)
- Yuki Higuchi
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
17
|
Manual Acupuncture at PC6 Ameliorates Acute Restraint Stress-Induced Anxiety in Rats by Normalizing Amygdaloid Noradrenergic Response. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4351723. [PMID: 28900460 PMCID: PMC5576413 DOI: 10.1155/2017/4351723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/12/2017] [Indexed: 01/02/2023]
Abstract
Acupuncture improves ethanol withdrawal-induced anxiety in rats in an acupoint-dependent manner. Thus, the present study investigated the effects of acupuncture on acute restraint stress- (ARS-) induced anxiety. Male rats were exposed to ARS for 3 h followed by acupuncture at either PC6 (Neiguan), HT7 (Shenmen), or a nonacupoint (tail) once a day for three consecutive days. Five minutes after the third acupuncture treatment, anxiety-like behavior was evaluated in an elevated plus maze (EPM). Additionally, plasma corticosterone (CORT) levels were measured by radioimmunoassay and the concentrations of norepinephrine (NE) and 3-methoxy-4-hydroxy-phenylglycol (MHPG) in the central nucleus of the amygdala (CeA) were determined using high-performance liquid chromatography. Acupuncture at PC6, but not HT7 or a nonacupoint, attenuated anxiety-like behavior, but this attenuation was abolished by a postacupunctural intra-CeA infusion of NE. Acupuncture at PC6 also reduced the oversecretion of plasma CORT and inhibited increases in amygdaloid NE and MHPG induced by ARS. Further, Western blot analyses and real-time polymerase chain reaction assays revealed that acupuncture at PC6 prevented ARS-induced enhancements in the protein and mRNA expressions of tyrosine hydroxylase in the CeA. These results suggest that acupuncture performed specifically at acupoint PC6 reduces ARS-induced anxiety-like behavior by dampening amygdaloid noradrenergic responses.
Collapse
|
18
|
Naoi M, Maruyama W, Shamoto-Nagai M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm (Vienna) 2017; 125:53-66. [PMID: 28293733 DOI: 10.1007/s00702-017-1709-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/12/2017] [Indexed: 12/30/2022]
Abstract
Type A monoamine oxidase (MAOA) catabolizes monoamine transmitters, serotonin, norepinephrine and dopamine, and plays a major role in the onset, progression and therapy of neuropsychiatric disorders. In depressive disorders, increase in MAOA expression and decrease in brain levels of serotonin and norepinephrine are proposed as the major pathogenic factors. The functional polymorphism of MAOA gene and genes in serotonin signal pathway are associated with depression. This review presents recent advance in studies on the role of MAOA in major depressive disorder and related emotional disorders. MAOA and serotonin regulate the prenatal development and postnatal maintenance of brain architecture and neurocircuit, as shown by MAOA-deficient humans and MAO knockout animal models. Impaired neurogenesis in the mature hippocampus has been proposed as "adult neurogenesis" hypothesis of depression. MAOA modulates the sensitivity to stress in the stages of brain development and maturation, and the interaction of gene-environmental factors in the early stage regulates the onset of depressive behaviors in adulthood. Vice versa environmental factors affect MAOA expression by epigenetic regulation. MAO inhibitors not only restore compromised neurotransmitters, but also protect neurons from cell death in depression through induction of anti-apoptotic Bcl-2 and prosurvival neurotrophic factors, especially brain-derived neurotrophic factor, the deficiency of which is detected in depression. This review discusses novel role of MAOA and serotonin in the pathogenesis and therapy of depressive disorders.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| |
Collapse
|
19
|
Wellman CL. Visualizing Changes in Neuronal Dendritic Morphology in Response to Stress and Pharmacological Challenge. CURRENT PROTOCOLS IN NEUROSCIENCE 2017; 78:8.38.1-8.38.18. [PMID: 28046203 DOI: 10.1002/cpns.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This unit outlines a protocol for Golgi staining, which has been used extensively to reliably and quantitatively assess alterations in dendritic arborization and spine density as a result of a variety of factors, including chronic administration of glucocorticoids, chronic stress, and pharmacological manipulations. The method stains neurons in their entirety, allowing for sophisticated analyses of branch lengths and numbers as well as patterns of dendritic branching. Advantages of the technique include its usefulness in multisite collaborations and its utility in visualizing neurons in multiple regions within the same brain. Given that it typically labels approximately one in one hundred neurons, many neurons per region of interest can be sampled per animal, greatly increasing the ability to obtain a representative sample of neurons. Limitations include its time-consuming nature, the hazardous chemicals employed, and the inability to use the stain to identify discrete subpopulations of neurons based on their projections, activation, or protein expression. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Cara L Wellman
- Department of Psychological and Brain Sciences, Center for the Integrative Study of Animal Behavior, and Program in Neuroscience, Indiana University, Bloomington, Indiana
| |
Collapse
|
20
|
Godar SC, Fite PJ, McFarlin KM, Bortolato M. The role of monoamine oxidase A in aggression: Current translational developments and future challenges. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:90-100. [PMID: 26776902 PMCID: PMC4865459 DOI: 10.1016/j.pnpbp.2016.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 11/17/2022]
Abstract
Drawing upon the recent resurgence of biological criminology, several studies have highlighted a critical role for genetic factors in the ontogeny of antisocial and violent conduct. In particular, converging lines of evidence have documented that these maladaptive manifestations of aggression are influenced by monoamine oxidase A (MAOA), the enzyme that catalyzes the degradation of brain serotonin, norepinephrine and dopamine. The interest on the link between MAOA and aggression was originally sparked by Han Brunner's discovery of a syndrome characterized by marked antisocial behaviors in male carriers of a nonsense mutation of this gene. Subsequent studies showed that MAOA allelic variants associated with low enzyme activity moderate the impact of early-life maltreatment on aggression propensity. In spite of overwhelming evidence pointing to the relationship between MAOA and aggression, the neurobiological substrates of this link remain surprisingly elusive; very little is also known about the interventions that may reduce the severity of pathological aggression in genetically predisposed subjects. Animal models offer a unique experimental tool to investigate these issues; in particular, several lines of transgenic mice harboring total or partial loss-of-function Maoa mutations have been shown to recapitulate numerous psychological and neurofunctional endophenotypes observed in humans. This review summarizes the current knowledge on the link between MAOA and aggression; in particular, we will emphasize how an integrated translational strategy coordinating clinical and preclinical research may prove critical to elucidate important aspects of the pathophysiology of aggression, and identify potential targets for its diagnosis, prevention and treatment.
Collapse
Affiliation(s)
- Sean C Godar
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, (KS), USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, (KS), USA
| | - Paula J Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, (KS), USA; Clinical Child Psychology Program, University of Kansas, Lawrence, (KS), USA
| | - Kenneth M McFarlin
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, (KS), USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, (KS), USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, (KS), USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, (KS), USA.
| |
Collapse
|